6800 Progranming - Introduction

This section of our manual has been witten to hel p you begin
progranmm ng your 6800 Conputer System Programring is a conplicated subject.
Thi s manual describes only the two nore basic | evels of progranm ng, nmachine
| anguage and assenbly | anguage. Wth the material contained in this manua
you should be able to learn the basic principles of programm ng. Take things
slow and reread the material as nmany tinmes as necessary to understand what is
being said. Since trial and error is one of the fastest |earning nethods,
don't be afraid to sit down and experinent with some short progranms. Unlike
hardware, errors in programmng, or software as it is often called; cannot
damage anything. So experiment with progranms until you understand the

mat eri al presented here.

The "What |s An Assenbler" section of this nmanual should be mastered
as a first step. Most of the material in the Motorola "M croprocessor
Progranmm ng Manual " assumes an under standi ng of both assenbl er and machi ne
| anguage progranmi ng. Chapter five of this manual goes into detail describing
the 6800 assenbler. It is inmportant that you learn it now since all user
progranms should be witten using assenbl er mmenoni cs and then hand assenbl ed
i nto machi ne | anguage. Not doing this will make it inpossible for you to | ook
at each program statenent and know what it does. Chapter five's material on

editing, listing and saving prograns applies only to timeshare services.

Programm ng -i -



You shoul d read pages PROG- 1 through PROG 5 of the programm ng
section in this notebook next. Pages PROG 1 through PROG 3 describe in detai
the various nethods of addressing and nust be | earned. Wthout knowi ng which
i nstruction addressing node to use, witing a programw ||l be virtually
i mpossi bl e. Pages PROG-4 t hrough PROG 5 describe the cal culations that are
needed when hand assenbling progranms that contain branch instructions. Wen a
resi dent assenbler programis used with the computer, |abels are provided is
t he source code and the assenbl er program makes the necessary cal cul ati ons

for you.

Appendi x A of the Mtorola "M croprocessor Programm ng Manual "
contains all of the assenbler mmenonic instructions as well as their
hexadeci mal machi ne | anguage equi val ents. You should read through this
section several times to get familiar with the instructions that are
avail able to you in the 6800 processor. Wen you start witing your programns

you will find this information indi spensable.

Appendi x B contains the |list of assenbler directives which are
instructions used only for the assenbler. They have no function when
programm ng i n machi ne | anguage, however, are nice to know when readi ng the
assenbl er source listings in the systens nanual

Pages PROG-6 t hrough PROG 21 contain sanpl e progranms which may be
useful to the reader. Pages PROG 21 through PROG 29 contain sone sanple PIA
polling routines which would be useful to those using parallel interface

options.

Programm ng -ii-



VWhat is an Assenbl er?

Thr oughout this notebook as well as the Mtorola Programing Manua
you will repeatedly encounter the word "assenbler"” as well as printouts of
its source code listings. To those of you already fam liar with assenblers
these ternms shoul d be easily understood, To others just |earning about
conputers, this can be a confusing subject. Before we can explain the term
"assenbl er" though, you rmust understand how prograns are | oaded, stored and

executed within the conputer's nenory.

The SWIPC 6800 Conputer System has a read-only-nenory (ROM stored
m ni operating systemwi th a nmenory exanm ne and change function which all ows
the user to enter either prograns, or data into the conputer's nmenmory from
the term nal's keyboard in conveni ent hexadeci mal (base 16) notation. The
data is entered fromwhatever starting | ocation the user chooses and is
| oaded sequentially with the operating systemincrenenting the menory address

after each |ocation has been | oaded.

If we were to look at a listing of the data that was | oaded into

menory, it mght look like this:

A017 2B
A018 FE
A019 A0
AO1A 02
A01B 86
A01C 01
A01D A7
AO1E 00
AO1F Al
A020 00

Programmng -iii-



The col um of nunbers on the left is the hexadeci nal address at
whi ch the hexadecinal data on the right is stored. As it happens, the data
| oaded into these ten locations is a portion of a program | oaded i nto nenory
usi ng the nenory exam ne/ change function of the mni-operating system The
first location AO17 although part of the programis used only for storing
data, the rest of the nine addresses starting with address A018 contain
actual programinstructions. Before the programis to be started, the program
counter must be |loaded with the address of the starting byte of the program
using the "display contents of MPU registers” function of the mni-operating
system To actually start the program one uses the "go to user's progrant
function of the m ni-operating systemwhich transfers processor control to
the instruction pointed to by the program counter. In this case the
instruction is FE which translates to load the index register with the
contents of the nenory address given in the next two bytes (A002). Since the
index register is a two byte register, the least significant byte is filled
with the contents of the next sequential address which is A003. For
sinmplicity this and other instructions are abbreviated to three letter terns
cal I ed menoni cs. The mmenonic for this instruction is LDX for LoaD indeX
regi ster. The particular type of addressing used here is referred to as
"extended" and is described in detail later in the literature. So now we can
say the instruction FE is the sane thing as LDX, extended. This is defined as
a three byte instruction since a total of three nenory bytes are used for the
entire instruction. The data is stored in |ocations A018, A019, and AOl1A. The
program counter was increnented by one as each of the preceding nenory
| ocations were processed and at the conpletion of the | ast byte of the
instruction, was left pointing to the next instruction |ocation at address
AO1B which is 86. The instruction 86 neans to LoaD Accumulator A with the
contents of the menory location inmediately following the instruction which

is 01. This is referred to as the i medi ate node of addressing and is

Programm ng -i v-



described in detail later in the literature. Qur mmenonic for this
instruction is LDA A inmediate which stands for Loan Accunulator A and it is
a two byte instruction. At the conpletion of this instruction, our program
counter is left pointing to nmenory address AOQ D whose contents are an A7
which is a STore Accunul ator A indexed by 0, instruction. The menonic here

is STA A indexed.

Thi s neans the contents of accunulator A are stored at the address
contained within the index register plus the index value, which is contained
in the nmenory location imediately following the instruction which in this
case is zero. This instruction like the one following it is a tw byte
instruction. The next instruction is an Al whose menonic is CVP A, indexed,
whi ch translates to CoMPare accunul ator A to the nmenory | ocation pointed to
by the address contained in the index register plus zero. And so the program

conti nues.

It's probably obvious by now that having to wite a programin two
digit hexadecimal formusually referred to as machi ne | anguage can really be
hard to interpret unless you are able to nenorize the menonic translation
for all of the hexadecimal instructions. Wuldn't it be easy if you could
write your program using the easy to remenber mmenonics and |let the conputer
translate themto their machi ne | anguage equi valents to be | oaded into
menory? Well this is what the assenbl er does and in addition allows the
programer to use |abels and conments with statenments and add assenbl er
directives which allocate nmenory storage | ocations and start the programin
the selected nenory address just to nention a few The assenbler also detects
and prints out detected errors in the source program So as you can see the
assenbler is sinmply a program which allows the programmer to save tine and
sinmplify his programwiting by using | abels, sinple menonic conmands, and
assenbl er directives. The assenbler programitself is several thousand bytes
inlength and is usually |oaded froma tape reader. It is far too long to be

typed in manual ly.
Programm ng -v-



The mmenonic witten programto be assenbled is generally entered
froma tape that has been generated by what is called an editor. The editor
is a programused to generate a new or nodi fy an already existent source
program The editor allows the user to enter, delete, nodify or insert data
to a source file. When the programer is satisfied with the accuracy of the
file, a tape is generated which may then be assenbled by the assenbler. If
there are errors or if you choose to nodify the program the editor/assenbler
sequence may be repeated as often as necessary. Like the assenbler, the
editor is several thousand bytes in length and is far too long to be typed in

manual | y.

Since the SWIPC editor/assenbl er software package will not be
avail able until early 1976, many users will have to enter their prograns in
machi ne | anguage. It is suggested that you wite your programin assenbl er
formusi ng menonics as detailed later in the literature and then at the sane
time jot down the hexadeci mal machine code just to the left of the
instructions. You should be able to fill in all of the machine codes as you
go along with the exception of forward referenced branch and junp
i nstructions which you can go back and fill in after you have conpl et ed
witing the program This hand assenbl ed met hod was used when witing the
di agnostic prograns in the software section of this notebook. You may even
find that it is quicker to hand assenble those prograns |ess than fifty words

or so than to use the editor/assenbl er package.

Programm ng -vi -



