Microcomputer Interfacing

and Programming

Preface

In 1971, the first microprocessor chips became commercially avail-
able. These were the Intel Corporation 4004 four-bit microprocessor
chips which, while somewhat difficult to use in real computer applica-
tions, nevertheless did lead the way in control applications where they
are still widely used today. The Intel 8008 eight-bit microprocessor fol-
lowed quickly, and permitted the user to configure a small general-
purpose “computer.” At the time, several companies started to offer
standard logic cards that had the necessary control logic, memory, and
input/output buffers so that real applications could be tackled.

After the announcement of the 8008 chip, many semiconductor com-
panies scrambled to get on the mciroprocessor bandwagon. Intel fol-
lowed with their powerful 8080, Motorola with the 6800, Fairchild with
the F-8, and so on through dozens of companies and microprocessor
chips. Early in 1977, we witnessed a surge of “computer-on-a-chip” de-
vices that contain, in a single integrated-circuit chip package, all the
necessary logic, memory, and I/O capability to construct a small micro-
computer.

Not only are microcomputers finding widespread use in control and
instrumentation applications, they have also spawned the hobby com-
puter market. Five years ago, some hobbyists may have dreaned of
having their own computers, but few had one. Now, thousands of ama-
teurs have small computers that are being used for general program-
ming applications, playing games, providing real estate listings, main-
taining inventories, and saving energy in the home. The publication of
the Mark 8 construction article in Radio-Electronics in July 1974 started
the flood. Based upon the 8008 microprocessor chip, the Mark 8 pro-
vided computer hobbyists with the means of having their own com-
puter. Later followed by commercial models manufactured by MITS,

Inc., Southwest Technical Products Corp., Cromemco, Inc., IMSAI
Manufacturing Corp., and many other companies, thousands of micro-
computers can now be found in homes in the United States.

This is just the beginning. We can safely predict that home enter-
tainment/communication centers based upon the marriage of television
sets, LSI game chips, and microcomputers will be sold by the millions
as a major consumer product within several years. If Congress and the
FCC can come to grips with the communications revolution spawned
by LSI technology and optical fibers, the next step will be expanded
digital communications between homes, offices, and libraries.

Inexpensive microcomputers will eventually penetrate every facet of
life. Today, they can be found in automobiles, sewing machines, micro-
wave ovens, TV games, vending machines, gasoline pumps, taxi meters,
and so on. Tomorrow, they will be in phones, washers, driers, type-
writers, elevators, heating and cooling systems, children’s toys, . . .
New industries will be created, and some existing ones threatened. How
about a moment of silence for the slide rule?

The objective of this book is to teach you the four fundamental tasks
of microcomputer interfacing:

® Device select pulse generation
@ Microcomputer output

® Microcomputer input

® Interrupt servicing

in the context of 8080-based microcomputers. We hope to give you the
basic concepts of microcomputer interfacing and the associated micro-
computer 1/O programming so that you can develop your own inter-
faces to other digital devices, including teletypes, crt displays, panel
meters, analog-to-digital converters, digital-to-analog converters, lab-
oratory instruments, and the like.

Chapter 1 discusses the future role of microcomputers, the four
fundamental tasks of microcomputer interfacing, and summarizes the
digital concepts that you will require to make proper use of this book.
Chapter 2 describes a small 8080-based microcomputer and discusses
the concept of microcomputer input/output in greater detail, especially
from the point of view of the use of device select pulses to strobe digi-
tal integrated-circuit chips. Chapter 3 provides an introduction to 8080
microcomputer programming. The entire 8080 instruction set is dis-
cussed in some detail. Specific attention is focused on data transfer
operations, arithmetic and logical operations, branch instructions, input
and output instructions, and register decoding. The 8080 instruction
set is summarized in a variety of ways.

Chapter 4 treats the very important topic of device select pulse gen-
eration. A variety of practical and experimental decoder circuits are
provided that can generate one, sixteen, or as many as 256 different

device select pulses. Chapter 5 describes an extremely useful technique
for counting the number of clock cycles required for the execution of
segments of microcomputer programs. The technique permits you to
verify the theoretical number of clock cycles for every instruction in
the 8080 instruction set. Standard programs are provided that generate
time delays that are multiples of either 0.5 ms or 0.2 s.

Chapter 6, perhaps the most difficult one in this book, provides a
description of the internal operation of the 8080 microprocessor chip.
The timing behavior of the 8080 is discussed in terms of states, machine
cycles, and instruction cycles. Circuits are provided to demonstrate
how the IN and OUT control signals can be generated. Chapter 7 dis-
cusses the important topic of microcomputer input/output, both the
latching of output data and the input of three-state buffered data into
the 8080. Circuits and programs are provided that teach you how to
detect a specific key on an ASCII keyboard, how to output data to a
multiplexed display, and how to log digital data.

Chapter 8 discusses in considerable detail several modes of micro-
computer operation, including polled operation and interrupt opera-
tion. The subjects of subroutines, interrupts, external flags, masking,
the stack, and the strategy of interrupt servicing and priority interrupt
software and hardware are all treated. Finally, an appendix summarizes
the entire 8080 instruction set with the aid of Intel instruction-byte
diagrams.

Basically, this book is a revised and expanded version of an earlier
book entitled, The Bugbook III: Microcomputer Interfacing Experi-
ments Using the Mark 80 Microcomputer, an 8080 System, marketed
by E&L Instruments, Inc., Derby, Connecticut. Experiments present in
the original Bugbook IIT have been either rewritten as examples, in-
corporated into the text material, or eliminated. The chapter on inter-
rupts and external flags has been expanded considerably over its pre-
vious length. Numerous editorial changes have been made to improve
the clarity of the material.

In this book, we assume that you have a knowledge of the basic con-
cepts of digital electronics, including gates, flip-flops, latches, decoders,
multiplexers, three-state and open-collector bussing, memories, shift
registers, displays, counters, arithmetic/logic units, and the like. Many
such concepts are used in our discussions of microcomputer interfacing.
Bugbooks I & II: Logic & Memory Experiments Using TTL Integrated
Circuits [E&L Instruments, Inc., 61 First Street, Derby, Connecticut
06418, 706 pages, $16.95] provide such information. If you wish to
interface a microcomputer to a Teletype or crt display, you will need
to know some of the basic principles of asynchronous serial digital data
communications. To our knowledge, the only book that treats such ma-
terial in a systematic fashion is Bugbook ITA: Interfacing & Scientific
Data Communication Experiments Using the Universal Asynchronous

Receiver|Transmitter (UART) and 20 mA Current Loops [E&L Instru-
ments, Inc., 70 pages, $4.95].

The authors and Dr. Christopher A. Titus are quite active in micro-
computer education and system development and design in Blacks-
burg. Short courses on digital electronics and microcomputer inter-
facing are available both on an in-house and a scheduled basis from
Tychon, Inc. [call (703) 951-9030] or from the Continuing Education
Center and Extension Division of Virginia Polytechnic Institute & State
University [call Dr. Norris Bell at (703) 951-6328]. To be placed on
the mailing list for future Bugbooks on microcomputer programming,
analog electronics, and digital electronics, send your name and address
to BUGBOOKS, P.O. Box 715, Blacksburg, Virginia 24060.

Finally, we wish to acknowledge the consistent support of Mr. Mur-
ray Gallant and E&L Instruments, Inc., in all of our educational efforts
in the electronics area.

PeteR R. RoNy
Davip G. LARSEN
JonaTaAN A. TiTUS

—

Contents

CHAPTER 1

WaAT Is A MICROCOMPUTER? . . . « « + « « « « « =« = 11
Introduction to This Chapter—Objectives—Definitions—Review of Digital
Electronics—What Is UsefulP—Some Helpful References—Data Processor
vs. Microprocessor vs. Microcomputer—Hardware vs. Software—Com-
puter vs, Digital Computer—What Is a ControllerP—A Typical 8080
Microcomputer—Test—What Have You Accomplished in This Chapter?

CHAPTER 2

A SMALL 8080 MICROCOMPUTER . .+ . . =+ =« « « « =« = = 39
Objectives—Definitions—The 8080 Microcomputer Chip—The 8224 Clock
Generator/Driver Chip—An 8080-Based Microcomputer—What Is Inter-
facingP—What Is an I/O DeviceP—Uses for Device Select Pulses—Use of
a Microcomputer to Strobe Integrated-Circuit Chips—What Have You
Accomplished in This Chapter?

CHAPTER 3

AN INTRODUCTION TO MICROCOMPUTER PROGRAMMING - 93
Objectives—Definitions—What Is a Computer Program?—What Is an
Instruction”~What Is an Operation?—Machine Language—Octal and
Hexadecimal Machine Codes—Mnemonic Code—How Do I Go About
the Task of Learning Computer Programming—Bit, Byte, Word, and Ad-
dress—Multibyte Instructions—Instructions vs. Data: How Does the

Computer KnowP—8080 Microprocessor Registers—What Types of Oper-
ations Does the 8080 Microprocessor Perform?—8080 Mnemonic Instruc-
tions—Octal/Hexadecimal Listing of the 8080 Instruction Set—An Ex-
ample of Instruction Decoding—Register Decoding—Arithmetic and
Logic Operation Decoding—Immediate Operation Decoding—Branch
Operation Decoding—Conditional Branch Instructions—Condition Flag
Decoding—Register Pair Decoding—Increment and Decrement Operation
Decoding—Data and Memory Addressing Modes—Accumulator Instruc-
tions—8080 Instruction Group—8080 Instruction Summary—Assembly
Language—Machine Language vs. Assembly Language Programs—Intro-
duction to the Examples—Example No. 1—Example No. 2—Example No.
3—Example No. 4—Example No. 5—Example No. 6-—Example No. 7—
Example No. 8—Example No. 9—Example No. 10—Example No. 11—
Example No. 12—Test—What Have You Accomplished in This Chapter?

CHAPTER 4

GENERATING A DEVICE SeLECT PULSE . e
Objectives—Definitions—8080 Microprocessor 1/0 Instructions—Device
Select Pulse Decoding—A Sample Microcomputer Program—Device
Select Pulses as Control Pulses—Example—Test—What Have You Ac-
complished in This Chapter?

CHAPTER 5

Crock CycLes AND TiMing Loops . o
Objectives—Definitions—Monostable Multivibrators—The Microcomputer
as a Monostable Multivibrator—How Long Does It Take to Execute a
Microcomputer InstructionP—Clock Cycle Listing for the 8080 Instruc-
tion Set—Counting Clock Cycles: Some Simple Microcomputer Pro-
grams~—-Timing Loops—Sequencing With a Microcomputer—Controlling
Power With a Microcomputer—Test—What Have You Accomplished in
This Chapter?

CHAPTER 6

GENERATING STATUS INFORMATION e e e
Objectives—Definitions—The Bidirectional Data Bus—Instruction Cycles
Machine Cycles—Machine Cycle Identification—Single Stepping an 8080
Microcomputer—The 8212 Eight-Bit Input/Output Port Chip--Test—
‘What Have You Accomplished in This Chapter?

. 195

.21

. 233

CHAPTER 7

MicrocoMpUTER INPUT/OUTPUT 275
Ob]echves—Deﬁmtwns—lnput/Output—Mncrocx)mputer Output Cll‘CultS
—Microcomputer Input Circuits—Input/Output Instructions—Input/Out-
put Programs—Microcomputer Output to a Multiplexed Display—Data
Logging With an 8080 Microcomputer—What Have You Accomplished
in This Chapter?

CHAPTER 8

SusrouTINES, INTERRUPTS, EXTERNAL FLAGS, AND STACKS . . . 297
Objectives—Definitions—What Is a SubroutineP—Use of the Stack for
Data and Status Storage—When Is a Subroutine UsedP—Hardware Inte-
gration: SSI, MSI, LSI, and VLSI-Software Integration: SSP, MSP,
LSP, and VLSP—The 8080 Subroutine Instructions—The 8080 Stack
Instructions—Memory Allocation—Modes of Microcomputer Operation—
Basic Types of Interrupts—Enable and Disable Interrupt Instructions—
External Flags—Interrupt Mask—Interfacing a Keyboard — Priority In-
terrupts—Hardware Priority Interrupts—Priority Interrupt Software—Test
—What Have You Accomplished in This Chapter?

APPENDIX 1

REFERENGES . . - « « « « + « o « o o o« « v . . 349
APPENDIX 2

Tue 8080A INsTRUCTION SET . . . Lo . 351

Microcomputer ngrammmg——Sources of 8080 Programmmg Informa-
tion—8080 Instruction Set Summaries—Description of Individual 8080
Instructions—Instruction Set—Data Transfer Group—Arithmetic Group—
Logical Group—Branch Group—Stack, 1/0, and Machine Control Group

APPENDIX 3

TrE 8080 INSTRUCTION SET « + « + « =+ « =« . 409

INDEX . 411

CHAPTER 1

Whatls a
Microcomputer?

In this book, you will study real examples that demonstrate the prin-
ciples, concepts, and applications of an 8-bit microcomputer that is
based upon the 8080 microprocessor integrated-circuit chip. In doing
so, you will be able to participate in a remarkable electronics revolu-
tion in which the computer will be transformed from a large, expensive,
and rather esoteric machine into a compact, inexpensive, and common
device that will be used by millions of individuals. Before very long,
you will find small computers in your home, automobile, lawn mower,
office, and perhaps even in some of your recreational equipment. These
small computers will be everywhere—millions of them! They will have
a profound influence upon everyday life. Already, a cousin of the
microprocessor chip, the calculator chip, has essentially made the slide
rule obsolete. What has happened with the slide rule will happen with
other mechanical devices.

Large computers will continue to perform complicated mathematical
calculations, and small hand-held electronic calculators will perform
the simpler ones. Since the common view of the computer is as a calcu-
lating machine, one might ask: Where does the microcomputer fit?
After all, if the large computers do all of the more difficult calculations
and the electronic calculators all of the simple ones, is there anything
left for the microcomputer to do? The answer to this seeming dilemma
resides in the fact that computers have at least two important func-
tions:

1. As number- and information-crunching machines in which digi-
tally coded information is manipulated at high speeds.

2. As programmable digital controllers that control machines and
processes by passing digital signals to and from the computer.

The major use of microcomputers will be as controllers, not as infor-
mation-crunching machines. We could estimate the possible market
for microcomputers if we knew how many machines that could be
controlled by a microcomputer exist per capita in the United States.
The telephone could use a microcomputer, as could an electric type-
writer, a television set, a sophisticated child’s game, a stereo set, a
dishwasher, an electric range, a clothes washer, etc. When one includes
homes, offices, industry, and laboratories, there may be between three
and ten machines or devices per capita that can be automated with the
aid of microcomputers. With 200 million individuals in the U.S., this
translates to 600 million to 2 billion microcomputers. The market, for
electronic calculators may be no more than 100 million, which is still
a large number.

The subject of computers is vast, and a series of textbooks can be
written to cover the general scope of computer architecture, operation,
and applications. This is not the intention with this book, which differs
from most texts written on computers in the respect that the primary
emphasis will be on the use of a computer as a controller rather than
as a number-crunching machine. You will learn how to interface a
microcomputer, where the word “interface” means the joining of the
microcomputer to an instrument, device, or machine in a way such
that both operate in a compatible and coordinated fashion.!* You will
focus your attention only on a computer built around an 8080 micro-
processor chip. The reasons for doing so are as follows:

1. Based upon the number of manufacturers who are or will be man-
ufacturing the 8080 microprocessor chip, it is likely that 8080-
based microcomputers will be very common.

2. By the end of 1977, the 8080 microprocessor chip will probably
be sold at a price of $10 in quantities of one, and even less for
considerably larger quantities. Such a low price should ensure
the popularity of 8080-based microcomputers.

3. The 8080 microprocessor instruction set is quite powerful. Pro-
grams are relatively easy to write.

4. The 8080 microprocessor is relatively fast. It can execute an arith-
metic instruction such as add or subtract in only 2 us. With im-
provements in the state of the art, even faster 8080 chips are now
available.

5. An 8080 microcomputer can directly access up to 65,536 different
8-bit memory locations and can generate 256 different input strobe
signals and 256 different output strobe signals.

*See Appendix 1 for references in the text denoted by superscripts.

12

6. Owing to the popularity of the 8080 chip, a wide variety of pro-
grams will be readily available.

Thus the authors believe that your time will best be spent learning the
principles, concepts, and applications of a computer of the future, such
as the 8080, rather than a computer of the past, such as the PDP-8.

This book is concerned with the four fundamental tasks of computer
interfacing:

1. The generation of device select signals.

9. The latching of output data.

3. The acquisition of input data.

4. The servicing of interrupt signals.
An extensive series of examples will provide you with the concepts and
techniques necessary for developing your own circuits and the writing
of your own programs to accomplish one or more of the four funda-
mental tasks. Once you have mastered these tasks, the world of micro-
computer controls will be yours.

INTRODUCTION TO THIS CHAPTER

In the chapters that follow this one, you will encounter a series of
examples that will help you to develop competence in microcomputer
interfacing. Before you do so, however, it would be useful for you to
develop an understanding of what a computer is and what the distinc-
tions are between microcomputers, minicomputers, computers, control-
lers, data processors, and logic processors.

In addition, it would be useful for you to gain some insight into the
characteristics of the principal “bug” in this book, the 8080 micro-
processor chip. This chip, first marketed by Intel Corporation in 1974,
is a complete 8-bit parallel central processing unit (CPU), also abbre-
viated MPU, that is fabricated on a single LSI chip. Simple instructions
can be performed in as little as 2 us, which compares to the 1.2-us in-
struction time for similar operations in the Digital Equipment Corp.
PDP-8/E minicomputer. The 8080 chip is being “second sourced” by
Texas Instruments, Inc., National Semiconductor Corp., NEC, and
several other chip manufacturers. Such actions signify that the semi-
conductor industry is betting that the 8080 will become an important
force in the microprocessor market.

Any discussion of the 8080 can be subdivided into the following
topics:

@ The pin configuration and pin functions of the 8080 chip.

® The organization of a typical microcomputer that employs the

8080 chip.

® The internal operation of the 8080 microprocessor.

® The instruction set of the 8080 microprocessor.

Starting in this chapter and continuing in several chapters, we shall
discuss each of these topics. The detail with which we shall do so will
vary from topic to topic. The objective is not to bombard you with a
fusillade of timing diagrams and machine cycle descriptions, but
rather to help you develop the skills that you will need to use an
8080-based breadboard microcomputer system.

For the interested reader, the authors recommend the following
sources for additional information on the characteristics and operation
of the 8080 chip:

Robert H. Cushman, “The Intel 8080: First of the second-generation micro-
processors,” Electronic Design News 19 (9), p. 30 (May 5, 1974).

Masatoshi Shima and Federico Faggin, “In switch to n-MOS, microprocessor
gets a 2-us cycle time,” Electronics 47 (8), p. 95 (April 18, 1974).

Intel Corp., Intel Intellec 8/Mod 80 Microcomputer Development Syst
Reference Manual, Santa Clara, California, 1975.

Intel Corp. Intel 8080 Microcomputer System Manual, Santa Clara, Califor-
nia, September, 1976.

Adam Osborne, An Introduction to Microcomputers. Volume II. Some Real
Products, Osborne Associates, Berkeley, California, 1976.

Adam Osborne, 8080 Programming for Logic Design, Osborne Associates,
Berkeley, California, 1976.

W. J. Weller, A. V. Shatzel, and H. Y. Nice, Practical Microcomputer Pro-
gramming. The Intel 8080, Northern Technology Books, 1976.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

® Explain the difference between a microprocessor and a micro-
computer.

® Define the terms: computer, digital computer, data processor, con-
troller, hardware, software, memory, memory word, memory ad-
dress, memory data, read, write, random access memory, read-only
memory, interfacing, device select pulse, and interrupt.

® Describe different types of computers and controllers on the basis
of the following characteristics: word length, complexity, appli-
cation, cost, memory size, program, speed constraints, input/out-
put, design, and manufacturing volume.

® Describe the operation of a typical 8080 microcomputer system.

MICROPROCESSORS AS MICROCONTROLLERS AND
LOGIC PROCESSORS

Microprocessor applications tend to fall into the following cate-
gories:

14

SWNOA
|pwg abiieq Bupnpejnuey
woysAg asemyos
abenbuey [9A97-YBIH wesBosdoseyw weaboidoniw
weaGoidoioew wesBoidoniw + 21607 260y usiseq
swdinby $921A9q sadneg
10 |njwooy xa|duwio) swog aydung moy paiebajug inding-induy
pauau0 sjuelsuo)
-indyBnoayy wnipaw molg slury [eay poedg
a|qepeojoy Auo-pesy weiBoug
SPIOA, U
uey) asow SPIom UOHIIW 1-0001 SPJOM 000101 SpPioM OL-Z SPIOM ¥-0
abie| AsaA abieq wnipayw |lewg ljlews ABA oz15 Atowayy
(rZ61) (r261)
dn pue we61) rz6l) oot$
000'001$ 000°0L$ 0001$ 49pun 80)
Bujssedoid eieq Buissasougd-eieq
essusy jesausn uopeindwod
aouew05194-4BiH 180)-M07 paieaipaqg joauoy uoyenddy
Aessy 21607 21607
seindwo) abieq i dosoiw 1eD pawweiBoid pasm-pIeH Apxejdwod
9 ze 9L 8 z L (sug)
yiBuay piog

@duewLIoIad-YBIH 0} swaysAs 1607 pasim-pieH ajduis wioy ‘Apxa)

*$21U01399]F 30 anss] ‘pL61 ‘L1 19900 3Yi ul Aa|iy g edejiEM
Aq apuiy ue woiy paydepy s| pue [ensjey ‘dio) Bot-0id uo paseq s| dqel SIYL -juawdinby Buissadold ejeq |e48ua9

3 jo wnapads dyL |1 Slqel

d

o d

® Controllers

® Consumer products
® Communications

® Terminals

® Microcomputers

Each of these categories is discussed in some detail in the Micro-
processor Handbook.? As shown in Table 1-1 and Fig. 1-1, micro-
processor applications fall between relay logic and discrete random
logic (gates and flip-flops) on one hand and inexpensive minicom-
puters such as the LSI-11 and PDP-8/A on the other. Microcomputers
fabricated from microprocessors are not as sophisticated as some of the
popular minicomputers and cannot easily perform data processing
problems. They are simply not set up at this moment to run FOR-
TRAN, COBOL, or other high-level languages. The computer power
inherent in many of today’s 8-bit and 16-bit microcomputers would
allow them to do so, but the software support is simply not yet avail-
able for them.

At the moment, it would be more appropriate to call systems con-
structed from microprocessor chips by the terms microcontrollers or
logic processors. They are excellent programmable sequencers, and
can process logic data and make decisions upon such data. Thus, they
can sequence events in response to decisions upon input data,

WHERE MICROCOMPUTERS FIT

So
-2
22
E31
[=33]
oL
J
oa
xa
Sa
=
] o I e A e
0o ow -« © =
3] e -8 7 2 38R
Qo o .h_-l Pa N [% a 00
=3 5 46 o & ©
o a
> w a I3
<k H a
o o
oo 8
x Q
@
[=]
HARDWARE - SOF TWARE
LOGIC CONTROL DATA PROCESSING
Fig. 1-1. Applicati for for mi Mi p will carve out their own

niche between discrete logic and inexpensive minicomputers.

16

When it was first introduced, the Intel 8080 microprocessor chip
sold for $360 in quantities of one. By the end of 1977 the price should
drop to $10 in quantities of one. The price of a piece of equipment
containing such a microprocessor will then reflect primarily the me-
chanical aspects of the equipment, ie., the housing and electrome-
chanical devices.

In this book the emphasis is on control and logic processing appli-
cations. The authors don’t foresee many 8080-based microcomputers
being tied to $5000 worth of input/output equipment and used in com-
petition with the PDP-11 and competitive minicomputers. Rather, we
foresee minicomputer-microcomputer hierarchies in which one to ten
instruments and devices containing 8080 chips are all tied to a single
minicomputer. An example of such a computer hierarchy is shown in
Fig. 1-2. Instruments A through G all communicate directly to the
much larger minicomputer through an 8080-based microcomputer con-
tained within each instrument. The instruments are controlled by the
8080 computers, and the minicomputer oversees such control and logs
important instrument parameters. The minicomputer might also pro-

A

E 8080
|_[eceo]]

B
F 8080 MINICOMPUTER
8080

Cc
G [s0s0 |
8080

D

8080/

Fig. 1-2. An example of a computer hierarchy. The individual instruments or machines A
through G are controlled by built-in 8080 microprocessors. These microprocessors alse com-
municate back and forth with the mini which i the operation of the
entire system.

vide the microcomputer control set points at the beginning of each day.
Each microcomputer might contain only 2K to 8K of memory, whereas
the minicomputer might have a minimum of 16K or 32K of memory to
permit it to handle a higher-level language such as FORTRAN or APL.
Please keep in mind that future microcomputers will be quite inexpen-
sive, perhaps no more than several hundred dollars for a complete
microcomputer system. The more venturesome individuals in the elec-
tronics industry predict full microcomputer systems for a cost of $10
to $20 in quantities of 100. At such prices, microcomputers will be
everywhere.

DEFINITIONS

accumulator—The register and associated digital electronic circuitry in
the arithmetic unit of a computer in which arithmetic and logical
operations are performed.

bidirectional—Responsive in opposite directions.*

bidirectional data bus—A data bus in which digital information can be
transferred in either direction.

bus—A path over which digital information is transferred, from any of
several sources to any of several destinations. Only one transfer of
information can take place at any one time. While such transfer is
taking place, all other sources that are tied to the bus must be dis-
abled.

clock—(a) Any device that generates at least one clock pulse, or (b) a
timing device in a system that provides a continuous series of timing
pulses.*

computer—Any device, usually electronic, capable of accepting infor-
mation, comparing, adding, subtracting, multiplying, dividing, and
integrating this information, and then supplying the results of these
processes in acceptable form. The major elements of a computer
usually include memory, control, arithmetic, logical, and input and
output facilities.*

computer interfacing—The synchronization of digital data transmission
between a computer and one or more external input/output devices.

controller—An instrument that holds a process or condition at a desired
level or status as determined by comparison of the actual value with
the desired value.*

data processor—A digital device that processes data. It may be a com-
puter, but in a larger sense it may gather, distribute, digest, analyze,
and perform other organization or smoothing operations on data.
These operations, then, are not necessarily computational. Data pro-
cessor is a more inclusive term than computer.?

device select pulse—A synchronization pulse generated by a computer
to synchronize the operation of a specific input or output device.

digital computer—An electronic instrument capable of accepting, stor-
ing and arithmetically manipulating information, which includes
both data and the controlling program. The information is handled
in the form of coded binary digits (0 and 1) represented by dual
voltage levels.®

digital controller—A controller that acquires the actual value of the
condition in digital form and compares it to the desired value con-
tained within the controller. If there is any difference between the
two, a digital signal is sent out by the controller to reduce this dif-
ference.

direct address—An address that specifies the location within memory of
an instruction or data byte.

external device addressing—A device name, expressed as a digital code,
that is generated by the CPU to address a specific external device.
Both input and output devices can be addressed.

fixed-program computer—A computer in which the sequence of instruc-
tions is permanently stored or wired. The computer program is not
subject to change either by the computer or the programmer except
by rewiring or changing the storage input.®

general-purpose computer—A computer designed to solve a large va-
riety of problems; a stored-program computer which may be adapted
to any of a large class of operations.®

hardware—The mechanical, magnetic, electronic, and electrical devices
from which a computer or computer system is fabricated; the assem-
bly of material forming a computer system.”

input/output, input-output—General term for the equipment used to
communicate with a computer and the data involved in the com-
munication.?

interfacing—The joining of members of a group (such as people, instru-
ments, etc.) in such a way that they are able to function in a com-
patible and coordinated fashion.*

interrupt—In a computer, a break in the normal execution of a com-
puter program such that the program can be resumed from that point
at a later time. The source of the interrupt can be external or in-
ternal.

memory—Any device that can store logic 1 and logic 0 bits in such a
manner that a single bit or group of bits can be accessed and re-
trieved.1?

memory address—The storage location of a memory word.

memory cell—A single storage element of memory, capable of storing
one bit of digital information.

memory data—The memory word occupying a specific location in mem-
ory, or the memory words collectively located in memory.

memory word—A group of bits occupying one storage location in a
computer. This group is treated by the computer circuits as an en-

tity, by the control unit as an instruction, and by the arithmetic unit
as a quantity. Each bit is stored in a single memory cell.

microcomputer—A fully operational computer system based upon a mi-
croprocessor chip.

microcontroller—A small controller, most likely one based upon a mi-
croprocessor ‘chip.

microprocessor—A single integrated-circuit chip that contains at least
75 percent of the power of a very small computer.

monostable multivibrator—A circuit having only one stable state, from
which it can be triggered to change the state, but only for a pre-
determined interval, after which it returns to the original state.

programmable read-only memory—A read-only memory that is field
programmable by the user.1?

pulser—A logic switch that generates a clock pulse.

random access memory—A semiconductor memory into which logic 0
and logic 1 states can be written (stored) and then read out again
(retrieved).2®

read—To transmit data from a memory to some other digital device.

read-only memory—A semiconductor memory from which digital data
can be repeatedly read out, but cannot be written into, as is the
case for a random access memory.1°

software~The totality of programs and routines used to extend the
capabilities of computers, such as compilers, assemblers, narrators,
routines, and subroutines.®

special-purpose computer—A computer designed to solve a specific
class or narrow range of problems.®

stored-program computer—A computer capable of performing se-
quences of internally stored instructions, usually capable of modi-
fying those instructions as directed by the instructions.®

volatile memory—In computers, any memory which can return infor-
mation only as long as power is applied to the memory. The opposite
of nonvolatile memory.*

wired-program computer—A computer in which nearly all instructions
are determined by the placement of interconnecting wires held in
a removable plugboard. This arrangement allows for changes of
operations by simply changing plugboards. If the wires are held in
permanently soldered connections, the computer is called a fixed-
program type.*

write—To transmit data into a memory from some other digital elec-
tronic device. A synonym is store.

REVIEW OF DIGITAL ELECTRONICS: WHAT IS USEFUL?

Two previous Bugbooks, Bugbooks I and II: Logic & Memory Ex-
periments Using TTL Integrated Circuits, provide the background

that you will need to use for this book. Some of the more important
chips and digital concepts that you should understand include the fol-
lowing:

® The logic operations AND, OR, NAND, NOR, and exclusive OR.

@ The gating characteristics of the four basic logic gates: AND, NAND,
OR, and NOR.

® The 7400, 7402, 7408, and 7432 integrated-circuit chips.

® Decoders, especially the 7442 four-line-to-ten-line and the 74154
four-line-to-sixteen-line integrated-circuit chips.

® Latches, including the 7474, 7475, 74100, 74175, 74192, 74193, and
74198 integrated-circuit chips. The 74192 and 74193 chips are
counters, and the 74198 chip is an 8-bit shift register.

® JK flip-flops, including the 7470, 7473, 7476, and 74106 integrated-
circuit chips.

® Counters, including the 7490, 7493, 74192, and 74193 integrated-
circuit chips.

® Three-state bussing.

@ Input/output devices such as logic switches, pulsers, clocks, lamp
monitors, and seven-segment LED displays.

® The terms strobe, enable, and disable.

® Monostable multivibrators, such as the 74121, 74122, 74123, and
555 integrated-circuit chips.

® Clocked logic.

® Registers, including the 74198 8-bit shift register.

@ Arithmetic operations, such as addition and subtraction, and the
use of carry bits in binary systems.

® Multiplexing, including the 74153 four-line-to-one-line multiplexer.

® The function of strobe or chip enable inputs on 7400-series inte-
grated-circuit chips.

@ Binary, binary-coded decimal, octal, hexadecimal, and ASCII
codes.

SOME HELPFUL REFERENCES

While the authors would like to discuss the subjects of computers,
minicomputers, and microcomputers in great detail, they will not be
able to do so owing to the limitations of space in this chapter. For
those readers who are interested, the following books are recommended.
They approach the subject of computers in ways that are quite useful
to the novice:

1. The Value of Power, General Automation, Inc., 1055 South East
Street, Anaheim, California 92805, 1973.
An excellent paperback book that describes the characteristics of
minicomputers. May be out of print.

21

. Douglas Lewin, Theory and Design of Digital Computers, John

Wiley & Sons, Inc., New York, 1972.
A more advanced book. The author pays particular attention to the
jargon in the field of digital computers.

. David Hagelbarger and Saul Fingerman, CARDIAC: A Cardboard

lustrative Aid to Computation, Bell Telephone Laboratories, Inc.,
1968.
A 52-page Bell System Educational Aid that presents a simplified
view of what a computer is. Very well written, and quite useful for
teaching purposes.

. The Microprocessor Handbook, Texas Instruments, Inc., P. O. Box

5012, Dallas, Texas 75222.
A nicely written text that provides you with a good overview of micro-
processor applications, architecture, and chip fabrication technologies.
Worth having.

. D. J. Woollons, Introduction to Digital Computer Design, McGraw-

Hill, Inc., New York, 1972.
A more advanced book, one that becomes more useful as you develop
an understanding of computers and computer operation.

. A series of six texts: (1) Binary Arithmetic, (2) Microcomputer

Architecture, (3) The 4-Bit Microcomputer, (4) The 8-Bit Micro-
computer, (5) Assemblers and Prototyping Systems, and (6) 8-Bit
Assemblers and Compilers, lasis, Inc., 770 Welch Road, Suite 154
ED, Palo Alto, California 94304.
At $124.50 for the set of six books, this material is only for the wealthy
among you. They are quite well written and worth having. Very little
information on interfacing is provided, however.

. Jules Finkel, Computer Aided Experimentation: Interfacing to

Minicomputers, John Wiley & Sons, Inc., New York, 1975.
Provides general descriptions of the various facets of minicomputer
interfacing, but lacks details. Does not describe UARTSs, RS-232C,
20-mA current loops, or microprocessors.

. Intel 8080 Microcomputer Systems User's Manual, Intel Corpora-

tion, 3065 Bowers Avenue, Santa Clara, California 95051, July
1975.

If you are working with the 8080 microprocessor chip, you must have
this reference manual. Individual chapters include the following:
Introduction
Chapter 1. The Functions of a Computer
Chapter 2. The 8080 Central Processing Unit
Chapter 3. Interfacing the 8080
Chapter 4. Instruction Set
Chapter 5. 8080 Microcomputer System Components
Standard CPU Interface
ROMs
RAMs
1/0

Peripherals
Coming soon
Chapter 6. Packaging Information

9. An Introduction to Microcomputers, Volume 1: Basic Concepts,
Adam Osborne and Associates, Inc., P. O. Box 2036, Berkeley, Cali-
fornia 94702.

An excellent book at a very reasonable price.
10. 8080 Programming for Logic Design, Adam Osborne and Associ-
ates, Inc., P. O. Box 2036, Berkeley, California 94702.
Another excellent book.
11. Software Design for Microprocessors, Texas Instruments, Inc., Dal-
las, Texas 75222.

Describes software associated with the different TI microcomputer
systems. Section 5.2 provides a description of a badge-reading system
based upon the 8080 microprocessor chip.

DATA PROCESSOR VS. MICROPROCESSOR
VS. MICROCOMPUTER

Tt is difficult to find a good definition for the term digital computer.
The perspective on what is a computer given by Donald Eadie in his
book Introduction to the Basic Computer is quite appealing:

“This chapter serves as a general introduction to the field of digital
devices, with particular emphasis on those devices called computers,
or more properly, data processors. The name data processor is more
inclusive because modern machines in this general classification not
only compute in the usual serise, but also perform other functions with
the data which flow to and from them. For example, data processors
may gather data from various incoming sources, sort it, rearrange it,
and then print it. None of these operations involves the arithmetic
operations normally associated with a computing device, but the term
computer is often applied anyway.

“Therefore, for our purpose a computer is really a data processor.
Even such data processing operations as rearranging data may require
simple arithmetic such as addition. This explains why a certain amount
of imprecision has entered our language and why confusion exists
between the terms computer and data processor. The two terms are
so loosely used at present that often one has to inquire further to
determine exactly what is meant.”?

Eadie thus defined the term data processor as follows:

data processor—A digital device that processes data. It may be a com-
puter, but in a larger sense it may gather, distribute, digest, analyze,
and perform other organization or smoothing operations on data.

23

Comments

This program requires an 8-bit output latch and display to permit
you to observe the results of the arithmetic and logical operations that
you perform on the accumulator contents. Refer to the circuits de-
scribed in Chapter 7.

The subroutine starting at HI = 000 and LO = 100 generates time
delays ranging from 0.200 second to 51.2 seconds through variations in
the timing byte for register C at LO memory address 005.

If you execute the program as it stands, you will observe that the out-
put display quickly fills up with logic 1’s, starting from right to left. At
memory addresses 011 through 015, you have five program bytes with
which you can perform different types of accumulator operations. Thus,
with the program segment:

011 076 MVI A Load the following byte into the
accumulator

012 360 360 Data byte corresponding to the
binary word 11110000,

013 346 ANI Anp the data that follows with the
contents of the accumulator

014 252 252 Data byte corresponding to the
binary word 10101010,

015 000 NOP No operation

you should observe that the anp operation between the byte 11110000
and the byte 10101010 produces the logical result 10100000, an opera-
tion that proceeds bit by bit. By changing the logical instruction at
LO =013, you can demonstrate the behavior of the or and exclusive-
oR instructions on the same initial data.

If you execute the following program segment contained within the
main program:

011 074 INR A Increment the contents of the accu-
mulator by one

012 067 STC Set the carry flag to logic one

013 077 CMC Complement the carry flag

014 047 DAA Decimal adjust the accumulator

015 000 NoP No operation

you should observe a decimal output count from 0 to 99 on the output
display. The 047 instruction is the decimal adjust accumulator instruc-
tion, which converts the result of adding two bed numbers in binary
back to a pair of packed bed numbers. It is not a binary-to-bed conver-
sion instruction as such.

EXAMPLE NO. 10

Purpose

The purpose of this example is to demonstrate the BCD Input and
Direct Conversion to Binary Routine, which is No. 80-147 in the Intel

184

“In short, if a minicomputer is a 1-horsepower unit, the microproces-
sor plus supporting circuitry is a ¥%-hp unit. But as LSI technology im-
proves, it will become more powerful. Already single-chip bipolar and
CMOS-on-sapphire processors are being developed that have almost
the capability of the minicomputer.”

HARDWARE VS. SOFTWARE

Hardware and software are important terms that will be used repeat-
edly in this chapter. It is appropriate, therefore, to define them early.

hardware—The mechanical, magnetic, electronic, and electrical devices
from which a computer is fabricated; the assembly of material form-
ing a computer.?

software—The totality of programs and routines used to extend the ca-
pabilities of computers, such as compilers, assemblers, narrators, rou-
tines, and subroutines. Contrasted with hardware.®

The specific 8080-based microcomputer ssytem that you will use, along
with any integrated-circuit chips, wire, breadboarding aids, and periph-
eral devices, are all considered to be the hardware. The programs and
subroutines that you use and write are the software. In this book, you
will first develop hardware skills in interfacing an 8080-based micro-
computer. Once you acquire such skills, you will then develop soft-
ware skills that will allow you to apply your hardware interfacing
capability to a variety of instruments and machines. As you gain
experience with microcomputers, you will learn that it can often take
considerable amounts of time to write microcomputer programs that
contain hundreds of program steps.

COMPUTER VS. DIGITAL COMPUTER

It is instructive to define the terms computer and digital computer.
Good definitions are difficult to find, as was mentioned previously.

computer—Any device, usually electronic, capable of accepting infor-
mation, comparing, adding, subtracting, multiplying, dividing, and
integrating this information, and then supplying the results of these
processes in acceptable form. The major elements of a computer
usually include memory, control, arithmetic, logical, and input and
output facilities.*

A device capable of accepting information, applying prescribed
processes to that information, and supplying the results of these
processes. It usually consists of input and output devices, storage,
arithmetic and logical units, and a control unit.?

digital computer—An electronic instrument capable of accepting, stor-

ing, and arithmetically manipulating information, which includes
both data and the controlling program. The information is handled
in the form of coded binary digits (0 and 1), represented by dual
voltage levels.®

A computer which processes information represented by combina-
tions of discrete or discontinuous data as compared with an analog
computer for continuous data. A device for performing sequences of
arithmetic and logical operations, not only on data but its own pro-
gram. A stored program digital computer capable of performing
sequences of internally stored instructions, as opposed to such cal-
culators as card-programmed calculators, on which the sequence is
impressed manually.’

An electronic calculator that operates with numbers expressed
directly as digits, as opposed to the directly measurable quantities
(voltage, resistance, etc.) in an analog computer.*

Several subsidiary definitions include the following:

fixed-program computer—Computer in which the sequence of instruc-
tions are permanently stored or wired. The computer program is
not subject to change either by the computer or the programmer
except by rewiring or changing the storage input.®

general-purpose computer—Computer designed to solve a large variety
of problems; a stored program computer which may be adapted to
any of a very large class of operations.

special-purpose computer—A computer designed to solve a specific
class or narrow range of problems.’®

stored-program computer—A computer capable of performing se-
quences of internally stored instructions, usually capable of modify-
ing those instructions as directed by the instructions.?

wired-program computer—A computer in which instructions that spec-
ify the operations are specified by the placement and interconnection
of wires. Wires are usually held by a removable control panel, allow-
ing flexibility of operation, but the term is also applied to perma-
nently wired machines which are then called fixed-program com-
puters.®

A computer in which nearly all instructions are determined by

the placement of interconnecting wires held in a removable plug-
board. This arrangement allows for changes of operations by simply
changing plugboards. If the wires are held in permanently soldered
connections, the computer is called a fixed-program type.*

WHAT IS A CONTROLLER?

Graf has defined a controller as follows:

controller—An instrument that holds a process or condition at a desired
level or status as determined by comparison of the actual value with
the desired value.*

Controllers can be analog or digital, and can be electronic, mechanical,
or even pneumatic, or perhaps some combination of these. A digital
controller acquires the actual value of the condition in digital form
and compares it to the desired value contained within the controller.
If there is any difference between the two, a digital signal is sent out
to the device, machine, or process to initiate actions to reduce this
difference. The digital controller itself consists either of integrated-
circuit chips and discrete components that are hard-wired to a printed-
circuit board, or else a computer of any size with a limited number
of chips to serve as an interface between the computer and the exter-
nal world.

The question of cost becomes an important factor when one consid-
ers the use of computers as controllers. One would not control 100
devices, each with a value of $300, with a $1,000,000 computer; the
use of such a large computer to control $50,000 worth of equipment
is a form of overcontrol. On the other hand, such a computer would
be useful in the control of a $20,000,000 chemical plant. It would ap-
pear that one could justify the cost of a computer controller if it rep-
resents only a modest percentage of the cost of operating a process
or producing a product. The tradeoffs in costs constantly change as
the prices of computers decrease. With the advent of microcomputers,
the costs of controlling equipment should decrease.

A TYPICAL 8080 MICROCOMPUTER

A typical microcomputer constructed from the 8030 chip is shown
in Fig, 1-3. This microcomputer processes all of the minimum require-
ments for a computer. For example:

® It can input and output data.

® It contains an arithmetic/logic unit (ALU), located within the
8080 chip, that performs arithmetic and logical operations.

® 1t contains “fast” memory (the authors believe that speed is an
important requirement for a functional computer these days).

® It is programmable, with the data and program instructions capa-
ble of being arranged in any sequence desired.

® It is digital.

Fig. 1-3 shows the important data paths of the microcomputer. In the
sections below, we shall dissect this diagram and discuss the individual
paths.

27

MEMORY UP TO 65,536
8 BIT WORDS

ey
g o
8'BITS DATA v o8
EXTERNAL INPUT 2l ¥z |8
a| 9z |eoo
DEVICE 170) g giT5 DATA 21 22 |e<= 8-8IT ADDRESS
ouTPUT 22 FOR EXTERNAL
] INPUT/OUTPUT
DEVICES
)
gnrets
INT e 8080 CPU ——=iN } FUNCTION
WA __({PuLse
NTA~—— | oy)PuLsEs

MICROCOMPUTER

Fig. 1-3. A typical 8080 microcomputer system, in which the significant data paths are shown.

Memory

Consider first the data communication between the 8080 central
processing unit (CPU) and memory. You will require some defini-
tions, which will be useful in the ensuing discussion:

memory—Any device that can store logic 1 and logic 0 bits in such a
manner that a single bit or group of bits can be accessed and re-
trieved.1®

memory address—The storage location of a memory word.

memory cell—A single storage element of memory.

memory data—The memory word occupying a specific storage location
in memory, or the memory words collectively located in memory.

memory word—A group of bits occupying one storage location in a
computer. This group is treated by the computer circuits as an en-
tity, by the control unit as an instruction, and by the arithmetic unit
as a quantity. Each bit is stored in a single memory cell.

programmable read-only memory (PROM)—A read-only memory that
is field programmable by the user.!®

read/ write memory—A semiconductor memory into which logic 0 and
logic 1 states can be written (stored) and then read out again (re-
trieved).1® Sometimes called RAM.

read-only memory (ROM)—A semiconductor memory from which dig-
ital data can be repeatedly read out, but cannot be written into, as
in the case for read/write memory.1?

28

read—To transmit data from a memory to some other digital electronic
device.

volatile memory—In computers, any memory that can return informa-
tion only as long as power is applied to the memory. The opposite
of nonvolatile memory.*

write—To transmit data into a memory from some other digital elec-
tronic device. A synonym is store.

The 8080 microprocessor employs 8-bit words that are stored in mem-
ory and are addressed with a 16-bit memory address bus. With a quick
calculation, we conclude that there exist 216 = 65,536 different memory
locations that can be accessed by the microprocessor. This access to
memory is direct, which means that you don’t have to engage in any
special tricks or digital electronic gimmicks to access any given mem-
ory location within the 65,536 possible locations. Forty-pin integrated-
circuit chips do have their advantages, and having one pin for each of
the sixteen address lines is one of them. The total memory capacity of
the 8080 microprocessor is known in the trade as 64K. This is far more
memory than you will ever need for most applications, but it is nice to
know that you have such power in reserve.

A given memory location is addressed with the aid of a 16-bit mem-
ory address bus that is shown in Fig. 1-3. It takes only 1 us to accom-
plish such addressing. The memory address bus is shown in Fig. 1-4.

Data is transferred between the 8080 CPU and memory over 8-bit
data input and data output busses, both of which are shown in Fig. 1-3
and Fig. 1-5. In most recent 8080 microcomputers, these two busses
are combined into a single 8-bit bidirectional data bus. By input, we
mean input into the CPU. By output, we mean output from the CPU.
The point of reference is always the CPU. Data leaving the CPU is

MEMORY

Fig. 1-4. The 16-bit memory address bus
between the 8080 CPU and memory.

i6-bit memory
cddress bus

8080 CPU

29

MEMORY

@
=| 3% Fig. 1-5. Data transfer between the 8080 CPU
3 o = and memory. In most 8080 systems there
2 H E is a single bidirectional data bus.
sl gl E
@®
bl
in
registers l
8080 CPU

always considered to be output data; data entering the CPU is always
input data. In some cases, the input and output data are transferred
between the accumulator and memory. The term accumulator is de-
fined in the following way:

accumulator—The register and associated digital electronic circuitry
in the arithmetic unit of a computer, in which arithmetic and logical
operations are performed.

Data can also be transferred to other internal registers within the 8080
chip. A register is defined as:

register—A short-term digital electronic storage circuit, the capacity of
which is usually one computer word.*

Other registers, besides the accumulator register, include the instruc-
tion register, from which the decoding of the instruction occurs; six
general-purpose registers, which are classified by the letters B, C, D,
E, H, and L; a program counter register; a stack pointer register; and
at least three temporary registers to which you have no access. All of
these registers are discussed in subsequent chapters. They are pointed
out here so that you will not get the false impression that data from
memory is only transferred to the accumulator register. The authors
regard the accumulator register to be the heart of the entire micro-
computer: Arithmetic and logic operations are always performed to
or on the eight bits of data present within the accumulator. For ex-
tracted, anped, ored, or compared to the contents of the accumulator
register. It is not possible to add the contents of one memory location
to the contents of another memory location. You must always proceed

30

in such additions through the accumulator register. The accumulator
register is also important because all input and output data passes
through the accumulator whenever you use the two computer instruc-
tions IN and OUT.

Between the 8080 CPU and memory there exists a single output line,
shown in Fig. 1-3, called memory read/write. When this line is at
logic 1, you are able to read data into the CPU either from memory
or from an external device. When this line is at logic 0, you are able
to write data from the CPU into memory or an external output device.
In some systems separate read and write lines are used.

As a final point, you can employ any type of “fast” digital electronic
memory device, including read/write (R/W) memory, read-only mem-
ory (ROM), and programmable read-only memory (PROM). “Fast”
memory means simply that the memory can perform either a read or
a write operation during a single microcomputer instruction. A typical
8080 microcomputer system operates at a clock rate of 2 MHz, and a
read or write operation takes only 650 ns. Thus, R/W memory, ROM,
and PROM all need an access time of 650 nanoseconds to allow you
to take full advantage of the maximum clock speed. Slower semicon-
ductor memories can be employed, but the microcomputer will have
to “wait” while a read or write operation takes place.

Data Output

The 8-bit output data bus between the 8080 CPU and memory also
serves as the output data bus to an external output device. This is
shown in Figs. 1-3 and 1-6.

MEMORY
8 bits data
output to »
external device al

o

infernat
registers

8080 CPU

Fig. 1-6. Data transfer between the 8080 CPU and an output device.

3t

When you output data to an external device, there are several im-
portant requirements that you must meet:

® You must select the specific output device that will receive eight
bits of data from the accumulator register in the CPU.

® You must indicate to this device the precise instant of time when
output data is available on the output data bus.

® The device must “capture” or “latch” this output data in a very
short period, typically 500 ns.

All three of the preceding requirements are accomplished at the same
time with a single output pulse, which is generated by the 8080 chip
with the aid of some extra digital circuitry external to the 8080 chip.
We call such a pulse a device select pulse. It synchronizes the 8080
CPU and the output device so that when the CPU is ready to provide
output data, the output device is ready to receive it. Keep in mind that
the microcomputer is operating at a clock rate of 2 MHz. Each com-
puter instruction is executed in a very short period, which ranges from
2 us to 9 us. Thus, accumulator data designated as data output is not
available for very long. You must capture this data within 500 ns, or
else it will disappear. We cannot emphasize enough how important this
rapid “capture” of output data is to the successful operation of a com-
plete microcomputer system that includes input/output devices. We
will consider these points in greater detail when we discuss the topic
of microcomputer interfacing in this chapter. If you are interested in
how the function pulse OUT, which is used to generate device select
pulses, is created by the 8080 microcomputer, please jump to the sec-
tion titled “Machine Cycle Identification” in Chapter 6.

Data Input

The 8-bit input data bus between the 8080 CPU and memory also
serves as the input data bus from an external input device. This is
shown in Figs. 1-3 and 1-7. The basic considerations that apply to data
output also apply to data input. Thus:

® You must select the specific input device that will transmit eight
bits of data to the accumulator register within the CPU.
® You must indicate to this device the precise instant of time when
the input data bus is ready to acquire the input data and transfer
it to the accumulator register.
® The accumulator register must “capture” this data in a very short
period, typically 500 ns.
All three of these tasks are accomplished at the same time with a single
output pulse, which is generated by the 8080 chip with the aid of some
extra digital circuitry external to the chip. Such a pulse is also called
a device select pulse. It synchronizes the 8080 CPU and the input

32

MEMORY

8 bits data
input from
external device

8 bits datq,

internal
registers

8080 CPU

Fig. 1.7. Data transfer between an input device and the 8080 CPU.

device so that when the CPU is ready to receive input data, the input
device is ready to transmit it.

Other Input/Output Techniques

There is an alternative and very exciting technique for transferring
data directionally between the microcomputer general-purpose registers
B, C, D, E, H, and L and an input/output device. The technique is
called memory mapped I/O and the chips used are in a family of inter-
face chips recently marketed by Intel Corporation and others. Included
in this family is the 8255 programmable peripheral interface chip, which
turns an input/output device into a pseudo-memory location that is
addressed not with an IN or OUT instruction, but rather with mem-
ory instructions such as MOV, STA, LDA, and the like. The advantage
of doing so is the savings of several microseconds per 8-bit data trans-
fer. The computer programming may be easier as well. This technique
is particularly well adapted for the acquisition or transfer of blocks
of data in short intervals of time. We will not discuss the technique
to any degree in this book.

External Device Addressing

External device addressing can be defined as the use of computer
software to generate input/output synchronization pulses, called de-
vice select pulses, to synchronize the transfer of data between the CPU
and an external input or output device. This is one of the most impor-
tant tasks of microcomputer interfacing, and must be learned well.

The basic objective of external device addressing is to generate a
single unique clock pulse at a precise instant of time to a specific ex-

33

ternal input or output device. The clock pulse can either be a positive
or negative clock pulse. With the 8080 microcomputer, negative clock
pulses are generated most easily. This is done by decoding an 8-bit de-
vice code that appears for about 1.5 us on the memory address bus and
using an I/O function or synchronization pulse, called IN or OUT, that
appears for 500 ns during the 1.5-us interval associated with the 8-bit
device code. The two function pulses and the 8-bit address for external
I/0O device addressing are shown in Figs. 1-3 and 1-8.

The details of how individual device select pulses are generated
are provided in Chapter 4. Briefly, here is how this is done. The com-
puter instructions for transferring data between the accumulator and
input/output devices specify the specific device desired. For an output
computer instruction, you have your choice of any one device among
256 different devices. The same is true for the input computer instruc-
tion. Thus, you have the ability to address, i.e., send device select
pulses to, 256 different input devices and 256 different output devices.
How is this done? Each input or output computer instruction contains
an 8-bit device code. We can calculate that an 8-bit binary number
can specify 28 = 256 different devices. We use a pair of 4-line-to-16-
line decoder chips, such as the 74154 decoder, to decode the 8-bit
device code into a single output pulse. Seventeen 74154 decoders can
generate 256 different pulses, as will be shown in Chapter 4. The re-
maining details can be discussed with the aid of Fig. 1-9.

Fig. 1-9 provides timing diagrams for the accumulator register con-
tents, the memory address bus, and the OUT pulse that is generated

MEMORY

16-bit memory
address bus

8-bit address for
external Input /output

devices
——> N
8080 CPU I/0 synchronization
50T pulses

Fig. 1-8. During an 8080 input or output instruction, the 8-bit device code appears on the
address bus, and an 1/O synchronization pulse appears on the control bus. Such signals are
used to gate the transfer of input/output data.

34

BUT =~ I

AT oo I | I
" A6
s A6 ____- | | I,
[i+]

A5 e e ————
H
® Ad - A L - —
h-4
p-; A3 e — e — -
Fay A2 e - -
£
° Al e — e -
=

AD _ e _:—.?p',__—{ _______

D7 &

D6 £
5 05 <
2 D4
£ D3 2
Q
Qo
< D2 2

1
DI
1
DO

Time —=

Fig. 1-9. Timing diagram indicating the logic states existing on the memory address bus,
within the accumulator, and at the OUT signal line during an OUT instruction.

by the OUT computer instruction and some digital circuitry external
to the 8080 chip. Note the following:

® The accumulator register contents are available for at least several
microseconds, and perhaps much longer.

® The 8-bit device code appears at the eight least-significant bits of
the 16-bit memory address bus for a period of 1.3 us. In the figure,
the device code is 110100015, or 3215 in octal code.

@ The OUT synchronization pulse lasts for only 500 ns. It is during
this 500 ns that data is transferred between the accumulator reg-
ister and the output device.

Both the 8-bit device code and the OUT synchronization pulse are
connected to 74154 decoders to generate a single device code for de-
vice 3213 for a period of only 500 ns. Thus, the use of the term, “cap-
ture,” is entirely appropriate for data transfers between the accumu-
lator and input/output devices.

The input of eight bits of data to the accumulator with the aid of an
IN computer instruction proceeds along lines similar to those shown
in Fig. 1-9. The only difference is that you should substitute the term
buffer data for accumulator and IN for OUT in the figure. The transfer
of data to the accumulator occurs in only 500 ns.

Interrupt Servicing

The final data path that we shall discuss is associated with the tech-
nique of interrupt servicing. The term interrupt can be defined in the
following way:

interrupt—In a computer, a break in the normal execution of a com-
puter program such that the program can be resumed from that
point at a later time. The source of the interrupt can be internal
or external.

The important question is: Why would we want to interrupt program
execution? The answer is that this is the most efficient way to operate
a microcomputer or, for that matter, any computer. Until an external
input/output device requests assistance, or “servicing,” from the micro-
computer, it is most efficient for the microcomputer to completely ig-
nore the device. In fact, the microcomputer can be programmed so
that it ignores all input/output devices; it idles in a “wait loop” while
it waits for an interrupt signal from one of the devices. If many I/O
devices require servicing at essentially*the same time, the microcom-
puter has a protocol in hardware or software and knows which device
is the most important. It will assign a priority to each device, and
will always service the higher-priority devices first.

When a program interrupt is generated, the following sequence of
events usually occurs:

1. The computer stores the memory address of the instruction fol-
lowing the one that it is currently executing.

2. The computer stores any temporary information—flags, the con-
tents of the accumulator register, and the contents of other reg-
isters—that may be important when the interrupted program re-
sumes operation.

3. The computer goes to a well-defined location within memory and
executes a series of program steps to “service” the interrupting
device.

36

4. Once it has finished “servicing” the device, the computer recalls
the temporary information and returns to the program step fol-
lowing that step at which the interrupt occurred.

This is similar to what you would do if you were interrupted while
reading this book. You would mark your place, remember any special
information, and then devote your attention to the “interrupt.” After
servicing the interrupt, you would restore the remembered informa-
tion, locate the bookmark, and continue reading.

If more than one input/output device requires servicing, the micro-
computer must make a decision which one to handle first. Once it has
made this decision, it remembers which remaining devices have gen-
erated the interrupt requests, and then procedes to the service sub-
routine.

In the 8080 microcomputer, an 8-bit instruction is jammed into the
CPU at the time of the interrupt to tell the computer where to go in
memory to “service” the interrupt. Only eight different memory ad-
dresses are provided for this purpose, certainly not a large number.
There are a variety of tricks that can be employed to handle interrupts.
The schematic diagram shown in Fig. 1-10 indicates the important
signals during an interrupt request: an interrupt pulse, an interrupt
acknowledge control signal, INTA, and an 8-bit instruction that is
jammed into the instruction register.

TEST

This test probes your understanding of the microcomputer and digi-
tal electronic concepts described in this chapter. Please write your
answers on a separate piece of paper.

MEMORY

8-bit
instruction

8 bits data

nstruction
register I
Interrupt ———— 8080 CPU

INTA —+———

Fig. 1-10. On receiving an “interrupt” request, the 8080 CPU generates an “interrupt
acknowledge” control signal, INTA, that is used to gate an 8-bit instruction into the instruc-
tion register within the CPU.

1-1. Explain the difference between a microprocessor and a microcomputer.

1-2. Draw a diagram and show the important data paths in a typical 8080-
based microcomputer.

1-3. What are the minimum requirements for a computer circa 1977?

1-4. List and describe the four fundamental tasks of computer interfacing.

1-5. In your own words, define the following terms:

data processor
controller

bus

accumulator

flag

memory address
memory cell

memory word
hardware

software

read

write

computer interfacing
interrupt

device select pulse
clock

bidirectional data bus
read/write memory
read-only memory (ROM)

Your performance on this test will be acceptable if you can answer all
of the above questions correctly in a 90-minute closed-book examina-
tion. You will repeatedly encounter the above concepts in this book.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated in the introduction to this chapter that at the end you
would be able to do the following:
® Explain the difference between a microprocessor and a micro-
computer.
A microprocessor is a single IC chip, whereas a microcomputer is a
fully operational computer system. This distinction has been dis-
cussed, with quotes from the literature, early in this chapter.
® Define the terms: computer, digital computer, data processor, con-
troller, hardware, software, memory, memory word, memory ad-
dress, memory data, read, write, read/write memory, read-only
memory, interfacing, device select pulse, and interrupt.
Definitions for these terms have been provided in this chapter.
® Describe the operation of a typical 8080 microcomputer system.
This was done in modest detail. You should be able to do as well.
Focus upon the signal lines and data paths within the system.

CHAPTER 2

A Small 8080
Microcomputer

In this chapter, you will see how an 8080 (or 8080A) microprocessor
chip can be used to configure a small 8080-based microcomputer. We
will examine the signals entering and leaving the 8080 chip, how
auxiliary chips such as the 8224 are used to control the operation of the
microcomputer, and the development of the address, data, and control
buses, which are vital in interfacing applications. The microcomputer
has been previously described in the May, June, and July, 1976, issues
of Radio-Electronics magazine. You may refer to these articles for ad-
ditional details on the assembly and operation of the microcomputer.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

® Identify the memory address bus, data bus, control inputs, control
outputs, and power inputs on the 40-pin 8080A microprocessor
chip.

® Describe the function of each pin on the 8080A microprocessor
chip.

@ Describe in some detail the various component sections of a small
8080A microcomputer system.

® List the general principles of computer interfacing that apply to
most digital computers.

® Explain what an 1/O device is.

® List three important uses for device select pulses.

39

® List the inputs to the common 7400-series chips that can be strobed
with device select pulses from a microcomputer.

DEFINITIONS

bit—Abbreviation for binary digit. A unit of information equal to one
binary decision.

bootstrap—A technique or device designed to bring itself into a desired
state by means of its own action, e.g., a machine routine whose first
few instructions are sufficient to bring the rest of itself into the com-
puter from an input device.*

bus driver—Generally refers to a specially designed integrated circuit
that is added to the data bus system to facilitate proper drive from
the CPU when several memories are tied to the data bus line. Any
semiconductor device that improves the current sinking character-
istics of each line on a bus.1*

byte—A sequence of adjacent binary digits, which may be equal to or
shorter than a word, operated on as a unit. For the 8080A a byte is a
group of eight contiguous bits occupying a single memory location,

computer interfacing—The synchronization of digital data transmission
between a computer and one or more external input/output devices.

flag—In a computer an indication that a particular operation has been
completed.* A flag is typically a flip-flop that can be either set or
cleared in response to operations occurring in the microcomputer
or computer system.

HI memory address—For the 8080A microprocessor chip the eight most
significant bits, which comprise a single byte, in the 16-bit memory
address word. Abbreviated H or HI.

interfacing—The joining of members of a group (such as people, instru-
ments, etc.) in such a way that they are able to function in a com-
patible and coordinated fashion.!

I/O—Abbreviation for input/output.*

I/O device—Input/output device. A card reader magnetic tape unit,
printer, or similar device that transmits data to or receives data from
a computer or secondary storage device.* Any digital device, includ-
ing a single integrated-circuit chip, that transmits data to or receives
data or strobe pulses from a computer.

latch—A simple logic storage element, such as a flip-flop, used to retain
a logic state.

LO memory address—For the 8080A microprocessor chip, the eight
least significant bits, which comprise a single byte, in the 16-bit
memory address word. Abbreviated L or LO.

memory address—For the 8080A microprocessor, the 16-bit binary num-
ber that specifies the precise memory location of a memory word
among the 65,536 different possible memory locations.

40

status bit—A single bit of output information that is placed on the ex-
ternal data bus early during the execution of a machine cycle and
is latched by an integrated-circuit chip called a status latch. Since
this bit is acquired early by the latch, it can be used to control
external events that occur later in the machine cycle.

status byte—An 8-bit byte that contains eight different status bits.

status latch—An integrated-circuit chip, such as, for example, the 74174
6-bit latch, that latches status bits when they appear on the external
data bus.

sync—Short for synchronous, synchronization, synchronizing, etc.

synchronize—To lock one element of a system into step with another.*

synchronization pulses—Pulses originated by the transmitting equip-
ment and introduced into the receiving equipment to keep the equip-
ment at both locations operating in step.*

synchronous—In step or in phase, as applied to two devices or machines.
A term applied to a computer, in which the performance of a se-
quence of operations is controlled by clock signals or pulses.*

synchronous computer—A digital computer in which all ordinary opera-
tions are controlled by signals from a master clock.*

synchronous inputs—Those inputs of a flip-flop that do not control the
output directly, as do those of a gate, but only when the clock per-
mits and commands.*

synchronous logic—The type of digital logic used in a system in which
logical operations take place in synchronism with clock pulses.*

synchronous operation—Operation of a system under the control of
clock pulses.*

three-state device—A semiconductor logic device in which there exist
three possible output states: (1) a logic O state, (2) a logic 1 state,
or (3) a high-impedance state in which the output is, in effect, dis-
connected from the rest of the circuit and consequently has no in-
fluence upon it.

two-phase clock—A two-output timing device that provides two con-
tinuous series of timing pulses that are synchronized together, with
a single clock pulse from the second series always following a single
clock pulse from the first series. Depending on the type of two-phase
clock, the pulses in the first and second series may or may not overlap
each other. The 8080A chip uses a nonoverlapping two-phase clock.

word—A group of contiguous bits occupying one or more storage loca-
tions in a computer. For the 8080A microprocessor chip, a word is
defined as a group of eight contiguous bits occupying a single mem-
ory location.

word length—The number of contiguous bits that are handled as a
unit and that normally can be stored in one or more locations in
memory. A greater word length implies higher precision and more
intricate instructions.*

41

THE 8080 MICROPROCESSOR CHIP

The 8080 microprocessor is a 40-pin LSI integrated-circuit chip that
contains sixteen address lines, eight data lines, ten control lines, four
power connections, and a pair of clock inputs. The pin configuration
and the block diagram of the chip are shown in Figs. 2-1 and 2-2. If
you are -not familiar with reading pin numbers on integrated-circuit
chips, the numbering always starts from pin 1 and proceeds counter-
clockwise from the notch or index mark on one end of the chip. Chips
are always shown as top views.

Forty pins are quite a few with which to contend, so it would be
useful to divide the pin functions into the following categories: power,
memory address, data input/output, controls, and clocks.

Power
pin 28 +12 volts (40 mA typical)
pin 20 + 5volts (60 mA typical)
pin 2 ground
pin 11 — 5volts (0.01 mA typical)

The voltage tolerances are = 5 percent with respect to ground potential.
Any popular power supply that provides voltages of *+15 and +5 volts
and sufficient current can be adapted to the 8080 chip with the aid of
suitable voltage regulators.

Clocks

The 8080 chip requires a two-phase clock. Recall that a clock is any
device that generates at least one clock pulse, or is a timing device in a
system that provides a continuous series of timing pulses. A two-phase
clock is a two-output timing device that provides two continuous series

A d

Ayp O 40, An
GND 0——12 39 p—=0 Ay
0, 0=—13 38 —0 Az
0 O=—v14 3 =0 Az
05 O=—=l6 38 f—0 A5
L O 35 —=>0 Ag
D, O=—v]? 34 —=0 Ag
o, 0=l INTEL =}p—=o4
0, 0=—=l9 32 |0 Ag
o, 0«—f 10 8OB0A 3z |—ox
—sv o— 30 p—=0 Ay
RESET 0—] 12 2nl—oa
HoLD o—f 13 2 }—o +12v
INT o—=f 14 27 f—0 A,
92 o—af 15 2 p—oa
INTE 0—] 16 2% }—=0 2
0BIN 0e—r] 17 24 f—>o0 waIT
wa o118 23 f=—o0 READY
sync 0= 19 2 o
v o—— 20 2n HLOA

Fig. 2-1. Pin configuration of the 40-pin 8080 microprocessor chip.

42

+3V GND
+iz2v -sv
2820 [2 ln
a
HOLD s Memory and I/0

|
:‘an ‘: address bus

READY

3l5

~

ro
o

WR
INTE
HLDA
Two-phase =] #, waIT

clock —== @ 0BIN

SYNC
Doto D7

b

l; |= F

8080A

8-bit bidirectional
data bus
Fig. 2-2. Block diagram of the 8080 chip that clearly shows the 16-bit address bus and 8-bit
bidirectional data bus. This is a more useful representation of the 8080 microprocessor chip.

of timing pulses that are synchronized together, with a single clock
pulse from the second series always following a single clock pulse from
the first series. The use of a timing diagram, shown in Fig. 2-3, is help-
ful in explaining how a two-phase clock operates. The frequency can
vary from 500 kHz to 4 MHz depending upon the particular 8080 chip.
The clock frequency cannot be reduced to zero owing to the fact that
the internal operation of the chip is dynamic rather than static.

Note that the leading edge of the ¢, series of clock pulse almost
overlaps the trailing edge of the ¢, series of pulses. In the 8080 speci-
fications, it is stated that the minimum pulse width for the ¢ clock
phase is 60 ns, whereas for the ¢ clock phase it is 220 ns. The pin
locations for the two input clock signals are:

pin 22 clock phase ¢,

pin 15 clock phase ¢
We call this type of clock device a two-phase nonoverlapping clock.
This is not a TTL-level clock; rather, it swings from 0 volts to +12 volts.
Such a clock can be easily generated with an 8224 clock generator chip,
which is available from Intel and other manufacturers.

Memory Address

The 8080 microprocessor can directly address up to 65,536 eight-bit
words of memory through the use of 16 three-state output address lines
called the address bus. The pin locations can be summarized as follows:

43

¢ Inl r n M
!‘_ State _i_ State i— State —1
¢] LT LI L_J
Time —

Fig. 2:3. Waveforms of the two-phase clock inputs.

pin 25 Address bit A,
the least significant bit (LSB)
pin 26 Address bit A,
pin 27 Address bit A,
pin 29 Address bit As
LO ADDRESS
BYTE
pin 30 Address bit A,
pin 31 Address bit A;
pin 32 Address bit Ag
pin 33 Address bit A7, the MSB in the LO byte
pin 34 Address bit Ag, the LSB in the HI byte
pin 35 Address bit Ay
pinl Address bit Ajy
pin 40 Address bit Ay
HI ADDRESS
BYTE
pin 37 Address bit A,
pin 38 Address bit Ays
pin 39 Address bit A4
pin 36 Address bit Ays,
the most significant bit (MSB)

Either address bits A, through A7 or address bits Ag through A;s can
be used to provide the I/O device number for up to 256 input and 256
output devices. The address lines are fed into decoders, which provide
one with the opportunity of selecting any single input or output device
among 28 different ones.

Bidirectional Data Bus

The 8080 microprocessor chip is an 8-bit device, which means that
there exist an 8-bit accumulator, several additional 8-bit registers, and
an 8-bit input/output data bus. The data bus is bidirectional, so data
can be both input into the chip and output from the chip. The data
bus is the main communication bus between the central processing

44

unit in the microprocessor, memory, and input/output devices. It is a
three-state input/output bus. The pin locations are:

pin 10 Data bit Dy, the least significant data bus bit
pin 9 Data bit Dy
pin 8 Data bit D,
pin7 Data bit D3
pin3 Data bit Dy
pin4 Data bit Dy
pin5 Data bit Dg
pin6 Data bit Dy, the most significant data bus bit
Controls

The control pins determine how the microprocessor functions in a
microcomputer system. In discussing the functions of these pins, it is
not possible to sidestep a variety of jargon, such as Ty, Ts, Ts, T, fetch
cycle, M, and the like. The pin identifications and descriptions are pro-
vided below for future reference when you have a better understand-
ing of the operation of the 8080 microcomputer system.

You will not see either an IN or oUT output control pin in the list
below. The reason is that these two functions are generated as status
bits, which are then externally latched and used to generate the ™
and OUT synchronization pulses mentioned previously. If you are
curious about how this is done, you can skip to Chapter 6.

The four control input pins on the 8080 microprocessor chip are:

pin 21 (input) RESET. A logic 1 at this input will clear the pro-
gram counter register and allow the program to start
at memory location HI = 0005 and LO = 000s. The
INTE and HLDA flags are also reset, but the condi-
tion flags, accumulator register, stack pointer regis-
ter, and general-purpose registers are not cleared.

pin 14 (input) INT, or interrupt request. A logic 1 at this input will
generate an interrupt request that the CPU recog-
nizes at the end of the current instruction or while
halted. If the CPU is in the HOLD state or if the
interrupt enable flip-flop is reset, i.e., at logic 0, the
interrupt request will not be honored.

pin 23 (input) READY. A logic 1 indicates to the 8080 that valid
memory or input data is available on the data bus,
D, through Dy. This signal, according to the Intel
literature, is used to synchronize the CPU with
slower memory or with I/O devices. If, after send-
ing an address out on the address bus, the 8080
doesn’t receive a logic 1 READY input, the micro-

45

processor chip will enter a WAIT state for as long
as the READY line is at logic 0. This input can also
be used to single step the CPU.

pin 13 (input) HOLD. This input pin requests the CPU to enter
the HOLD state, which allows an external device
to gain control of the 8080 address and data busses
as soon as the 8080 has completed its use of these
busses for the current machine cycle. Once the CPU
enters the HOLD state, the address bus and the
data bus will be in their high-impedance state. The
CPU acknowledges the HOLD state with the
HLDA, or HOLD ACKNOWLEDGE, output pin.
HOLD is recognized under two conditions: (1) the
CPU is in the HALT state, or (2) the CPU is in the
Ts or T, state and the READY signal is at logic 1.

So much for the control inputs. Now the control outputs, many of which
are flags. The term flag can be defined as follows:

flag—In a computer, an indication that a particular operation has been
completed.® A flag is typically a flip-lop that can be either set or
cleared in response to operations occurring in the microprocessor
system.

The six control output pins on the 8080 microprocessor chip are:

pin 24 (output) WAIT. The wait output signal acknowledges that
the central processing unit is in a WAIT state. When
in a WAIT state, this pin is at logic 1.

pin 18 (output) WR, or WRITE. This output pin is used for memory
Write and 1I/O control. When this pin is at logic 0,
the data on the data bus is stable and can be written
into a memory location or to an output device.

pin 21 (output) HLDA, or HOLD ACKNOWLEDGE. This pin
goes to a logic 1 state in response to a HOLD input
signal. It indicates that the data and address busses
are in their high-impedance states. The HLDA sig-
nal begins at either of two times: (1) at T3 of read
memory or input, or (2) the clock period following
T for write memory or output operations.

pin 16 (output) INTE, or INTERRUPT ENABLE. This pin indi-
cates the state of the interrupt enable flip-flop. This
flip-flop may be set or cleared by the enable and
disable interrupt instructions (373s and 363, re-
spectively) and inhibits interrupts from being ac-
cepted by the CPU when the flip-flop is cleared.
The flip-flop is automatically cleared (thus disabling

further interrupts) when an interrupt is accepted.
The flip-flop is also cleared by the RESET input
signal.

pin 19 (output) SYNG, or SYNCHRONIZING SIGNAL. The SYNC
pin provides a logic 1 signal to indicate the begin-
ning of each machine cycle.

pin 17 (output) DBIN, or DATA BUS IN. When this pin goes to a
logic 1, it indicates to external circuits that the data
bus is in the input mode. This pin is used to enable
the gating of data onto the 8080 data bus from
memory and I/O devices.

Some of the preceding characteristics of the control pins will become
clearer in Chapter 6, where the WR, SYNC, DBIN, and READY con-
trol pins are discussed.

THE 8224 CLOCK GENERATOR/DRIVER CHIP

In early 8080 microcomputer systems, the clock inputs were provided
by transistor driver circuits, MOS clock driver chips, or even open-
collector TTL buffer chips. All worked reasonably well, but they
complicated the design. A recent 8080A interface chip, the 8224 clock
generator and driver, contains an internal oscillator and a clock
generator/driver. All you need to provide is the appropriate crystal
and power supply voltages of +5 and +12 volts. Since the 8224 will
divide the crystal frequency by nine, you will require an 18-MHz
crystal to produce a 2-MHz clock output from the clock generator. In
the system described in this chapter, the microcomputer frequency is
750 kHz; a 6.750-MHz crystal is required.

The Intel specification sheets for the 8224 clock generator/driver
are shown on the following pages. The functional description of the
chip is excellent, so there is no need to repeat it here. Observe how
the divide-by-nine counter circuit within the 8224 chip is used to
generate the individual clock phases ¢ and ¢, which “swing” between
+12 volts and ground.

The inputs to and outputs from the 8224 chip can be summarized
as follows:

pin 15, pin 14 XTAL1 and XTAL2. The crystal is connected at
these two pins.

pin 13 TANK. Used for overtone mode crystals, which have
much lower gain than crystals that operate on the
fundamental frequency.

pin 2 (input) RESIN. With the aid of a Schmitt trigger circuit,
internal to the chip, and an external RC network,
this input converts a slow transition in the power

47

intel° Schottky Bipolar 8224

THE CLOCK GENERATOR AND DRIVER
FOR 8080A CPU

u Single Chip ;:l:ock Generator/Driver m Oscillator Output for External

for 8080A CI System Timing
® Power-Up Reset for CPU ® Crystal Controlled for Stable System
= Ready Synchronizing Flip-Flop Operation
u Advanced Status Strobe & Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 80B0A CPU. It is controlled by a crystal, selected by
the designer, to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.
The 8224 provides the designer with a significant reduction of packages used 10 generate clocks and timing |
for BOBOA.

PIN CONFIGURATION BLOCK DIAGRAM

B> xrau
B> xrau
B

PIN NAMES

XTALZ FOR CRYSTAL

XTALT CONNECTIONS.
. USEDWITHOVERTONE XTAL
ose 3

SCHOTTKY BIPOLAR 8224

FUNCTIONAL DESCRIPTION

General

The 8224 is a single chip Clock Generator/Driver for the
B0OBOA CPU. It contains a crystal-controtled oscillator, a
“divide by nine” counter, two high-level drivers and several
auxiliary logic functions.

Oscillator

The oscillator circuit derives its basic operating frequency
from an external, series resonant, fundamental mode crystal.
Two inputs are provided for the crystal connections (XTALT1,
XTAL2).

The selection of the external crystal frequency depends
mainly on the speed at which the 8080A is to be run at
Basically, the oscillator operates at 9 times the desired pro-
cessor speed.

A simple formula to guide the crystal selection is:

L.
Crystat Frequency = —— times 9
tcy

Example 1: {50005 tcy)
2mHz times 9 = 18mHz®
Example 2: (800ns tcy)

1.26mHz times 9 = 11.26mHz

Another input to the oscillator is TANK. This input allows
the use overtone mode crystals. This type of crystal gen-
erally has much lower “gain” than the fundamental type so
an external L.C network is necessary to provide the additional
“gain" for proper oscillator operation. The external LC net-
work is connected to the TANK input and is AC coupled to
ground. See Figure 4.

The formula for the LC network is:

1
2my/LC

The output of.the oscillator is buffered and brought out
on OSC (pin 12) so that other system timing signals can be
derived from this stable, crystal-controlled source.

“When using crystals above 10mHz 3 small amount of frequency
“trimming’ may be necessary. The addition of a small capacitance
(3pF - 10pF) in series with the crystal will accomplish this function.

Clock Generator

The Clock Generator consists of a synchronous “divide by
nine™ counter and the associated decode gating to create the
waveforms of the two BOBOA clocks and auxiliary timing
signals.

The waveforms generated by the decode gating follow a
simple 2-5-2 digital pattern. See Figure 2. The clocks gen-
erated; phase 1 and phase 2, can best be thought of as con-
sisting of “units” based on the oscillator frequency. Assume
that one “unit” equals the period of the oscillator frequency.
By multiplying the number of “units” that are contained in
a pulse width or delay, times the period of the oscillator fre-
quency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two
high level drivers for direct interface to the 8080A CPU. A
TTL level phase 2 is also brought out 2 (TTL) for external
timing purposes. It is especially useful in DMA dependant
activities. This signal is used to gate the reguesting device on-
to the bus once the 80BOA CPU issues the Hold Ack-
nowledgement (HLDAJ.

Several other signals are also generated internally so that
optimum timing of the auxiliary flip-flops and status strobe
(STSTB} is achieved.

EXAMPLE: 18080 tcy = 500m)
osc -

Bt

v = 11008 (2 x 8801
%~ 2780 16 x Sorul
3on = T0m 12 5500}

SCHOTTKY BIPOLAR 8224

STSTB (Status Strobe)

At the beginning of each machine cycle the BOBOA CPU is-
sues status information on its data bus. This information
telts what type of action will take place during that machine
cycle, By bringing in the SYNC signal from the CPU, and
gating it with an internal timing signal (1A}, an active low
strobe can be derived that occurs at the start of each ma-
chine cycle at the earliest possible moment that status data
is stable on the bus. The STSTB signal connects directly to
the 8228 System Controller.

The power-on Reset aiso generates STSTB, but of course,
for a longer period of time. This feature allows the 8228 to
be automatically reset without additional pins devoted for
this functien.

Power-On Reset and Ready Flip-Flops

A common function in 8080A Microcomputer systems is the
generation of an automatic system reset and start-up upon
initial power-on. The 8224 has a built in feature to accomp-
lish this feature.

An external RC network is connected to the RESIN input.
The slow transition of the power supply rise is sensed by an
internal Schmitt Trigger. Thiscircuit converts the slow trans
ition into a clean, fast edge when its input level reaches a
predetermined value. The output of the Schmitt Trigger is
connected to a "D type flip-flop that is clocked with $2D
(an internal timing signal), The flip-flop is synchronously
reset and an active high level that complies with the 8080A
input spec is generated. For manual switch type system Re-
set circuits, an active low switch closing can be connected
to the RESIN input in addition to the power-on RC net-
network.

B> xrau
ostiLiaToR > @
B> xmae
B>
o B>
coex
o o
0 oA 5y TTOE>
B swe—— st (>
[g
somirT
WeuT neset (D>
[1 D4

50

The READY input to the 8080A CPU has certain timing
specifications such as “setup and hold” thus, an external
synchronizing flip-flop is required. The 8224 has this feature
built-in. The RDYIN input presents the asynchronous “wait
request” to the “D"" type flip-flop. By clocking the flip-flop
with $2D, a synchronized READY signal at the correct in-
put level, can be connected directly to the 80B0A.

The reason for requiring an external flip-flop to synchro-
nize the “wait request” rather than internally in the 8080
CPU is that due to the relatively long delays of MOS logic
such an implementation would “rob*” the designer of about
200ns during the time his logic is determining if a “wait"
is necessary. An external bipolar circuit built into the clock
generator eliminates most of this delay and has no effect on
component count.

useD onLY

FoR bvenToNe
CavsTaLs O
=t ane
+ | {ONLY NEEOED
[A
ol |
»
o
o DI Y
"
o %f,,
i
s . »
wovn —3}
Vee w22
s000n
=
.
o S est '
s 19|
oo
o

L STSTB (70 8228 PIN 1)

supply to a clean, fast edge that resets the 8080A
microprocessor chip when the RESET output signal
is connected to the 8080A chip. A manual reset
switch may also be connected to RESIN.

pin 1 (output) RESET. A logic 0 output that is applied at the
RESET input of the 8080A chip to reset it.

pin 3 (input) RDYIN. Accepts an asynchronous wait request and
synchronizes it to produce a READY signal that is
output to the 8080A chip.

pin 4 (output) READY. A logic 1 indicates to the 8080A. that valid
memory or input data is available on the data bus.

pin 5 (input) SYNC. The SYNC pin on the 8080A chip provides a
synchronizing output to the 8224 chip to indicate
the beginning of each machine cycle.

pin 11 (output), ¢, and ¢.. The two-phase clock that is output to the

pin 10 (output) 8080A chip. Each of these two outputs swing be-
tween +12 volts and ground; they are not normal
TTL outputs.

pin 6 (output) $2(TTL). This is a TTL clock output that has the
same frequency and timing characteristics as does
.. It is used for external timing purposes, such as
those described in Chapter 5.

pin 7 (output) STSTB. Status strobe output. This output is used to
latch the status bits that appear on the bidirectional
data bus.

pin 12 (output) OSC. Buffered crystal oscillator output that can be
used to generate other system timing signals.

It should be clear that the 8224 clock generator/driver chip is well
designed for its particular function. Connections between it and the
8080A microprocessor chip are direct, and require no intermediate
inverters, gates, or flip-flops. There is little incentive to use transistor
driver circuits, MOS clock driver chips, or open-collector TTL buffer
chips. The power to the 8224 chip is already available since both +5
volts and +12 volts are required by the 8080A.

AN 8080-BASED MICROCOMPUTER

Fig. 2-4 shows the central processor section of a small 8080A-based
microcomputer. The figure is provided by Radio-Electronics magazine,
which described the microcomputer in the May, June, and July, 1976,
issues. We will now examine the component chips in the circuit as well
as the signal flow between them. The objective here is to demonstrate
that a microcomputer is a very straightforward and reasonable device,
and that you should not feel intimidated by it.

5t

Courtesy Rad! it Publi nc.
Fig. 2-4. The p: 'y y, and control ions of a small 80B0A microcomputer system.

Power

It is assumed that power supplies for the required +5, —12, and +12
volts are available. They are common, and are relatively inexpensive.
(However, be wary of the very cheap supplies.) The intermediate
voltages of —5 and —9 volts required by our microcomputer are easily
derived from voltage regulator integrated-circuit chips such as the
LMB320 series, or from zener diode shunts, as is shown in Fig. 2-5.

oz

v
10 PRONS.

e €L {’:’;‘
f k Bn o
= = +

Fig. 2-5. The use of zener diodes provides the w . o uLL s
necessary —5 and —9 volts required by the al s s I ' |
microcomputer. It is assumed that +5, +12, Y T "
and —12 volts are available from the power = — -

supply. = gee oMn

Courtesy Radio-Electronics®,
Gernsback Publications, Inc.

8080A Microprocessor Chip

Individual output pins on the 8080 microprocessor chip have a fan-
out of one low-power TTL input, or approximately 0.16 mA. The out-
put pin specifications for the 8080A chip are 1.9 mA for each output
pin, or a fan-out of a little greater than one standard TTL load. Neither
of these fan-out capabilities are good, but clearly the 8080A is a superior
chip that is easier to interface. For this reason, we use it in our micro-
computer. Even a fan-out of one is insufficient to drive the required
memory chips and output latches. Consequently, bus drivers are also
required. These will be described in the following under the bus
driver section.

Control Lines

The control section of the microcomputer is shown in Fig. 2-6. In-
cluded is the previously described 8224 clock generator/driver chip
connected directly to the 8080A. The only additional electronic com-
ponents required, besides the two chips, are a pair of 1-kilohm resistors,
a reset switch, and a 6.750-MHz crystal.

The remaining control lines on the 8080A chip, those not connected
to the 8224 chip, are HOLD, HLDA, INTE, INTERRUPT, WAIT,
WR, and DBIN. Five of these lines are not used in our small micro-
computer, but are made available if you wish to experiment with them.
The HOLD input permits you to drive the 8080A chip into the hold
state and disable the address and data busses. The HLDA control out-
put acknowledges the existence of a hold state. The INTERRUPT
input permits you to interrupt the 8080A program execution, provided
that the interrupt flip-flop within the 8080A chip is enabled. If it is
enabled, the INTE output is at logic 1. Finally, the WAIT output
permits the 8080A chip to signal that it is not ready or that it is wait-

53

J Af|
reAO—”- oo 1
= o2 wion ol
o e P
10
Y wrernver nf
o—yur -
XTAL1 A
8750 M B Fig. 2-6. The control of the 8080A chip is
oy [] readily accomplished through the use of the
s | 8224 clock generator/driver chip and a 6.750-
s o 20y mos oo MHz crystal.
L] 0P8, mos) o
" = nov [el L
AR peser [LA
5 18)
L]
g
45V O—AAA~———| READY
n s
45V W 2 RESETIN S
8
weser
1

Courtesy Radio-Elgctronics®,
Gernsback Publications, Inc.

ing for some external event. If the HOLD input to the 8080A input is
not used, it must be grounded. This is easily done with the aid of a
jumper, as shown in Fig. 2-6.

The final two control lines are both outputs. The WRITE (WR)
signal is active when at logic 0, and indicates that the 8080A chip is
sending data out to some device. The remaining signal, data bus in
(DBIN), indicates that the data bus is being used for the input of
data. It is active in the logic 1 state. In the 8080A chip the data bus
is bidirectional, i.e., data transfers into and out of the chip over the
same wire connections. Careful management of this bus is necessary
for the data to flow properly. This data bus management capability is
built into the microprocessor chip itself, but we must be certain that
our external devices do not attempt to place their data on the bus at
the same time that some other device or the 8080A chip itself is trying

54

to use it. Only one device should be transmitting data over the data
bus at any given instant of time.

Bus Drivers

In order to drive the memory chips and output latches on our small
8080 microcomputer, a fan-out of at least ten is required for each
output line on the data bus. In addition, the bidirectional character
of the data must be maintained. The device that we use to accomplish
such objectives is the Intel 8216 4-bit parallel bidirectional bus driver
chip, the specifications of which are shown, courtesy of Intel Corpo-
ration, on the following pages. Consider output DB, in the 8216 logic
diagram. The following truth table applies:

0 0 DI, - DB,, i.e., data is output from the 8080 chip
1 0 DB, - DO,, i.e., data is input into the 8080 chip
0 1 high-impedance state; chip disabled
1 1 high-impedance state; chip disabled

In other words, when DIEN is at logic 0 and the chip is enabled, the
8216 chip acts as an input buffer. When DIEN is at logic 1 and the chip
is enabled, the 8216 acts as an output buffer.

The bus driver section of our microcomputer is shown in Fig. 2-7.
Observe that DBIN is connected to DIEN (pin 15 on the 8216 chip)
and that each 8216 chip is permanently enabled. The truth table re-
lating DBIN and DIEN is:

DBIN DIEN ’
0 0 Data is output from the 8080 chip; DBIN = 0,
and thus the data bus is in the output mode.
1 1 Data is input into the 8080 chip; DBIN =1, and

thus the data bus is in the input mode

According to the Intel specifications for the 8216, the absolute maxi-
mum output current at a logic 0 state is 125 mA, which is a substantial
drive capability. Note that both DBIN and ‘WR are buffered by a 7400
or 7404 chip to boost their fan-out from one to ten standard TTL loads.

Status Information

If you carefully study the Intel specifications for the 8080A micro-
processor chip, you will observe that certain important control signals
are not present on the chip itself. Included among these signals are
memory read (MR), memory write (MW), input (IN), output (OUT),
and interrupt knowledge (INTA). To generate such control signals,
the 8080A chip uses a “look ahead” technique: Since the data bus is not
in use at all times for data transfer, the 8080A can use the bus to trans-

55

intel’ Schottky Bipolar 8216/8226

4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

= Data Bus Buffer Driver for 8080 CPU = 3.65V Output High Voltage for Direct
= Low Input Load Current — .25 mA Intertace to 8080 CPU

Maximum » Three State Outputs
= High Output Drive Capability for = Reduces System Package Count

Driving System Data Bus

The 8216/8226 is a 4-bit bi-directional bus driver/receiver.

All inputs are low power TTL compatible. For driving MOS, the DO outputs provide high 3.65V Vo, and for high capaci-
tance terminated bus structures, the DB outputs provide a high 50mA lo_ capability.

A non-inverting (8216) and an inverting (8226) are available to meet a wide variety of applications for buffering in micro-
computer systems.

PIN CONFIGURATION LOGIC DIAGRAM LOGIC DIAGRAM
8216 8226
oo] oo 5o]
o b
oo Y 4
P - oot 5o]
00, 2 00, orm i
S SR
R S I ool
PIN NAMES o, . o, ,_—_.g:
S R
e R w—Q— o001

oyb) | DATAmeUT
Doy0] BATA oU
A W Ew
BinecTion conTRoL
Towesezer & &
e Bien

§CHOTTKY BIPOLAR 8216/8226

FUNCTIONAL DESCRIPTION

Microprocessors like the 8080 are MOS devices and are
generally capable of driving a single TTL load. The same is
true for MOS memory devices. While this tvpe of drive is
sufficient in small systems with few components, quite often
it is necessary to buffer the microprocessor and memories
when adding components or expanding to a multi-board
system.

The 8216/8226 is a four bit bi-directional bus driver specif-
ically designed to buffer mi ystem

Bi-Directional Driver

Each buffered line of the four bit driver consists of two
separate buffers that are tri-state in nature to achieve direct
bus interface and bi-directional capability. On one side of
the driver the output of one buffer and the input of another
are tied together (DB), this side is used to interface to the
system side components such as memories, 1/0, etc., be-
cause its interface is direct TTL compatible and it has high
drive (50mA}. On the other side of the driver the inputs
and outputs are separated to provide maximum flexibility.
Of course, they can be tied together so that the driver can
be used to buffer a true bi-directional bus such as the 8080
Data Bus. The DO outputs on this side of the driver have a
special high voltage output drive capability (3.65V) so that
direct interface to the 8080 and 8008 CPUs is achieved with
an adequate amount of noise immunity (350mV worst case}.

Control Gating DIEN, CS

The TS input is actually a device select. When it is “high
the output drivers are all forced to their high-impedance
state. When it is at “zero™ the device is selected {enabled)
and_the direction of the data fiow is determined by the
DIEN input.

The DIEN input controls the direction of data flow {see
Figure 1) for complete truth table. This direction control
is accomplished by forcing one of the pair of buffers into its
high impedance state and allowing the other to transmit its
data. A simple two gate circuit is used for this function.
The 8216/8226 is adevice that will reduce component count
in microcomputer systems and at the same time enhance
noise immunity to assure reliable, high performance op-
eration.

{a) 8216

(b) 8226

[

PSSP)

ol »—Ip
o [
N

o8,

Figure 1,

8216/8226 Logic Diagrams

57

SCHOTTKY BIPOLAR 8216/8226

APPLICATIONS OF 8216/8226

8080 Data Bus Buffer

The 8080 CPU Data Bus is capable of driving a single TTL.
1oad and is more than adequate for small, single board sys-
tems. When expanding such asystem to more than one board
to increase 1/O or Memory size, it is necessary to provide a
buffer. The 8216/8226 is a device that is exactly fitted to
this application.

Shown in Figure 2 are a pair of 8216/8226 connected di-
rectly to the 8080 Data Bus and associated control signals.
The buffer is bi-directional in nature and serves to isolate the
CPU data bus.

On the system side, the DB tines interface with standard
semiconductor 1/0 and Memory components and are com-
pletely TTL compatible. The D8 lines also provide a high
drive capability (50mA) so that an extremely large system
can be dirven along with possible bus termination networks.

On the 8080 side the DI and DO lines are tied together and
are directly connected to the 8080 Data Bus for bi-directional
operation. The DO outputs of the 8216/8226 have a high
voltage output capability of 3.65 volts which allows direct
connection to the 8080 whose minimum input voltage is
3.3 volts. It also gives a very adequate noise margin of
350mV (worst case).

The control inputs to 8216/8226 {CS, DIEN) are connected
directly to the 8080. DIEN is tied to DBIN so that proper
bus flow is maintained, and CS is tied to HLDA so that
the system side Data Bus will be 3-stated when a Hold re-
quest has been acknowledged during a DMA activity.

Memory and |/O Interface tq a Bi-directional Bus
I large microcomputer systems it ig often necessary to pro-
vide Memory and 1/0 with their own \ﬂers and at the same
time maintain a direct, common interface to a bi-directional
,Data Bus. The 8216/8226 has separated, data in and data
outlines on one side and a common bi-directional set on the
other to accomodate such a function.

Shown in Figure 3 is an example of how the 8216/8226 is
used in this type of application.

The interface to Memory is simple and direct. The memories
used are typically Intel® 8102, 81024, 8101 or 8107A and
have separate data inputs and outputs. The D} and DO lines
of the 8216/8226 tie to them directly and under control of
the MEMR signal, which is connected to the DIEN input,
an interface to the bi-directional Data Bus is maintained.

The interface to 1/0 is similar to Memory. The 1/0 devices
used are typically Intel® 8258s, and can be used for both
input and output ports. The I/O R signal is connected di-
rectly to the DIEN input so that proper data flow from the
1/0 device to the Data Bus is maintained.

58

The 8216/8226 can be used in a wide variety of other buf-
fering functions in micracomputer systems such as Address
Bus Drivers, Drivers to peripheral devices such as printers,
and as Drivers for long length cables to other peripherals or
systems.

oo

svsTEm
080 - oata

oo
00 o

HioA|

Figure 2. 8080 Data Bus Buffer.

MEMORY w

¢ T OREETIONAL GATA 808 1 ;

Figure 3. Memory and /O Interface to a Bi-Directional Bus.

o, Mos) 10 an_ 10
(MOS) l 51 cs IS
READY B g 88 [
RESET
sYne

lzls |z s R

Fig. 2-7. Bus driver section of the small 8080-
based microcomputer.

Courtesy Radio-Electronics®,
Gernsback Publications, Inc.

fer additional control information. Such information is output very early
in the machine cycle (see Chapter 6) to generate control signals used
to control the transfer of data to or from input/output devices and
memory.

The status information appears on the data bus for a very short pe-
riod, approximately 500 ns for an 8080 system operating at a 2-MHz
clock rate. Since the information is to be used at a later time, it must
be latched. The SYSTEM STROBE (STSTB) is generated at pin 7 on
the 8224 chip at the correct time to latch, or capture, the status informa-
tion. Note that STSTB signal is generated from the system clock signal
¢, and the SYNC signal from the 8080A. Any type of latch chip may
be used. In Chapter 6, the use of an 8212 buffer/latch chip is described.
In Fig. 2-8, a 74174 6-bit positive-edge-triggered latch chip is em-
ployed. The 74174 chip is clocked at pin 9.

All eight bits on the data bus provide some sort of status information,
but not all eight may be needed. The information provided by Intel
Corporation on the status bits is reproduced on page 61.

In our small 8080 system, the WO and STACK status signals are ig-
nored since they are not very useful to us. HLTA and M1 are latched
but are not used. The important status signals are INTA (interrupt
acknowledge), INP (input), OUT (output), and MEMR (memory
read). Together with the DBIN and WR outputs from the 8080A chip,
these four signals provide five very important control signals, which
basically constitute the control bus in our microcomputer:

® MR. Memory read. Used to strobe data from a memory chip into
the 8080A microprocessor chip.

o MW. Memory write. Used to strobe data output from the 8080A
chip into read/write memory.

59

L

aaa

Inc.

Courtesy Radi ics®, F
Fig. 2:8. The status information and control section of the small 8080 microcomputer system.
The status latch is the 74174 chip, which is a 6-bit latch.

60

snivis

vivo

INAS

e

u3nwa 8
=L Tl N30 w01
3
218 (L
v
WS
WoLvd s 2
snivis
B |
@
R
.
5]s0
5|2
0 :o. 0808
g g
:
0 ,“
5|2

HOLVT SNLVLS 0808

e1ep peas Asowauw 10y
pasn aq (iim snq elep ayl ley saieubise L@ LHW3W
‘aNI9E 51 NIBQ U3YM
snq elep a8yl uo padeid 3q pinoys eiep
1ndu ay1 pue adyAap Indui ue Jo ssaippe
ay suteIu0 snq ssaippe ayl leyisaleapul 9g LdNI
“uoRONISUL Ue
30 91AQ 1544 AYY 1O} |IAD Y34 3y U
N1dD 2y1 1L 31edipul 0} |eubls e sapinolg Sg tw
‘aAIOE S UM
usym e1ep INAINO 341 uUIRIUOd sng
ejep ayl pue adAap Indino ue 4O ssaippe

2y} SUILIUGD SNQ SSAIPPE Y1 1Yyl Sa1ed1pu| vg ino
‘uoRoNIISUl | T H 04 teubis abpajmoury €g ViH
“121u104
3081 Yl Wioyj ssaippe Yoes umopysnd
3yl SPIOY SNQ SsBIPPE 3yl 1Byl SaIEIIPU] 44} MOV1S
*paInoaxa aq

m uonesado | NdN| 40 Alowaw gy3ay e

251MIa410 (0 = OM) UOHOUN; 1NdLNQ 10

Asowaw 31 1HM € 8Q [Iim 31242 auiyoew

JU311ND 3y} U} UONIE1AdO Ay} 18yl Saledtpuy| %3] oM
‘anyoe st N19Q

UBYM SNQ EIEP AYI OJUO UONINASU] LIELS

.a1 e a1eB 01 pasn aq pinoys |eublg “1senb

-31 [4NHYILNI 404 jeubts abpajmouyoy Og JVANI
uonuyaq ug SIOQUIAS
sng eleq

NOILINIZ3Q NOILVWHOINI SNLVLS
UOIIBWIOJUY SNIBLS Y}
sauyap ajqel Buimojio) ay | (3w INAS Butinp) ajaAd o
yaea jo b Baq 2yl 18 SNQ elep 3yl uo uonew.o)
40 1q § N0 SPUBs OBOY Y| "UONNIBXI 313dW0d IO} $3[0Ad
auiyoew anly O} BUO WOJ 3XND3) 080G 3yl 40} SUOHINISU|

61

® IN. Input. Used to strobe data from an input device into the ac-
cumulator within the 8080A chip.

® OUT. Output. Used to strobe data from the accumulator into an
output device external to the 8080A chip.

o INTA. Interrupt Acknowledge. Used to strobe a single-byte in-
struction into the instruction register within the 8080A chip during
an interrupt.

The other signals associated with the control bus are RESET, INT
(interrupt), and INTE (interrupt enable). These eight control signals
permit us to read and write into and from memory and input/output
devices and they also allow us to process interrupts.

There is now a system controller and bus driver chip, the Intel 8228,
that performs both the bidirectional data bus buffering as well as the
latching and gating of the status signals. A typical interface circuit
is shown on the following page, courtesy of Intel Corporation. The
problem with the 8228 chip is that it is expensive and that it does not
provide access to all eight status bits. The data bus buffering is limited
to a standard fan-out of ten TTL loads, or 16-mA current sink capabil-
ity. The authors prefer the simplicity of the individual 8216, 7400, and
74174 chips.

Memory

The necessary control section for the 8080A chip is in place and the
status bits are latched. We are now ready to add external devices to
our microcomputer. The first devices that will be needed are semi-
conductor memory chips. Memory comes in various forms and types,
but we will only consider two, both of which are random access mem-
ories. “Random access” means that any single memory location may be
accessed after any other location. We need not be concerned about the
memory region between the two locations of interest.

As subgroups of semiconductor devices, we have read/write (R/W)
memory and read-only memory (ROM). We will choose the 2111 read/
write memory chip since it is easy to interface to the 8080A. It is
organized as 256 memory locations with four bits per location, ie.,
it is a 1024-bit, or one-kilobit, memory chip. The Intel Corporation
specification for the 8111-2 chip, which is pin compatible and electri-
cally similar to the 2111 memory chip, is shown on page 64. The 8111-2
has common input and output lines (I/O) over which data is trans-
ferred to and from the 8080A microprocessor chip. Clearly, these 1I/O
lines are bidirectional. Each 8111-2 memory chip has eight address
inputs (A, through A;) to uniquely define a single memory location
among the 256 possible locations. The control inputs to the 8111-12 in-
clude the read/write input (R/W), two chip enable inputs (CE; and
CE,), and an output disable input (OD).

62

ADDRESS BUS

SvSTEM DMA REQ, ———~ |

"
SYSTEMINT REQ ———

1
T ENABLE -]

R

3 "

TANK ~——w| A
" - N
w o W on, |
osc -2} o . o
s P P e 3
o —2 arr ol o on,
ROVIN - 24 Py & 10, 9 o8,
coce I 3 s
GENERATOR Sl el eusomven [o, |- paranus
RESW 2} Tonver |1 g ua 3
RESI —Haeser o E 0 b
MY e N 21 20
ST ogft— -1 |2 . o,
v — 12} s 1) B 5 B
i o, = ks o8,
e 45V —) et [NTA
g " 3 el
_ awo -2 — ~ GERR
Statys sTROSE svstem -
—d S B Wewi# |- conTROL BUS
= iR
BTRER O} g o

Since the word length in each 8111-2 chip is only four bits, pairs
of such chips must be enabled and disabled simultaneously in order
to provide the 8-bit word required by the 8080A microprocessor chip.
Fig. 9-4 shows that MW (memory write) is connected to R/W (pin
16) on the 8111-2 chip, and that MR (memory read) is connected to
pin 9 (OD) on the read/ write chip. Assuming that the chip is enabled,
the applicable truth table is as follows:

MW_MR | R/W OD

0 0 [Note: Input condition not possible]
0 1 0 1 Memory write; disable memory
output
1 0 1 0 Memory read
1 1 1 1 Disable memory output
The decoding of the address bus is depicted in Fig. 2-9. The desired
truth table is:
Al5 Al4 AI3 AI2 All Al0 A9 A8 A7...A0| Memory Use
0 o 0 0 0 0 0 0 X...X|BlockO Reserved for
EPROM
0 0 0 0 0 0 0 1 X . X | Block1 Reserved for
EPROM
0 0 0 0 0 0 1 0 X...X|Block2 8111read/write
memory
0 0 0 0 0 0 1 1 X X | Block3 8111 read/write
memory

63

intel' Silicon Gate MOS 8111-2

1024 BIT (256 x 4) STATIC MOS‘RAM
WITH COMMON 1/0 AND OUTPUT DISABLE

= Organization 256 Words by 4 Bits = Fully Decoded — On Chip Address
» Access Time — 850 nsec Max. Decode
» Common Data Input and Output = Inputs Protected — All Inputs Have

» Single +5V Supply Voltage Protection Against Static Charge

Di ible ~—— = Low Cost Packaging — 18 Pin Plastic
" ,,',Z’f,',',’{;;r:." Compatible — All Inputs Dual-In-Line Configuration
= Static MOS — No Clocks or Low Power — Typically 150 mwW
Refreshing Required Three-State Output — OR-Tie
= Simple Memory Expansion — Chip Capability
Enable Input

The Intel®8111-2 is a 256 word by 4 bit static random access memory element using normally off N-channel
MOS devices integrated on a monolithic array. It uses fully DC stable {static) circuitry and therefore requires
no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the
input data. Common input/output pins are provided.

The 8111-2 is designed for memory applications in small systems where high performance, low cost, large bit
storage, and simple interfacing are important design objectives.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. Separate chip enable
(CE) leads allow easy selection of an individual package when outputs are OR-tied.

The Intel®8111-2 is fabricated with N-channel silicon gate technology. This technology allows the design and
production of high performance, easy-to-use MOS circuits and provides a higher functional density on a mon-
olithic chip than either conventional MOS technology or P-channel silicon gate technology.

Intel's silicon gate technology also provides excellent protection against contamination. This permits the use
of low cost silicone packaging.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

@

MEMORY ARRAY
32 RORS.

fow
sereet 37 Coumns

COLUMN | 0 CIRCUITS

CoLUMN sELECT

Here an X indicates that either a logic 0 or a logic 1 is permitted. AQ
through A7 can be any combination of logic 0 and logic 1 states, a total
of 956 different combinations. Observe that only address bits A8 and
A9 change, giving all four possible combinations for the two bits.
Address bits A10 through A15 remain at logic 0 for all of our selected
addresses in our small 8080 microcomputer system.

It is customary practice to absolutely decode memory locations, that
is, to ensure that all sixteen address bits participate in the decoding
of a memory location by providing the chip enable (CE) input as well
as the eight address inputs A0 through A7. Fig. 2-9 demonstrates how
this is done. Since the address bits A10 through A15 remain at logic 0,
we use T4LS05 open-collector inverters in a “wired-or” configuration
to provide a uniquely decoded logic condition. Observe the presence of
a 1-kilohm pull-up resistor, R4. The truth table for the wired-or circuit
is as follows:

Al5 Al4 AI3 Al2 All Al0 |

9Q
T
0
0
0
0
0
0

= A4 KA O
P 4 A K K O
PR A K O
R R KK O
HKHA A= N O
P4 M AR = O

NortE: X = either logic 0 or logic 1

Observe that this truth table, though implemented with open-collector
inverters, is identical to that for a six-input Nor gate; the unique logic
state is Q = 1, and this output condition occurs only when all inputs
are at logic 0.

Whenever the output of the wired-or, or six-input Nog, circuit is at
logic 1, we know that A10 through A15 are at logic 0 and that we are
within one of the four selected 256-byte blocks of memory. We must
further narrow our memory selection process to a specific memory
block. This is done with the aid of a 74LS155 decoder chip, the block
diagram and pin configuration both of which are given in Figs. 2-9 and
92.10. The 74LS155 chip is enabled and disabled using the output from
the wired-or circuit, where disabled corresponds to logic 0 (no blocks
selected) and enabled corresponds to logic 1 (one and only one
memory block selected). The truth table for the 74LS155 chip is shown
on page 67.

The outputs to blocks 2 and 3 go to the CE; inputs (pin 15) of the
respective pairs of 8111-2 read/write memory chips, as can be seen

65

23333223
QUQuoo
AN
“EUEIER 5
2o 2 e =
BT AIAAL
§23 =Tz | =2 | 72 | =[&
EoF B 75| 8|78
25803
ig: =
g E
d2z3232238
AT =TT RTET 1T
\ 2 ~] o
) é BLE
i RAAA
P2 &8 E|E
S - sE-
t—1 22 5
S B ~
E 227 &
T T T
-
b P
L =~
alk 335
T
=[5l s zx §
2 sl §
<eca L
3277 g
: z
" ﬂz:ansn:sln]_
EE]
Cxar |
zo—o 4 5 s
= P
' EEE!
Courtesy Radio-E F Inc.
Fig. 2-9. The address bus, address decoder, and memory section of the small 8080 microcom-
puter system. For simplicity, the IC9 and IC15 address lines have been omitted; they are in
parallel with those of 1C10.
66

SELECT ouTPUTS

DATA STRB INPUT e A,
vec 2c 26 A /N3 Ve 21 2¥Q

+3V GND

w N -0

rom
wired-OR
clreuit

V3 _ivz Vi

OUTPUTS
(A) 7415155 chip. {B) 74155 chip.
Fig. 2-10. The 74155 and 74L$155 chips.
Enable MR B A 2Y2 2Y3 Iy2 1v3 Block Selection
0 0 X X 1 1 1 1 None selected
1 0 0 0 0 1 1 1 Block 0 (read
; EPROM memory)
1] 0 1 1 0 1 1 Block 1 (read
¥ PROM memory)
1 0 1 0 1 1 0 1 Block 2 (read R/W
memory)
1 0 1 1 1 1 1 0 Block 3 (read R/W
memory)
1 1 0 0 1 1 1 1 None selected
1 1 0 1 1 1 1 1 None selected
1 1 1 0 0 1 1 i Block 2 (write into
R/W memory)
1 1 1 1 1 0 1 1 Block 3 (write into
R/W memory)

for block 3 in Fig. 2-9. When pin 15 of the 8111-2 chip is at logic 0,
the chip is enabled since CE, (pin 10) is wired to logic 0.

In addition to read/write memory, our small microcomputer also
contains some read-only memory. The reasons for providing such mem-
ory will be discussed later. Suffice it to say here that read-only memory
is not destroyed when we shut the power off, as is the case with read/
write memory. We say that read-only memory is nonvolatile. The type
of read-only memory that we employ is actually a special type of read-
only memory called electrically programmable read-only memory. Such
a memory, which is abbreviated by the initials EPROM, is widely used
for one-of-a-kind-type applications. You can purchase a special elec-
tronic device called an EPROM Programmer and program the EPROMs
for your special applications rather than rely upon the chip manufac-
turer to do the job for you.

67

a ~ 24 Voo

a2 29[JVee

I 22 Vee
*0ata oUT 1[4 Lse) 2[4,
‘oataour 2[(}s 2] JA
rosmours[fo I ST5aR i Same of e powr i ins o
*paTAOUT 4 [|7 18] 4 used only during programming. We shall as-
sy o g s bt el b e e
*DATA OUT B[|9 18 JVee microcomputer system.
+0ata out 7[Ho 150 Vg
*paTA ouT 8[| 11 (mse)] Jes

vee (]2 13] 7] PrOGRAM

*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.

We employ the Intel Corp. 1702A (or 8702A) EPROM chips, which
can be erased through the use of ultraviolet light and reprogrammed
over one-hundred times. The pin configuration of the 1702A/8702A
chip is shown in Fig. 2-11. Observe that there are eight address inputs,
A, through A;, and eight data output pins, DATA OUT 1 through
DATA OUT 8, a chip select input (pin 14), and several power input
pins, Fig. 2-9 shows this chip incorporated into the 8080 microcomputer
system. Pins 12, 13, 15, 22, and 23 are all tied to +5 volts. Pins 16 and
24 are connected to —9 volts. The block 0 output from the 74LS155
decoder chip is connected to the CS input of the 1702A (pin 14).
Observe that you can only read the 1702A chip; it is a read-only
memory, not a read/write memory.

Microcomputer Bus

The “microcomputer bus” for our small 8080 microcomputer system
consists of the address, data, and control busses. The address bus con-
sists of sixteen buffered address lines. In Fig. 2-9, the buffering of ad-
dress bits AQ through A7 is shown. A pair of inverters, first the 74104
and then the 7404, are used for each address line. The 74104 chip has
a fan-in of 0.1, or 0.16 mA, and is well suited for use with the 8080A
microprocessor chip. The 8216 chips (Fig. 2-4) provide sufficient buf-
fering for the eight data bus lines, DO through D7. The 7400 NanD
gates each have a fan-out of ten, more than enough for each control
bus signal line. RESET and INTERRUPT are inputs to the 8080A
chip. The INTE output might require a buffer.

Input/Output
The input/output section of our 8080 microcomputer is shown in
Fig. 2-12. In subsequent chapters in this book, you will become quite

68

INPUTIUTIUT PORTS LED DISPLAYS AND KEYBOARD.

BOIRECTIONAL
ATA BS

|

ar

Courtesy Radi i Gernsback icati inc.
Fig. 2-12. The input/ output section of the small 8080A microcomputer system.

familiar with I/O decoding, the use of 7475 latch chips, and the use
of 8095 three-state buffer chips. Consequently, we will discuss the
1/0O section only briefly here.

In order to transfer eight bits of data between the accumulator
within the 8080A chip and an I/O device, an 8-bit device code is pro-
vided on the address bus at bits AQ through A7. To select a unique
device among the 256 possible devices, a decoder is required. In Fig.
9-12, the decoder consists of the 74142 chip and six 741.S05 open-
collector inverters present at address lines A3 through A7. Five of the
inverters serve as a wired-oR, or five-point NoR, circuit to decode ad-
dress bits A3 through A7 into a unique logic state when the five lines
are all at logic 0. The principle used is identical with that used for

69

address bits A10 through Al5 in the memory section of our micro-
computer. Here, the truth table is as follows:

A7 A6 A5 A4 A3 | ©
¢ 0 0 0 O 1
X X X X 1 0
X X X 1 X 0
X X 1 X X 0
X 1 X X X 0
1 X X X X t 0

NotE: X = either logic 0 or logic 1

The remaining 74LS05 open-collector inverter is used to invert Q to a
logic 0 state when the five address bits are all at logic 0. This logic 0
condition is applied at the D input of the 74L42 chip. .

Chip 74142 is wired as a three-line-to-eight-line decoder that has
the following truth table:

A2 Al

]
S
)
S

Channel Selected
No channel selected
Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

bt et et e bt D bt bt i [N
o ot ot pok D) et et et e 100
bt bt e D bt o et et et [
bt O b bt b e O
Frd O bt et ot et et e et (O
[l el e N LN]

CODCOOOO -
HE-EOOO O M
bt b bt bt et e
Pt e e ek b et D et o b

OO OOM
HOHOMHOMOM

Channels 0, 1, and 2 are gated with the OUT control signal and used
to strobe information from the bidirectional data bus into the latch
chips for ports 0, 1, and 2, respectively. Channel 0 is gated with the
IN control signal and used to strobe input data present at the 8095
three-state buffer chip into the 8080A microprocessor chip.

Finally, a pair of 74148 three-line-to-eight-line priority encoder chips
are used to encode the fifteen-key keyboard, which consists of keys
0 through 7, the see/store key (S), the co key (G), the HI address
byte key (H), the LO address byte key (L), and three additional keys
that have no specific defined use (A, B, and C).

Operation of the Microcomputer

You may refer to the previously mentioned articles in Radio-
Electronics for a description of how the small microcomputer operates.
Briefly, you can enter programs via the keyboard, inspect memory con-
tents, execute 8080 programs that are within the memory capability
of the microcomputer, and output information to the three output

70

vee Mt or e o e o e 1 1 2
Veg Com Cow 10 20 CLR 28 A
" " n
NaDaDaalal T 18 1 10 20 2 2Rey/GND
W Wi W3 W@ e W oo a1 2 for 01 ENABLE e Coxt Coxt
74100 74123

1 2
ve 1ok 2K CLA ZCK 29
w| [w] [uw] {n]fwl 9]]e

aata meuts oaTAstECT

we /5 5 w0 m wo W

<
) [23] [22] [an] Joo] fos] [re] [w}] ul o

sans | TILLALEL!

[Tt S S S)

REEN

e s Flx

Catigny

T, sroe v T

74150
74121
oo e v u s
[1 T
. .

AT Az B 82 CR O

74122 74151
Courtesy Texas [nstruments, [nc.

Gho

cc

strone &
vec 126 seiker

oatamsuts

i

sG> e
Whilter oaramuts
74153
INPUTS ouTPUTS
2aigmafn|{aol laoffrol{nr e {ssf-{1af-1s

G2 G1

15 14

ouTPUTS

74154

seLECT ouTPuTS
DATA sine INPUT
Voo ¢ 36 A /IVE DI L Ve
wiw{iuwpiupuiinlinle
=
HIEXIERIEEIE] 7
GATA (LN LA AL
G et
5 outbuts
outeuts
nasLe
Loan
nBijefn $
T OpENABL
Jouter e S OotRy
ccean Lonp
enan
X s B c ooe
NI EA1ERIER BRI AN
CTERR CTBTK & T G namedin
0
DATARUTS

74160 1o 74163

Vee Oy O ‘creanciock
DRIA

G 050 By ciean)

s ™

s % 0 o 9

oot

rrxT.¥®
PARALLEL uTs

74165

PARALLEL PARALLEL WOUTS
By west G

T cuan

DiEiB0iEDni0
sACE T CLBER CUOTK TN
o S S 2 et

PARALLLL NPUTS

74166

wRiTE SELEeT enanie outnuts
veo OB AN e RERS VST 87
wilsuljafjnefiniiwlis
[T T I TT
LT ey
or @
0 o my my @
[T T T T 1
Vs
O i 5T, oS
ofta meAvirLEcT oumruts

74170

Courtesy Texas Instruments, tnc.

MAKE NO EXTERNAL CONNECTION

TR
x af
oK

s o
[

R T oo
7470
1 18 e GNo 2 20 28
o) {u][n] [elislis
CRL] T o
o cun
ey ek,
1 HsDz0algl
Yok 7. K Voo ek 2 2

7474

oo

o 5 W eume Vo ®
a0

7475

TR "
x q U af
cx K
1 al x q
m cLR

e =]
a2

0

SR o
1 DxDallgtigh
™ m oW v % e &

oata yeuts

vog (E W v %
w]{sliwlin nl[w]jy
SRR A W A
o |
Laaieasaien e

b Aib At b bt Sur
| sTe T 2
o

B vt outrs
7485
Courtesy Texas Instruments, nc.

Vec 4 4A 4y = 34 3y

Julfulfe][n]lw][s][s] y
! D]
e

S[jef|7 BaBgBsOsl0a0sl

A 8 Y GND

7486 7%

v TR T o o0 " o oo e
IR ENDNE wl [n] [u] o] [w] [s][s
CEECE ;4

ol oioioinlo
LT T

fom_nu

B ataDOah
W R mm W e e

7493

RESULTANT DISPLAYS USING 46 A, '47A, '48, 49, 'L46, 'L47

l:i|11‘|;:*' "jEjf?ljl %Hlf”lil =11]

0 " 12 13 14 15

Courtesy Texas Instruments, Inc

ports. To do all this requires a program stored in one of the 1702A
EPROM chips, in block 0 to be specific. This preprogrammed chip is
called the Keyboard EXecutive, or KEX. When you start the 8080
microcomputer, you first press the Reser button and the microcomputer
goes to memory location 0000000000000000, (otherwise known as
HI = 000, and LO = 0005, where the HI and L.O address bytes are
given in octal code). At this memory location, the 8080A chip finds
the first instruction that it must execute. From this point forward, there
exists a series of instructions that function as a bootstrap program to
permit you to operate the microcomputer. The bootstrap program de-
scribed in the Radio-Electronics article is only one possible program.
Depending upon the use of your microcomputer, you can write boot-
strap programs to input data from an ASCII keyboard, a teletypewriter,
a crt terminal, or a tape cassette and store the information in read/write
memory. The bootstrap program might also contain subroutines to get
data from and output data to magnetic tape cassettes, paper-tape
punches and readers, and floppy disks. It is beyond the scope of this
chapter to describe such software here. Suffice to say that you will be
able to develop such software when you complete this book.

Once your 8080 microcomputer system is operational, you will want
to interface it to external devices, be they integrated-circuit chips or
larger electromechanical devices. Before we leave this chapter, it would
be appropriate to define interfacing and to summarize how a micro-
computer can be used to control the operation of other digital
integrated-circuit chips, especially those in the 7400 series of chips.
Since larger electromechanical devices contain 7400-series chips, once
you understand how to interface such chips you will also understand
how to interface the devices themselves.

WHAT 1S INTERFACING?

Interfacing can be defined as the joining of members of a group
(such as people, instruments, etc.) in such a way that they are able to
function in a compatible and coordinated fashion.* By “compatible and
coordinated fashion,” we usually mean synchronized. Some important
definitions include the following:
sync—Short for synchronous, synchronization, synchronizing, etc.*
synchronization pulses—Pulses originated by the transmitting equip-

ment and introduced into the receiving equipment to keep the

equipment at both locations operating in step.*
synchronize—To lock one element of a system into step with another.*
synchronous—In step or in phase, as applied to two devices or machines.

A term applied to a computer, in which the performance of a se-

quence of operations is controlled by clock signals or pulses.* At the

same time.

n

synchronous computer—A digital computer in which all ordinary op-

erations are controlled by signals from a master clock.*

synchronous inputs—Those inputs of a flip-flop that do not control the

output directly, as do those of a gate, but only when the clock per-
mits and commands.*

synchronous logic—The type of digital logic used in a system in which

logical operations take place in synchronism with clock pulses.

synchronous operation—Operation of a system under the control of

clock pulses.*

We can thus define computer interfacing as:

computer interfacing—The synchronization of digital data transmission

between a computer and one or more external input/output devices.

Although the details of computer interfacing vary with the type of

computer employed, the general principles of interfacing apply to a
wide variety of computers. Some common characteristics include the
following:

72

® The digital data that are transmitted between a computer and an
1/0O device are either individual clock pulses or full data words.

® The computer and the input/output device are both clocked or
strobed devices.

® The computer sends synchronization pulses, called device select

pulses, to the I/O device. They synchronize and select at the same

instant of time.

These device select pulses are generated by the computer program

and interfacing hardware, i.e., they are software controlled.

The device select pulses are usually quite short. For an 8080 micro-

computer operating at 2 MHz, they last only 500 ns.

Individual device select pulses can be sent to individual input

or output devices. This is called external device addressing.

External device addressing is software generated and decoded

externally.

Computer program execution can be interrupted by the transmis-

sion of a clock pulse from an 1/O device to a special input line

to the computer.

Upon being interrupted by an external 1/O device, the computer

goes to a computer subroutine that responds to, or services, the

interrupt.

® Full data words can be output from, or input into, the accumulator

register. For the 8080 microcomputer, a full data word contains

eight bits.

All data transmission operations are synchronized to the internal

clock of the computer.

74100 pin 23: logic 1 enables first four latches
pin 12: logic 1 enables second four latches
74116 pin 1: logic 0 clears first four latches
pins 2 and 3: logic 0 at both pins enables first four latches
pin 13: logic 0 clears second four latches
pins 14 and 15: logic 0 at both pins enables second four
latches
74173 pins 1 and 2: logic 0 at both pins enables three-state out-
puts
pin 7: clock input
pins 9 and 10: logic 0 at both pins enables registers
pin 15: logic 1 clears registers
74174, pin 9: clock input
74175 pin 1: logic 0 clears latches

The 7400-series flip-flops such as the 7470, 7473, 7474, 7476, 74106,
etc., have too many different inputs to merit individual listing. The
types of inputs found on these chips include: preset, clear, clock,
R, S,], and K. Several typical chips are described below.

7470 pin 2: logic 0 clears flip-flop
pins 3,4, and 5: J inputs
pins 9, 10, and 11: K inputs
pin 12: clock input
pin 13: logic 0 sets flip-flop
473 pin 1: clock input to first flip-flop
pin 2: logic 0 clears first flip-flop
pin 3: K input to first flip-flop
pin 14: J input to first flip-flop
pin 5: clock input to second flip-flop
pin 8: logic 0 clears second flip-flop
pin 7: J input to second flip-flop
pin 10: X input to second flip-flop
7474 pin 1: logie 0 clears first flip-flop
pin 2: D input to first flip-flop
pin 3: clock input to first flip-flop
pin 4: logic 0 sets first flip-flop
pin 10: logic 0 sets second flip-flop
pin 11: clock input to second flip-flop
pin 12: D input to second flip-flop
pin 13: logic 0 clears second flip-flop

Memories

The characteristics of a variety of memories, not just those found in
the 7400 series of integrated-circuit chips, are summarized below.

7488 pin 15: logic 0 enables memory

7489, pin 2: logic 0 enables memory
8225 pin 3: logic 0 writes; logic 1 reads
74200, pins 3, 4, and 5: logic 0 at all three pins enables memory
74208 pin 12: logic 0 writes; logic 1 reads
2102, pin 3: logic 0 writes; logic 1 reads
8102 pin 13: logic 0 enables memory
16024, pin 14: logic 0 enables memory
1702A,

8702A,

1302,

8302

Other Chips
Given below are the characteristics of several three-state integrated-
circuit chips that support the 8080 microprocessor chip.

8212 pins 1 and 13: logic 0 at pin 1 and logic 1 at pin 13 select
this device
pin 2: logic 1 latches data and enables three-state outputs
pin 11: logic 1
pin 14: logic 0 clears latches
8255 pin 5: logic 0 reads input data
pin 6: logic 0 enables chip
pin 36: logic 0 writes input data

Pin Configurations

The pin configurations of 72 different integrated-circuit chips are
provided on the following pages to assist you with your interfacing
activities. The following pages are courtesy of Texas Instruments, Inc.,
and Intel Corp.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

In the first part of this chapter it was stated that at the end you
would be able to do the following:

o Identify the memory address bus, data bus, control inputs, control
outputs, and power inputs on the 40-pin 8080A microprocessor
chip.

A description of the 8080A microprocessor chip has been given at the
beginning of this chapter. Although you may not understand some of
the control input and output pins, you certainly should be able to
identify all of them.

® Describe the function of each pin on the 8080A microprocessor
chip.

veg 6A 6Y SA Y 4A 4y
wu| ol fe] n]ljw] [si s

SESEN
Ll

A W 3A 2v 3A 3 GND

7405

7412

Courtesy Texas Instruments, Inc.

A 8 vV A 2 I GND

Courtesy Texas Instruments, Inc.

interrupt signal

from input or
output devices
—

INPUT MICRO- QUTPUT
DEVICE 8 bits data R 8 bits data DEVICE
500ns 500ns
256 different | I 256 different
device select g JL I - device select

pulses to - T pulses to
Input devices output devices

Fig. 2-13. The four fundamental tasks of interfacing: (1) external device addressing, (2) latch-
ing of output data, (3) strobing of input data, and (4) servicing of interrupts.

@ Output data from the accumulator is available for only a very
short period, and usually must be latched.

@ Input data into the accumulator can be acquired over a very short
period, and usually must be strobed into the accumulator.

® Device select pulses are used for latching data output and strobing
data input.

As can be seen from Fig. 2-13 and the preceding comments, the four

fundamental tasks of computer interfacing are:

® External device addressing through the generation of device se-
lect pulses.

® The latching of output data.

® The strobing of input data.

® The servicing of interrupts.

If you can master these four tasks, you will know how to interface
a computer.

WHAT IS AN 1/O DEVICE?

Some useful definitions include the following:

input-output, input/output—General term for the equipment used to
communicate with a computer and the data involved in the com-
munication.®

1/O—Abbreviation for input/output.*

1/O device—Input/output device. Any digital device, including a single
integrated-circuit chip, that transmits data or receives data or strobe
pulses from a computer.

73

The traditional view of an I/O device is that it is somewhat large
or complex. Certainly card readers, magnetic tape units, cathode-ray
tube displays, and teletypes fit such a description. However, a single
integrated-circuit chip, such as a latch, shift register, counter, or small
memory, can be considered to be an 1/O device to a computer. If it is
digital, it can be an /O device.

Another important point is that several device select pulses may be
required for a single 1/O device. For example, a 74198 shift register
has a pair of control inputs that determine whether the register shifts
left, shifts right, or parallel loads eight bits of data. It also has a clock
input and a clear input. So, this single 74198 chip, when serving as an
output device, may require up to four device select lines from the
microcomputer, Thus, the fact that we can generate 256 different input
and 256 different output device select pulses does not necessarily mean
that we can address 512 different “devices.” A more reasonable num-
ber is on the order of 50 to 100 different devices.

Device select pulses are easy to implement and inexpensive. You
should use them frequently in an attempt to substitute computer soft-
ware for integrated-circuit chip hardware. Remember this theme:
software vs hardware. There exists a tradeoff between the two, but your
main objective in using microcomputers is to substitute software for
hardware. When you substitute software for hardware, the only penalty
that you may pay is time, i.e., it takes time to execute computer instruc-
tions. If you can accept the delays inherent in computer programs,
then you can vastly simplify the circuitry required to accomplish a
specific task.

USES FOR DEVICE SELECT PULSES

We have previously defined a clock as either (a) any device that
generates at least one clock pulse, or (b) a timing device in a system
that provides a continuous series of timing pulses. A pulser is a logic
switch that can generate a single clock pulse. A monostable multivi-
brator is a circuit having only one stable state, from which it can be
triggered to change the state, but only for a predetermined interval,
after which it returns to the original state. With these three definitions
in mind, we can consider a microcomputer to be, among other things,
a sophisticated electronic circuit that can act as a clock, a pulser, or a
monostable multivibrator. For example, an 8080 microcomputer operat-
ing at 2 MHz can:

® Generate individual clock pulses, of 500-ns pulse width, at any

time, thus acting as a pulser or electronic strobe device.

® Generate a train of clock pulses in which the frequency is given

by the formula, » =2/n MHz, where n is almost any integer that
is greater than or equal to 20.

74

® Generate single monostable pulses, in which the pulse width is
given by the formula 7=n/2 us, where n is almost any integer
that is greater than or equal to 10. An external flip-flop is required
to generate such monostable pulses.

The microcomputer does all of the above with the aid of device select
pulses whose frequency, but not pulse width, is determined by the
microcomputer program. As mentioned previously, such pulses are said
to be software generated, where the software is the microcomputer
program. Thus: :

® If an isolated clock pulse is generated by the program, then the
microcomputer is acting as a pulser or electronic strobe device.

® If the program contains a timing loop such that a series of clock
pulses are generated at repetitive time intervals, then the micro-
computer is acting as a clock.

® If a pair of clock pulses are generated to preset and clear a flip-
flop, then the microcomputer/flip-flop combination is acting as a
monostable multivibrator.

In this manner, we are substituting software for hardware, i.e., we are
eliminating the need to supply a mechanical or electronic pulser, a
clock, or a monostable multivibrator.

The 8080 microcomputer can generate 256 different 500-ns output
clock pulses and 256 different 500-ns input clock pulses with the aid
of decoder circuits. In essence, the microcomputer has the capability
to act as:

512 different pulser or electronic strobe devices, or
512 different clocks, or
512 different monostable multivibrators,

or any combination of pulsers, electronic strobe devices, clocks, and
monostable multivibrators whose total is 512. It is difficult to conceive
of a single digital circuit that would require so many devices.

USE OF A MICROCOMPUTER TO STROBE
INTEGRATED-CIRCUIT CHIPS

Perhaps the most important application for microcomputers is to
strobe the operation of instruments, electronic devices, and integrated-
circuit chips. Chips are inexpensive, and with them we can demonstrate
the entire range of applications for computer-generated device select
pulses. Such pulses can, for example,

® Clear counters, shift registers, flip-flops, and latches.
® Load counters, latches, and shift registers.

75

® Enable multiplexers, demultiplexers, decoders, counters, latches,
shift registers, memories, priority encoders, and a variety of other
chips.

® Inhibit clock inputs to counters and shift registers.

® Set, clear, toggle, and clock flip-flops.

® Select shift left, shift right, load, and inhibit functions in shift
registers.

By using device select pulses to generate clear, load, enable, inhibit,
set, toggle, and select pulses and logic states, we are substituting soft-
ware for hardware. This is the second time that we have observed this;
it won’t be the last. Our fundamental objective with microcomputers
and microprocessor chips is to substitute software for hardware! This
book thus has a dual purpose: (1) to teach you how to interface
microcomputers, and (b) to show you how to substitute microcomputer
software for integrated-circuit chip hardware.

To emphasize the above message, we will summarize the strobe
characteristics of some of the common 7400-series integrated-circuit
chips. We will group chips by function, and then identify pin numbers
associated with strobing operations. For each pin listed, we will indi-
cate the logic state required to accomplish the strobing function.

Counters

The popular counters are the 7490, 7493, 74192, and 74193, Not quite
so popular are the 74160, 74161, 74162, 74163, 74190, and 74191
counters.

7490 pins 2 and 3: logic 1 at both pins clears counter
pins 6 and 7: logic 1 at both pins sets counter to 9
pin 14: clock input

7493 pins 2 and 3: logic 1 at both inputs clears counter
pin 14: clock input
74163 pin 1: logic 0 clears counter

74160 to pin 2: clock input
pin 7: logic 0 inhibits counter
pin 9: logic 0 enables flip-flops and allows counter to be

loaded
pin 10: logic 0 inhibits counter and ripple carry
74190, pin 4: logic 1 inhibits counter
74191 pin 5: logic 0 for up counter and logic 1 for down counter
pin 11: logic 0 enables flip-flops and allows counter to be
loaded
pin 14: clock input
74192, pin 4: clock input for down counter; logic 1 disables
74193 pin 5: clock input for up counter; logic 1 disables

76

pin 11: logic 0 enables flip-flops and allows counter to be
loaded
pin 14: logic 1 clears counter

Decoders

Enable inputs are provided on the 74151389, 74LS139, 74154, and
74155 decoders. bed-to-decimal decoders can be converted to strobed
octal decoders if the D input is used as the strobe input.

7442, pin 12: logic 0 enables octal decoder

7445

74486, pin 3: lamp test; logic 0 lights all seven segments
7447,

7448

7415138 pins 4, 5, and 6: logic 0 at both pins 4 and 5 and logic 1 at
pin 6 enable decoder
741.8139 pin 1: logic 0 enables first decoder
pin 15: logic 0 enables second decoder
74154 pins 18 and 19: logic 0 at both pins enables decoder
74155 pin 1: logic 1 enables first two-line-to-four-line decoder
pin 2: logic 0 enables first two-line-to-four-line decoder
pin 13: logic 1 enables second two-line-to-four-line decoder
pin 14: logic 0 enables second two-line-to-four-line decoder
pins 2 and 14 (connected together): logic 0 enables three-
line-to-eight-line decoder

Demultiplexers

A decoder can be wired as a demultiplexer. The 7415138, 74154, and
74155 decoder/demultiplexers each have enable inputs.

74LS138 pins 4 and 5: logic 0 at both inputs enables demultiplexer
74154 pin 19: logic 0 enables demultiplexer
74155 pin 2: logic 0 enables first demultiplexer

pin 14: logic 0 enables second demultiplexer

Data Selectors/ Multiplexers

Enable inputs are provided on each of the three popular 7400-series
data selectors/multiplexers, 74150, 74151, and 74153, as well as on the
74156, 74157, and 74158 multiplexers.

74150 pin 9: logic 0 enables data selector/multiplexer
74151 pin 7: logic 0 enables data selector/multiplexer
74153 pin 1: logic 0 enables first data selector/multiplexer

pin 15: logic 0 enables second data selector/ multiplexer
74156-58 pin 1: logic 0 selects A inputs; logic 1 selects B inputs
pin 15: logic 0 enables data selectors/multiplexers

Shift Registers

Only the newer 7400-series shift registers will be described. These in-
clude the 74164, 75165, 74166, 74194, 74198, and 74199 integrated-cir-
cuit chips.

74164 pin 8: logic 0 clears register
pin 9: clock input
74165 pin 1: logic 0 loads register; logic 1 shifts data

pin 2: clock input

-pin 15: logic 1 inhibits clock
74168 pin 6: logic 1 inhibits clock

pin 7: clock input

pin 9: logic'0 clears register

pin 15: logic 0 loads register; logic 1 shifts data
74194 pin 1: logic 0 clears register

pins 9 and 10: mode select inputs; pin 9 is SO and pin 10

is 81; 80 =0 and S1 =0 inhibits clock; S0=1 and S1 =
0 shifts data right; S0 =0 and $1 =1 shifts data left;
and SO =1 and S1 =1 parallel loads register
pin 11: clock input
74198 pins 1 and 23: mode select inputs; pin 1 is SO and pin 23 is
S1; S0 =0 and S1 =0 inhibits clock; S0 =1 and S1 =0
shifts data. right; SO = 0 and S1 =1 shifts data left; and
80 =1 and S1 = 1 parallel loads register
pin 13: logic0 clearsregister
pin 11: clock input
74199 pin 11: logic 1 inhibits clock
pin 13: clock input
pin 14: logic 0 clears register
pin 23: logic 0 parallel loads register; logic 1 shifts data
right
Priority Encoder
The 74148 priority encoder encodes eight data lines to three-line
binary.

74148 pin 5: logic 0 enables priority encoder

Latches and Flip-Flops

Latch chips contain four or more D-type flip-flops on a single
integrated-circuit chip. The common 7400-series latches include the
7475, 74100, 74116, 74173, 74174, and 74175 latches.

7475 pin 3: logic 1 enables first two latches
pin 13: logic 1 enables second two latches

78

74181

TABLE 1 TABLE 2

ACTIVEMGHOATA — T acTive LoWOATA

sevecrion WL ARITHMETIC OPERATIONS SELECTION W= L ARITHMETIC OFERATIONS

Cnt Cavt CamH
s1s25us0 fvnth caryt $28731 %0 o0 carry) twith cory)
. N G ke feramnsy fea
. . Low € o ABMINS 1 s
. . Cum b A8 s 1 v oan
< " €= mivus 1@ couper Ve £+ s 1 1z1 Comn | £ 2680
. . £ +apLUs AB Lo earus A F oAU A BreLUS |
« " £ oA PLUS AB G FeaPLUS 1A BIPLUS Y
v . L
. " e
“ ¢ + ArLus agPLUS 1 W
" “ CarusaRLUst PR e arUSOPLS
" . CacBirusaspLus || ML WL £ e ABPLUS A - 81 PLUS |
" M a0 Wouno omemipus)
" . AeLus APLUS Y WL e APLUSAPLUS 1
" " kLW FeaBrUS APLUS T
" . PR FeaBeLUs APLUS 1
u M R Fearus

+Each bit is shif1ed to the next more significant PO

Courtesy Texas Instruments, Inc.

weurs ouns weors
oanmet s | OATE oA
e A cuocx cloox win wouo et D
wiwjjujjupufjnijwie
I T I T 17T -]
T o
o o
(9 o G oww o O
N D A I .
IENIENESiEN I RA)
ST 5y oy v o T 5 O

vee 0a as

% 0o cLock 51 s

wils]|{n nupnpwije
I T T 1
0388 ¢ G _vo &
cLean 50
8 a8 ¢ o o
[LT 11
VRL2 T3 14 s ITefl7[]0
CLERRSHIFT A B C O, SwFt Gwb
RIGHT 3

SERIAL PARALLELINPUTS SEAIAL
pUT T

‘asynchronous inputs: Low input o load sets Oa=A,

0g=8.Qc=C,adQp =D

7419

weuts oty

outruts A
V.. B T, CoETTa
e A

sl s muljeliniin

T T I 111

ATCCLAR BORRGR EARRY 10R5 €

iy |
\ o o
| [
Tz 3il
o e o R
L T vy

-

logic: Low input 1o load sets Q,
Qg=8,05=C and Qp =D

7419, 74193

74194

Tek TP T U Vg ZCK PR 7
R cu

74H106

Courtesy Texas Instruments, Inc.

s 1
A 2a["JVoo
A 23] JVee

L 22 |Vee as (] wf A,

+paTA 0UT 1[4 (LsB) 211 J4]2 A =l
*pataout 2|5 200 A aw[]s wf A
«oataouT 3[{6 19f Jas a]s 13 ce
*pataoUT 4 []7 18f)4 Y B 12 Joara out

*paTAOUTS [|8 {]a a [Js w[Joara N
*pATA OUT6[|8 16] Ve A w0l Jvee
*pata out 710 15 Ve s o[Jeno
*paTA ouT 8 [] 11 mse) uf)&

vee |2 3]) PrOGRAM 2102

*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.

1702A j

/-

A O=—11 40 —=0 Ayy
oenD 00— 2 19 F—=0 A

0, O=—=]3 38 f—=0 A1y

D O=—=14 37 p——=0 Ayz

0, O=—|5 36 —=0 Arg

0, 0w—=16 35 —=0 A

Dy O=—+{7 4 p—>0 Ay

D, o=—={8 13 f—=0 A

D, 0=—={ 9 32 —=0 Ag

Dy O=—=] 10 3 f—e0 Ay
-sv o— 1 30 p—=0 A

RESET O—w 12 29 b—=0 A3
HOLD O~ 13 28 p—o0 n2v

INT O—={ 14 27 p—=0 A;

22 Om—sd 15 26 f—=0 A,
INTE Oe—] 16 25 f—0 A
OBIN O=—r 17 24 f—=o WAIT
WR O=— 18 23 f=—o0 READY
syne O=——] 19 2 pb—o0 2
15y 0——] 20 21 |—=0 HLDA

8080
Courtesy Intel Corp,
89

T mla, W W o w e A 18 vee
S PR PR PR YR P P
a2 17 JAq
a3 w[JRw
Ag [: a 15[Jce,
as[]s 1871 04
e rrErrT s 13[J10s
oW o W wn w, o o
a[q7 12 Jio;
8095
ono (T8 nlJio,
— \ %
bs, gt s oo[}e 10 Jce,
wo [2 23 [JiNT
o[O3 22 []oig 8111-2
DO,y 4 21 |- dpog ReseT (1 16 Vee
o,[s 20 (o1, o
oo,[}s 19 oo, RESIN[_ |2 15[I xTALY
Pl Ly 7 18 11Dl rRovIN(|3 w[Ixtac2
oo,[] 8 17 [J oo
o, 0o 16 [Joi, READY [|4 13[] TANK
oo, [J 10 15 [} oo sync [s 12[_Josc
ste [1 14 (TJciR
L ¢
ano[] 12 13 Jos, 2T)E s nf e
stste |7 w0l)4
812 ano[|8 o[JVoo
stsTe [} - 28 vee 8224
— A
Hoa [2 27 [ijow A [2 [vee
wR[]}3 26 [] MERW Wal sl
oein{]s 25 [Ji7oR Nab " D .
osa []s 24 [] MEMR
- H — A Qe 2]] voe
pa[]s 23] INTA =
J— 5 20[] cswe
os7 [} 7 22 [7] BUSEN ~0
o7]s 21[Jos a:[]s 19 [wo
oe3{]s 20 [] pes A0 18 [JeroGram
p3[J1e 19 Jos A [Jos
oBz[] 18[Joss o,[]e 6o,
o02[] 12 17 Jo1 0. '5:]%
osg] 13] m -
ono[] 14 15{Jos ogn 8704=vgy [0
wi[J12 8798=4 13[o,
8228 8708/8704
Courtesy Intel Corp.

The proper description has been provided for each of the 40 pins. You
may have trouble with this objective. Once you have read Chapter 6,
you will better understand the control input and output pins on the
chip.
® Describe in some detail the various component sections of a small
8080A microcomputer system.
The microcomputer system shown in Figs. 2-4 and 2-12 has been
described in considerable detail. You should be able to explain the
functions of the following chips: 8224, 8216, 74174, 8111-2, and
1702-A.
® List the general principles of computer interfacing that apply to
most digital computers.
This was done later in the chapter, and the four fundamental tasks of
computer interfacing also were listed. Know them well.
@ Explain what an I/O device is.
It can be any digital device, including a single integrated-circuit chip,
that transmits data to or receives data and strobe pulses from a digital
computer.
® List three important uses for device select pulses.
They can serve as a source of clock or monostable multivibrator
pulses. They can be used to enable latches, multiplexers, decoders,
and shift registers. They can clear counters and registers, and set,
clear, or toggle flip-flops.
® List the inputs to the common 7400-series integrated-circuit chips
that can be strobed with device select pulses from a microcom-
puter.
This has been done in considerable detail in this chapter.

971

An Introduction to
Microcomputer
Programming

In this chapter, you will learn the characteristics of the 8080 micro-
processor instruction set, including the 78 basic instructions and the 244
instructions (twelve are not used) that are derived from this basic set.
You will not have to write programs in this chapter, but examples of
programs that you can study will be provided. It is the authors’ opinion
that microcomputer programming, though tedious, is somewhat easier
to master than microcomputer interfacing. There are many books and
manuals on microprocessors available, and most seem preoccupied with
the subtleties of programming. You should study such books for the
values which they provide. We will focus on interfacing, and limit our
attention to those instructions that are most useful in interfacing,

OBJECTIVES
At the end of this chapter, you will be able to do the following:

® Explain what the difference is between an instruction, operation,
program, machine code instruction, assembly language instruction,
and mnemonic instruction.

® Define the terms: assemble, bit, byte, flag, mnemonic symbol, de-
vice code, HI address byte, LO address byte, increment, decre-
ment, label, jump, call, return, label, operand, carry flag, parity
flag, zero flag, sign flag, register, register pair, subroutine, two-
byte instruction, three-byte instruction, unconditional operation,

23

conditional operation, branch instruction, stack, stack pointer, pro-
gram counter, accumulator, ALU, data byte, and instruction
register.

® Classify the 8080 instructions into five groups.

® Explain how an 8-bit instruction can be written in both octal code
and hexadecimal code.

® List the mnemonic codes, following the Intel Corporation recom-
mendations, for at least ten different 8080 instructions.

® Explain the difference between machine language and assembly
language.

® Identify the HI address byte and the LO address byte in a 16-bit
memory address word. .

® Explain what the differences are between a bit, a byte, a word, and
an address.

@ List at least ten different registers that can be found in the 8080
microprocessor chip.

@ Explain how the microprocessor knows what to do for a given
instruction.

® Explain how the microprocessor decodes:

instruction classes
registers

register pairs
immediate operations
branch operations
condition flags
increment operations
decrement operations

DEFINITIONS

accumulator—The register and associated digital electronic circuitry in
the arithmetic unit of a computer in which arithmetic and logical
operations are performed.

address—In the 8080 microprocessor, a 16-bit number which identifies
a memory location.

ALU-Abbreviation for arithmetic/logic unit. A computational sub-
system that performs the mathematical and logical operations of a
digital system.®

arithmetic operations—Addition, subtraction, multiplication, division
and comparison.

assemble—To translate from a symbolic program to a binary program
by substituting binary operation codes for symbolic operation codes
and replacing symbolic addresses with absolute or relocatable ad-
dresses.*

94

assembler—A program that prepares a program in machine language
from a program in symbolic language by substituting absolute oper-
ation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.*

assembly—A process whereby instructions written in symbolic form by
the programmer are changed to machine language by the computer.

assembly language—A computer language that has one-to-one corre-
spondence with an assembly program. The assembly program directs
a computer to operate on a program in symbolic language to produce
a program in machine language.*

assembly language programming—The writing of program instructions
in a language that facilitates the translation of programs into binary
code through the use of mnemonic symbols.*

assembly program—A program that enables a computer to assemble
mnemonic language into machine language. Also called assembly
routine.*

auxiliary carry flag—A flip-flop which goes to logic 1 when there is a
carry from bit 3 into bit 4 in the 8080 microprocessor during opera-
tions such as addition, subtraction, and comparison. Used principally
with additions preceding a Decimal Adjust Accumulator instruction.

bit—The smallest unit of information which can be represented. A bit
may be in one of two states, represented by the binary digits 0 and 1.7

branch instruction—An instruction that causes a program jump to a
specified address and execution of the instruction at that address.
During the execution of a branch instruction, the central processor
replaces the contents of the program counter with the specified
address.

branch operation—See branch instruction.

byte—A group of eight contiguous bits occupying a single memory loca-
tion in the 8080 microprocessor.

call-A special type of jump i which the central processor is logically
required to “remember” the contents of the program counter at the
time that the jump occurs. This allows the processor later to resume’
execution of the main program, when it is finished with the last in-
struction of the subroutine.?

call subroutine—See call.

carry flag—A flip-flop that goes to logic 1 when there is a carry or a
borrow out of the high-order bit during an arithmetic operation.
Otherwise it is cleared to logic 0.

computer instruction—A set of characters which defines an operation,
together with one or more addresses, or no address, and which, as a
unit, causes the computer to perform the operation on the indicated
quantities.®

computer program—A sequence of instructions which, taken as a group,
allow the computer to accomplish a desired task.”

95

conditional—In a computer, subject to the result of a comparison made
during computation.*

conditional breakpoint instruction—A conditional jump instruction that
causes a computer to stop if a specified switch is set. The routine
then may be allowed to proceed as coded, or a jump may be forced.*

conditional jump—Also called conditional transfer of control. An in-
struction to a computer which will cause the proper one of two (or
more) addresses to be used in obtaining the next instruction, depend-
ing on some property of one or more numerical expressions or other
conditions.*

condition flag—See flag.

data byte—The 8-bit binary number that the 8080 microprocessor will
use in an arithmetic or logical operation or store in memory.

decrement—To decrease the value of a binary word. Typically, to de-
crease the value by one.

destination register—The register that receives a transferring 8-bit data
word.

device code~The 8-bit code for a specific input or output device. This
code is decoded by external decoders which, together with an IN or
OUT pulse from the 8080 microprocessor, generate a single device
select pulse.

direct addressing—An 8-bit data byte is acquired via a three-byte in-
struction that contains the 16-bit memory address at which the data
byte is located.

field—A group of bits in a byte or word that is treated as a single unit
of information. Usually the number of bits in the field is specified as,
for example, a three-bit field.”

flag—A single flip-flop that indicates that a certain condition has arisen
during the course of arithmetic or logical manipulations or data
transmission between a pair of digital electronic devices such as a
computer and an instrument. For example, a flag may be a circuit
that provides a signal which indicates that an input/output device is
ready to receive or transmit data from/to a computer.

flag register—A register consisting of the flag flip-flops.

general-purpose registers—In the 8080 microprocessor, the B, C, D, E,
H, and L registers.

hexadecimal code—A digital code based upon the radix 16, in which the
decimal numbers 0 through 9 and the letters A through F represent
the sixteen distinct states in the code.

HI address byte—The eight most significant bits in the 16-bit memory
address word for the 8080 microprocessor. Abbreviated H or HI.

immediate addressing—Data bytes that are contained in a multibyte
instruction.

increment—To increase the value of a binary word. Typically, to in-
crease the value by one.

2

instruction—A set of characters which defines an operation, together
with one or more addresses, or no address, and which, as a unit,
causes the computer to perform the operation on the indicated quan-
tities. The smallest single operation that the computer can be di-
rected to execute.”

instruction code—A unique binary number that encodes an operation
that a computer can perform.

instruction decoder—A decoder within a CPU that decodes the instruc-
tion code into a series of actions that the computer performs.

instruction register—The register that contains the instruction code.

jump—1. To cause the next instruction to be selected from a specified
storage location in a computer. 2. A deviation from the normal se-
quence of execution of instructions in a computer.

label—One or more characters that serve to define an item of data or
the location of an instruction or subroutine. A character is one sym-
bol of a set of elementary symbols, such as those corresponding to
typewriter keys.

LO address byte—The eight least significant bits in the 16-bit memory
address word for the 8080 microprocessor. Abbreviated L or LO.

machine code—A computer instruction that is written as a sequence of
0 and 1 binary digits and that specifically characterizes the instruc-
tion and no other. A binary representation of a computer instruction.

machine instruction—See machine code.

machine language—See machine code.

mnemonic—Something used to assist the human memory.*

mnemonic code—Computer instructions written in a form that the pro-
grammer can remember easily, but which must be converted into
machine language later.*

mnemonic instructions—Computer instructions that are written in a
meaningful notation, such as, for example, ADD, MPY, and STO.*

mnemonic language—A programming language that is based on easily
remembered symbols and that can be assembled into machine lan-
guage by the computer.*

mnemonic operation code—See mnemonic instructions.

mnemonic symbol—A symbol chosen so that it assists the human mem-
ory; for example, the abbreviation MPY used for “multiply.”

octal code—A digital code based upon the radix 8, in which the decimal
numbers 0 through 7 represent the eight distinct states in the code.

operand—The quantity that is affected, manipulated, or operated upon.

operation—A specific action that a computer will perform whenever an
instruction calls for it (e.g., addition, division).*

operation code—See instruction code.

parity—A method of checking the accuracy of binary numbers. An
extra bit, called a parity bit, is added to a number. If even parity is
used, the sum of all Is in the number and its corresponding parity

97

bit is always even. If odd parity is used, the sum of the 1’s and the
parity bit is always odd.

parity flag—A flip-flop such that if the modulo 2 sum of the bits of the
result of a computer operation is logic 0, this flip-flop is set to logic 1.

pop—Retrieving data from a stack.

program—See computer program.

program counter—The 16-bit register that contains the memory address
of the next instruction byte that must be executed in a computer
program.

push—Placing data on a stack.

register—A short-term digital electronic storage circuit the capacity of
which is usually one computer word.*

register pair—In the 8080 microprocessor, a pair of general-purpose
registers that together make up a 16-bit word that is treated as a unit.
The three register pairs are B and C, D and E, and H and L.

register pair addressing—An 8-bit data byte is acquired via a one-byte
instruction that employs a register pair, usually H and L, to generate
the 16-bit memory address.

return—A special type of jump in which the central processor resumes
execution of the main program at the contents of the program counter
at the time that the jump occurred.

return from subroutine—See return.

routine—Set of instruction codes arranged in proper sequence to direct
the computer to perform a desired operation or sequence of opera-
tions. Alternatively, a subdivision of a program consisting of two or
more instructions that are functionally related.®

sign flag—A flip-flop that goes to logic 1 if the most significant bit of the
result of an operation has the value of logic 1.

single-byte instruction—An 8080 instruction consisting of eight contigu-
ous bits occupying a single memory location.

source register—The register that contains an 8-bit word that is being
transferred.

stack—An area in memory that stores temporary register information
and the return addresses of subroutines.

stack pointer—A 16-bit register that provides the current location of the
stack.

stack pointer addressing—Two 8-bit data bytes are acquired via a 1-byte
instruction that transfers the data from a memory area called a stack
to a register pair or the program counter.

subroutine—A small subprogram not stored in the main path of the rou-
tine. Such a subroutine is entered by a call operation; provision is
made to return control to the main program at the end of the sub-
routine.

symbolic address—Also called floating address. In digital computer pro-
gramming, a label chosen to identify a particular word, function, or

98

other information that is independent of the location of the informa-
tion within the routine.

symbolic code—A code by which programs are expressed in source
language; that is, storage locations and machine operations are re-
ferred to by symbolic names and addresses that do not depend upon
their hardware-determined names and addresses.*

symbolic coding—In digital computer programming, any coding system
using symbolic rather than actual computer addresses.*

symbolic language programming—See assembly language programming.

symbolic programming—A program using symbols instead of numbers
for the operations and locations in a computer. Although the writing
of the program is easier and faster, an assembly program must be
used to decode the symbol into machine language and to assign in-
struction locations.

three-byte instruction—An instruction that consists of 24 contiguous
bits occupying three successive memory locations.

two-byte instruction—An instruction that consists of 16 contiguous bits
occupying two successive memory locations.

unconditional~Not subject to conditions external to the specific com-
puter instruction.?

unconditional return—A return instruction that is unconditional.

unconditional jump—A computer instruction that interrupts the normal
process of obtaining the instructions in an ordered sequence and
specifies the address from which the next instruction must be taken.*

unconditional return—A return instruction that is unconditional.

word—A group of sixteen contiguous bits occupying two successive
memory locations. (This definition is given by Intel for its 8080
microprocessor.)

zero flag—A flip-flop that goes to logic 1 if the result of an instruction
has the value 000s.

WHAT IS A COMPUTER PROGRAM?

Graf has defined a computer program as:*

A series of instructions or statements prepared in a form acceptable
to the computer, the purpose of which is to achieve a certain result.
This is an acceptable definition, for it doesn’t imply what the desired
result is. In some cases, we may seek to evaluate a mathematical equa-
tion, whereas in others we may simply seek to rearrange input data into
a2 more convenient form, which either is stored or else provided as
output. With microprocessors, we will increasingly be interested in
writing computer programs that will control the operation of a de-
vice or group of devices. In 2 home clothes washer, for example, we
may wish to control the amount of water used, the temperature of the
water at different washing cycles, the number and types of cycles em-

9

ployed to wash a particular type of fabric, and the time duration of
each cycle. Finally, we may ask the microprocessor to sound a bell or
buzzer when the washing cycle has been completed.

WHAT IS AN INSTRUCTION?

A computer instruction can be defined as:®

A set of characters which define an operation together with one or
more addresses, or no address, and which, as a unit, causes the
computer to perform the operation on the indicated quantities.

We will discuss the concept of an operation in a subsequent section.

A character is:®
One symbol of a set of elementary symbols such as those corre-
sponding to typewriter keys. Symbols usually include the decimal
digits 0 through 9, the letters A through Z, punctuation marks, dol-
lar signs, commas, operation symbols, and any other single sym-
bols which a computer may read, store, or write.

In computer programming, it is not uncommon for one to use the entire
typewriter keyboard, including symbols such as @, #, $, %, ¢, &, °, (,
), P /,and .

Computer instructions come in a variety of forms. They can be bi-
nary numbers:

10110001,
00011100,
11101001,

octal numbers:

0275
3534
1244
0015

hexadecimal numbers:

OAy
96

FFIG
Dsle
BE;4

decimal numbers:

10
35
26
05

No operation
Halt

MACHINE LANGUAGE

The modern electronic digital computer is capable of performing
manipulations using binary electronic signals only, typically 0 volts
(logic 0) and +5 volts (logic 1). Thus, each computer instruction is
written as a sequence of I's and Os that specifically characterize that
instruction and no other. Such a binary representation of a computer
instruction is called machine language or machine code. For example,
the machine language instruction 00000111, rotates the contents of the
accumulator one bit to the left in the 8080 microprocessor. The instruc-
tion 00001111, rotates the contents of the accumulator one bit to the
right. Altogether, it is possible to create 2° = 956 different 8-bit binary
machine language instructions for an 8-bit microprocessor such as the
8080. Of these 256 possible instructions, a total of 244 actually exist.

Some other examples of machine language instructions for the 8080
include the following:

00000000 No operation
00000100 Increment contents of register B by one
00000101 Decrement contents of register B by one
00001100 Increment contents of register C by one
00010100 Increment contents of register D by one
00011100 Increment contents of register E by one
00110111 Set carry flip-flop to logic 1
00111111 Complement carry flip-flop
01000111 Move contents of accumulator to register B
01011000 Move contents of register B to register E
10000000 Add contents of register B to contents of accumulator
10010000 Subtract contents of register B from accumulator
10110000 OR contents of register B with contents of accumulator
11001001 Return from subroutine
11010111 Call subroutine at memory address H = 000g and
L =020
11111011 Enable interrupt

All of the machine codes listed above are in binary.

OCTAL AND HEXADECIMAL MACHINE CODES

It can be difficult to remember 8-bit binary machine code instruc-
tions, so individuals who perform machine language programming fre-
quently convert such instructions into either octal code or hexadecimal

code. Such codes were discussed in Chapter 5 of Bugbook I, but we will
repeat them here for convenience.

The octal digits for the eight 3-bit binary numbers ranging between
000 and 111 are:

Octal Digit Binary Number
000
001
010
011
100
101
110
111

The Intel 8080 microprocessor generates 8-bit binary machine code
instructions, so we must be able to convert an 8-bit binary word into
octal code. The process whereby we accomplish this requires three
steps:

1. Write down the full 8-bit binary word: XXXXXXXX.

2. Split the 8-bit binary word into groups of three, starting from the
least significant bit. Two groups of three and one group of two are
created, as in XX XXX XXX.

3. Substitute 0 through 7 for each of the groups to obtain the final
octal coded word.

N U WM ~O

As an example, let us assume that we have the binary word 10011011.
We first split it into groups:

10011011, =10 011 011
Next, we write the equivalent octal word for each of these groups:
10011 011 = 2334

to produce 2333, the octal equivalent of the binary word 10011011, Note
that the most significant octal number has only two binary bits, and
cannot be larger than octal 3. In summary, the conversion of an 8-bit
binary word into its octal equivalent proceeds as follows:

XXXXXXXX, = XX XXX XXX

2-bit 3-bit 3-bit
octal digit octal
digit octal digit

The hexadecimal code for the sixteen 4-bit binary numbers is as
follows:

104

Hexadecimal Digit Binary Number
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

To convert an 8-bit binary word into hexadecimal, we do the following:

1. Write down the full 8-bit binary word, XXXXXXXX.

2. Split the 8-bit binary word into two groups of four bits, as in
XXXX XXXX.

3. Substitute 0 through F for each of the groups to obtain the final
hexadecimal coded word.

HEHOOE> 0010 N R W0~

We can, as an example, convert 10011011 to hexadecimal. We first
split it into two groups of four bits:

10011011, = 1001 1011
Next, we write the equivalent hexadecimal word for each of these
groups:
1001 1011 = 9B;4

to produce 9Bie, the hexadecimal equivalent of the original binary
word. In summary, the conversion of an 8-bit binary word into its hexa-
decimal equivalent proceeds as follows:

XXXXXXXX,=XXXX XXXX

4-bit 4-bit
hex hex
digit digit

With the 8080 microprocessor, the memory address contains 16 bits.
Such a word can also be converted into either octal or hexadecimal
code. For example, memory location 1001100111000101: can be writ-
ten as:

1001100111000101, = 1 001 100 111 000 101, = 114705,
= 1001 1001 1100 0101; = 99C5,¢

However, when we program in octal for the 8080, we will often see a
16-bit address that is subdivided into two eight-bit bytes. In this case,
the eight most significant bits are the HI address byte and the eight
least significant bits are the LO address byte. When split like this, each
byte is treated as a separate octal number that ranges from 000 to 377.
Therefore, our address can be written as:

100110011100010]»

/

10 011 001 11 000 101
2 3 1 3 0 5

Such an address has a HI address byte of 2315 and a LO address byte
of 305s.

Table 3-1 gives some useful conversions between binary, octal, and
hexadecimal numbers.

The machine language instructions listed in the “Machine Language”
section can therefore be rewritten in the following manner:

Binary Octal Hexadecimal

Machine Code Machine Code Machine Code
00000000 000 00
00000100 004 04
00000101 003 05
00001100 014 0C
00010100 024 14
00011100 034 1C
00110111 067 37
00111111 077 3F
01000111 107 47
01011000 130 58
10000000 200 80
10010000 220 90
10110000 260 BO
11001001 311 C9
11010111 327 D7
11111011 373 FB

In this book, we shall write machine instructions in octal code. There
are several reasons for doing so:

® It is easier to convert from an octal number to a binary number
than from a hexadecimal number to a binary number. The hexa-

mnemonic code:

NOP
MOV B,C
INR H
ADDD
SUBL
ouT
HLT

JMP

full words:

ADD

SUBTRACT

COMPARE

NO OPERATION

HALT

JUMP

CALL SUBROUTINE

RETURN FROM SUBROUTINE
EXCLUSIVE-OR

or full mathematical expressions:

X=A"*24+B*Y+C
X = SQRT(B**2 — 4°A°C)

to mention but a few commonly encountered types.

WHAT IS AN OPERATION?
We return to Graf for a simple definition for the term operation:*

A specific action which a computer will perform whenever an in-
struction calls for it (e.g., addition, division).

The number of different operations that a computer can perform and
the speed with which it can perform such operations provide a mea-
sure of how “powerful” the computer is. The operations associated with
the Intel 8080 microprocessor include:

INFORMATION TRANSFER Move information from accumulator
OPERATIONS: to memory
Move information from accumulator
to register
Move information from memory to
accumulator
Move information from register to
accumulator

Move information to stack

Move information from stack

Move information to stack pointer
Move information to program counter

ARITHMETIC OPERATIONS: Add to accumulator
Subtract from accumulator
Compare with accumulator
Rotate accumulator left
Rotate accumulator right

LocicaL OPERATIONS: Anp with accumulator
Or with accumulator
Exclusive-or with accumulator |

SUBROUTINE OPERATIONS: Call subroutine

Call subroutine if flag is at logic 0

Call subroutine if flag is at logic 1

Return from subroutine

Return from subroutine if flag is at
logic 0

Return from subroutine if flag is at
logic 1

Restart at specified subroutine location i

Ineur/Output OPERATIONS: Input data from device into accumu-

lator
Output data from accumulator into
device
INCREMENT/ DECREMENT Increment contents of accumulator
OPERATIONS: Decrement contents of accumulator

Increment contents of register
Decrement contents of register i
Increment contents of memory

Decrement contents of memory

JumPp OPERATIONS: Jump unconditionally
Jump to memory location if flag is at
logic 0
Jump to memory location if flag is at
logic 1

OTHER OPERATIONS: Complement accumulator
Complement carry flip-flop
Set carry flip-flop
Decimal adjust the accumulator
Enable interrupts
Disable interrupts

Table 3-1. Binary-Octal-Hexadecimal-Decimal C: sions
Binary Number Octal Number Hexadecimal Number Decimal Number
00000000 000 00 0
00000001 001 01 1
00000010 002 02 2
00000011 003 03 3
00000100 004 04 4
00000101 005 05 5
00000110 006 06]
00000111 007 07 7
00001000 010 08 8
00001001 on 09 9
00001010 012 0A 10
00001011 013 0B n
00001100 014 ocC 12
00001101 015 oD 13
00001110 016 OE 14
00001111 017 OF 15
00010000 020 10 16
00011000 030 18 24
00100000 040 20 32
00101000 050 28 40
00110000 060 30 48
00111000 070 38 56
01000000 100 40 64
01001000 110 48 72
01010000 120 50 80
01011000 130 58 88
01100000 140 60 96
01101000 150 68 104
01110000 160 70 n2
01111000 170 78 120
10000000 200 80 128
10001000 210 88 136
10010000 220 90 144
10011000 230 98 152
10100000 240 A0 160
10101000 250 A8 168
10110000 260 BO 176
10111000 270 B8 184
11000000 300 Cco 192
11001000 310 cs 200
11010000 320 DO 208
11011000 330 D8 216
11100000 340 EO 224
11101000 350 E8 232
11110000 360 FO 240
11111000 370 F8 248
11111001 37N F9 249
11111010 372 FA 250
11111011 373 FB 251
11111100 374 FC 252
LRRRRAI 375 FD 253
11111110 376 FE 254
11111111 377 FF 255
107

decimal symbols A, B, C, D, E, and F can occasionally be con-
fusing.

@ Seven-segment LED displays are more common and less expen-
sive than hexadecimal LED displays.

® The origins of specific Intel 8080 microprocessor instructions are
easier to understand if such instructions are written in octal rather
than in hexadecimal code.

These three advantages outweigh the fact that there are only two digits
in the hexadecimal instruction versus three digits in the octal one.

MNEMONIC CODE

Mnemonic is a term describing something used to assist the human
memory.* With this in mind, we have the following definitions:

mnemonic code—Computer instructions written in a form the program-
mer can remember easily, but which must be converted into machine
language later by a computer.*

mnemonic language—A programming language that is based on easily
remembered symbols and that can be assembled into machine lan-
guage by a computer.*

mnemonic operation code; mnemonic instructions—Computer instruc-
tions that are written in a meaningful notation, for example, ADD,
MPY, STO.*

mnemonic symbol—A symbol chosen so that it assists the human mem-
ory; for example, the abbreviation MPY used for “multiply.”

A variety of different mnemonic instructions can be written for the
944 different 8080 machine language instructions. Since we believe in
standardization, we shall employ those mnemonic instructions sug-
gested by the Intel Corporation. Such mnemonic instructions are pro-
vided in a variety of Intel literature,'? including:

® Intel 8080 Microcomputer System Manual, September, 1975.

® Intel Assembly Language Programming Manual, 1976 (Revision
C).

® Intel Assembly Language Reference Card, 1974.

as well as in handy code cards such as the following ones available from
Tychon, Inc.:1®

® Tychon, Inc., 8080 Octal and Hexadecimal Code Cards.

The machine language instructions listed in both the “Machine Lan-
guage” and the “Octal and Hexadecimal Machine Codes” sections can
therefore be written in the following manner:

Octal Machine Code Mnemonic Code

000 NOP

004 INRB
005 DCRB
014 INRC
024 INRD
034 INRE
067 STC

077 CMC

107 MOV BA
130 MOV E,B
200 ADDB
220 SUBB
260 ORA B
311 RET

327 RST 2
373 EI

HOW DO | GO ABOUT THE TASK
OF LEARNING COMPUTER PROGRAMMING?

Some of you who will read this chapter already know how to do
machine language programming and perhaps only desire to brush up
on the 8080 microprocessor instruction set. Many more of you will be
programming and interfacing a microcomputer for the first time. An
important question in your mind might be: How do I go about the task
of learning computer programming? In the paragraphs below, some
suggestions are offered concerning how to proceed. These comments
are provided at the beginning of this chapter, rather than at the end,
because it is useful for you to have a “road map” of where you are go-
ing in this Bugbook. You may not be initially familiar with some of the
terms and concepts that we will use in this section. Don't worry. Just
read this material quickly the first time, then refer back to it as you
need.

Where Am | Going?

In this book, you will learn how to interface microcomputers to sim-
ple digital circuits typically consisting of 7400-series chips and a few
specialized Intel 8000-series chips. You will have to learn how to trans-
fer information between the microcomputer and external input/output
devices, including integrated-circuit chips. Thus, two of the most im-
portaat instructions that you should learn are the following, which
generate device select pulses:

323 Generate a device select pulse to synchronize the output of

<B2> eight bits of accumulator data to the device with the de-

a vice code given in the second byte of the instruction.

an

333 Generate a device select pulse to synchronize the input of

<B2> eight bits of data into the accumulator from the device
with the device code given in the second byte of the
instruction.

These are the Out and In instructions, respectively. You will certainly
use the Out instruction frequently in later chapters.

In a following chapter, you will learn how to write computer sub-
routines. With such subroutines, the computer jumps from a main pro-
gram to some other memory location, where it begins execution of the
subroutine. Once it has finished with the subroutine, it returns to the
main program. Thus the computer must know the location in the main
program to which it should return. It does this with the aid of a group
of memory locations known as a stack, which store returning memory
locations for subroutines. You will not be able to use any subroutine,
including those on a preprogrammed PROM chip, unless you locate
the stack within the read/write memory that you actually have in
your microcomputer. How do you relocate the stack? You employ the
following three-byte instruction:

061 Relocate the stack pointer at the 16-bit memory address
given by the following two bytes of this instruction.

<B2> LO memory address byte

<B3> HImemory address byte

One of the authors wasted several hours one evening trying to write a
subroutine before he realized the need to relocate the stack from where
it was initially (which was, in case you are interested, at HI = 377; and
LO = 377s). Subroutines are very important programming gimmicks,
so important that it is a good idea to mention the stack right at the be-
ginning of this chapter.

In general, you will not start program execution at memory location
HI = 0005 and LO = 0005 and run sequentially through your available
memory. You will jump around, sometimes ahead, usually back. So, you
will need to know how to jump from one point in your program to an-
other, where execution continues. The instruction that you will require
is the Unconditional Jump, a three-byte instruction:

303 Jump unconditionally to the 16-bit memory location given
by the following two bytes of this instruction.

<B2> LO memory address byte

<B3> HI memory address byte

It is a great instruction. You can do wonders with it.

You may want to call a subroutine, which simply means that you are
asking the microcomputer to store the memory address of the next
instruction in the main program, and then jump to some other memory
address where the execution of the subroutine commences. To do this,
you will require the Unconditional Call instruction, also a three-byte
instruction:

315 Call unconditionally the subroutine at the 16-bit memory
location given by the following two bytes of this instruc-
tion.

<B2> LO memory address byte

<B3> HI memory address byte

This instruction is not sufficient, however. Once you have executed the
subroutine, you will need an instruction that will get you back to the
main program. This is the Unconditional Return instruction, a one-byte
instruction:

m Return unconditionally to the main program. The specific
address in the main program is contained in two memory
locations in the stack.

We have used the term unconditional in each of the above three in-
structions on this page. There also exist a number of conditional jump,
call, and return instructions that perform their indicated actions only
if a flag has a certain specified logic state. This book won’t use many of
them, so you will be required to learn them on your own. Probably the
only conditional instruction that you will use frequently in this book is
one associated with the programming of timing loops:

302 Jump to the 16-bit memory location given by the following
two bytes of this instruction if the zero flag is at logic 0.

<B2> LO memory address byte

<B3> HI memory address byte

You may ask: What is a zero flagP It is simply a single flip-flop that goes
to a logic 1 state only if the content of the register or memory oper-
ated upon in the preceding instruction goes to 000s. This is an im-
portant instruction and one that you will use frequently in Chapter 5.

Observe that we haven’t yet discussed an Add, Subtract, And, Or, or
other type of arithmetic/logical instruction. The fact of the matter is
that you won’t use many of these instructions in this Bugbook. You may
be much too busy and interested in outputting and inputting data to
worry much about adding a pair of numbers. There is one subtract in-
struction that the authors are rather fond of:

227 Subtract the contents of the accumulator from the contents of
the accumulator, i.e., clear the accumulator.

With this instruction, you set the value of the accumulator to 000s. It is
very useful.

When you make timing loops, you may desire to increment the B and
C general-purpose registers. The instructions that you will require are:

004 Increment B register by one.
014 Increment C register by one.

You will also want to decrement these two registers:

005 Decrement B register by one.
015 Decrement C register by one.

You will certainly want to halt the computer after it has executed a
program. To do this, you will employ the popular and highly regarded
Halt instruction:

166 Halt the microcomputer
If you are lazy, you can program the computer to do nothing:
000 No operation

This instruction does absolutely nothing. In its spot in the program, it
simply consumes time, 2 us to be exact. You can use it to provide spaces
in your program that you may fill at a later time.

You may want to clear a register, as would be the case with a long
timing loop. First, you can clear the accumulator. Then you move the
contents of the accumulator to the desired register, as in the following
instructions:

107 Move contents of accumulator to register B.
117 Move contents of accumulator to register C.
127 Move contents of accumulator to register D.

You may wish to load a specific 8-bit binary number into the accumu-
lator or a register. The following two-byte immediate instructions will
do the job:

006 Move the data in the second byte of this instruction into
<B2> register B.

026 Move the data in the second byte of this instruction into
<B2> register D.

076 Move the data in the second byte of this instruction into the
<B2> accumulator.

You may wish to load a pair of 8-bit binary numbers into two regis-
ters with the same instruction. One example of such an instruction is:

041 Move the data in the second and third bytes of this instruc-
tion into register pair H.

n2

<B2> This byte goes into register L.
<B3> This byte goes into register H.

Along about Chapter 8, you will need to enable the interrupt flag so
that you can interrupt the microcomputer from the front panel. You do
this with the following instruction:

373 Enable the interrupt system following the execution of the next
instruction.

In Chapter 8, you will “jam” a one-byte instruction during the inter-
rupt. This is an instruction that calls a subroutine at one of the follow-
ing memory addresses (all with HI = 0005): 0005, 0105, 0205, 0305, 0405,
0505, 0605, or 070s. These are the Restart instructions, an example of
which is given below:

317 Call the subroutine at the memory address given by H= 0005
and L = 010s.

You can have fun and play games with the accumulator and carry
flag. For example, you can:

007 Rotate the contents of the accumulator left one position.
017 Rotate the contents of the accumulator right one position.
047 Decimal adjust the accumulator.

057 Complement the accumulator.

067 Set the carry flag to logic 1.

077 Complement the carry flag.

And, finally, you can move the contents of a specified memory loca-
tion to the accumulator, as in the following instruction:

176 Move contents of the memory location addressed by the regis-
ter pair H,L to the accumulator.

Now we come to the point of this section: The above instructions are
almost all that you will need for this book! The emphasis has been on
computer interfacing, not programming. Just enough program steps
have been provided to allow you to make your interfaced integrated-
circuit chip to do something useful.

How Do | Learn Micr ¥ Progr ?

You can learn computer programming with the aid of this Bugbook
and some hands-on experience with an 8080-based microcomputer. It
is possible to “dry lab” this book, but having a microcomputer before
you would make your learning much more interesting. Here are some

suggestions:

® As your first step in learning how to program a microcomputer,
survey the microcomputer instruction set and try to learn what you
can from it.

In this book the 8080 microprocessor instruction set has been orga-
nized in a variety of ways to help you: (1) an octal/hexadecimal/
mnemonic listing of all 256 instructions, from 0005 to 377g; (2) an
alphabetic listing of the mnemonic instructions; (3} a group listing of
the instructions, including the data transfer group, arithmetic group,
logical group, branch group, and stack/input/output/machine con-
trol group; (4) an instruction summary on a single sheet of paper;
and (5) detailed written descriptions of different classes of instruc-
tions, in which each class or group is described in terms of how it is
decoded by the instruction decoder within the 8080 chip.

® Study the numerous examples of computer programming given in
this book.

We haven’t used all of the 8080 instructions, but we have used many
of the more important ones. You should learn from this book that
a computer program doesn’t have to be long and involved in order to
be useful. You will observe how to generate device select pulses and
latch accumulator data with only a few instructions, With several
additional instructions, you can generate a timing loop.

@ Practice computer programming by writing many simple programs,
each of which illustrate the characteristics of a different 8080
instruction.

The authors have followed this rule in this book. They have tried to
highlight the behavior of a limited number of useful instructions.
They hope they have done so in sufficient depth and with sufficient
clarity that you are able to master them. They would encourage you
to follow the same procedure as you learn the characteristics of other
instructions, such as DAD, ANA, XRA, ORA, CMP; the conditional
jumps, calls, and returns; and such interesting instructions as PCHL,
XTHL, XCHG, SPHL, POP, and PUSH.

® Do all of the above with an 8080 microcomputer system in front
of you.

A microcomputer system is a lot of fun. You will not do justice to this
exciting new technology simply by reading this book. Hands-on ex-
perience with a microcomputer will give you the depth of experience
that you require.

BIT, BYTE, WORD, AND ADDRESS

The terms bit, byte, word, and address are so important that, though
we have defined them in the preceding chapter, we shall define them
again here. The definitions given below are from the Intel 8080 Assem-
bly Language Programming Manual (Reference 7).

14

bit—The smallest unit of information which can be represented. A bit
may be in one of two states, represented by the binary digits 0 or 1.7
byte—A group of eight contiguous bits occupying a single memory
location.”
A representation of a byte in
memory. Bits which are fixed as
0 or 1 are indicated by 0 or 1;
bits which may be either 0 or 1
mnm in different circumstances are
represented by letters; thus rp
represents a 3-bit field which
contains one of the eight possi-
ble combinations of zeros and
ones.”
word—A group of 16 contiguous bits occupying two successive memory
locations.”
address—A 16-bit number assigned to a memory location corresponding
to its sequential position.”
instruction—The smallest single operation that the computer can be
directed to execute.”
program—A sequence of instructions which, taken as a group, allow the
computer to accomplish a desired task.”
field—A group of bits in a byte or word which is treated as a single unit
of information. Usually the number of bits in the field is specified as,
for example, a three-bit field.

Keep in mind that the definitions here for byte, word, and address refer
specifically to the 8080 microprocessor. Other computers may have
smaller or larger bytes, words, and addresses.

MULTIBYTE INSTRUCTIONS

The 8080 microprocessor can execute 244 different instructions. Many
of the instructions are similar, and it has been said that the 8080 has
only 78 truly different instructions. We are not prepared to quibble on
this matter. The point is that, of the 244 instructions, 200 are single-byte
instructions, 18 are two-byte instructions, and 26 are three-byte instruc-
tions. These three terms can be defined as follows:

single-byte instruction—An instruction consisting of eight contiguous
bits occupying a single memory location.

three-byte instruction—An instruction consisting of 24 contiguous bits
occupying three successive memory locations.

two-byte instruction—An instruction consisting of 18 contiguous bits
occupying two successive memory locations.

The first byte of a multibyte instruction is called the operation code.
The remaining one or two bytes are either an 8-bit data byte, two 8-bit
data bytes, an 8-bit device code, or a 16-bit memory address consisting
of two 8-bit address bytes. Definitions for these new terms are as
follows:

operation code, instruction code—The 8-bit code for the specific action
that the 8080 microprocessor will perform.

data byte—The 8-bit binary number that the 8080 microprocessor will
use in an arithmetic or logical operation or store in memory or a
register.

device code—The 8-bit code for a specific input or output device. This
code is decoded by external decoders which, together with an TN or
OUT pulse from the 8080 microprocessor, generate a single device
select pulse.

HI address byte—The eight most significant bits in the 16-bit memory
address word for the 8080 microprocessor. Abbreviated H or HI.

LO address byte—The eight least significant bits in the 16-bit memory
address word for the 8080 microprocessor. Abbreviated L or LO.

Clearly, an 8-bit word stored in memory can be an operation code, data
byte, device code, HI address byte, or LO address byte. How do you
tell? You examine each 8-bit byte in the context of the actual micro-
computer program. Unless there is a mistake in the program, the com-
puter can readily distinguish between the various types of bytes. There
will be no ambiguities. We will continue our discussion of this topic in
the following section.

The first, second, and third bytes in a multibyte instruction are rep-
resented by the symbols <B1>, <B2>, and <B3>, respectively. This
is the Intel Corporation notation, one which we will follow.

The eighteen two-byte instructions for the 8080 microprocessor have
the following mnemonic codes:

eight MVI instructions: MVI B, MVI C, etc.
ADI
ACI
ouT
SUI
IN
SBI
ANI
XRI
ORI
CPI

The 26 three-byte instructions for the 8080 have the following mne-
monic codes:

16

four LXI instructions

nine JUMP instructions

nine CALL SUBROUTINE instructions
SHLD

LHLD

STA

LDA

We will stick to the Intel Corporation mnemonic code throughout this
Bugbook.

Simple representations for single-byte, two-byte, and three-byte in-
structions are shown in Fig. 3-1.

INSTRUCTION VS. DATA: HOW DOES THE COMPUTER KNOW?

With the 8080 microcomputer system, we store both instructions and
“data,” such as that from a laboratory instrument, in the same memory.
Instructions and data can almost exist side by side. It is thus reasonable
to inquire, how does the microcomputer know the difference between
the two?

The basic answer is that instructions in memory are stored as a block,
or perhaps as a group of blocks scattered throughout memory, and the
same is true with data from an instrument. Except for the immediate-
type instructions, you rarely, if ever, have both instructions and data

Operation Code

Operation Code

(A} A single-byte instruction, which con- <81>

sists only of an 8-bit operation code.

<B1> Operation Code

<82> Data Byte

<B1>

<82>

(C) A two-byte input or output instruction
that consists of an 8-bit operation code and
an 8-bit device code.

(B) A two-byte instruction that consists of
an 8-bit operation code and an 8-bit
data byte.

| Device Code l

Data Byte
e —-—

Dota Byte
PO T A)

<82>

<83>

(D) A three-byte instruction that consists of
an B-bit operation code and two 8-bit
data bytes.

<82> LO Address Byte
<B3> Hi Address Byte
P I B .

(E) A three-byte instruction that consists of

an 8-bit operation code and a 16-bit ad-

dress word that is subdivided into a LO
address byte and a HI address byte.

Fig. 3-1. Representations of instructions.

17

commingled. Such mixing is bad programming and memory organi-
zation if it occurs. Therefore, the computer will always know that it is
operating on instructions as long as it starts in the correct location in
memory and the program is properly written. The instructions will
usually exist as a cohesive block in memory. If spread out in memory,
there will be well-defined jump, call, return, and restart instructions
to tie the subroutines and subsidiary programs together with the main
program.

With regard to data in memory, the following is suggested: Unless
indicated otherwise, such as by proper programming, the computer will
treat data in memory as computer instructions and will go wild trying
to execute them. In other words, a properly written program will access
and store data via selected memory addressing commands such as
MOV. However, if for any reason the microcomputer finds itself operat-
ing in a data block during the execution of a program, it will treat the
data bytes as instruction bytes.

How does the computer know the difference between an instruction
and data? You write the program in such a manner that it knows the
difference. Carelessness on your part will cause the microcomputer to
“go bananas.” Computer programs must always start with a valid com-
puter operation, not datal

8080 MICROPROCESSOR REGISTERS

The term register can be defined as follows:

register—A short-term digital electronic storage circuit the capacity of
which usually is one computer word.'®

Single registers in the 8080 microprocessor chip store a single byte,
i.e., eight contiguous bits.

There are two different sets of registers in the 8080 chip: those that
we can address from a program and those that we cannot. The program
addressable registers are shown in Fig. 3-2 and include the following:

® six 8-bit general-purpose registers addressed singly or in pairs:
B register
C register
D register
E register
H register
L register
® the 8-bit accumulator, also known as register A
® the 16-bit stack pointer register
® the 16-bit program counter register

18

80808
o1 e 1] Stack Pointer |

LU Lo
I H l L J I Program Counter I

Hi]

Bidirectional Date Bus Address Bus

8 bits 18 bits
|H-nuy Iﬁtl I Input Byte I Iol'.ll' Byts. l
Fig. 3-2. The internal register architecture within an 8080 mi chip. Temporary

]

registers over which you have no direct control are omitted. The data bus buffer/latch and

the address buffer provide the interface between the circuitry within the chip and the
external busses.

Two other registers over which, in special cases, you have some con-
trol include:

® the 8-bit instruction register
® 2 5-bit flag register in the arithmetic/logic unit (ALU)

Additional registers (see Fig. 3-3) that are required to allow the
8080 microprocessor chip to perform its internal operations include
two 8-bit temporary registers used singly or as a pair, W temporary
register and Z temporary register; an 8-bit temporary accumulator in
the arithmetic/logic unit; and an 8-bit temporary register in the arith-
metic/logic unit. You cannot address or control the contents of these
temporary registers from a program and will not know when the 8080
uses them.

Some useful definitions include the following:

accumulator—The register and associated digital electronic circuitry
in the arithmetic/logic unit (ALU) of a computer in which arithme-
tic and logical operations are performed.

general-purpose registers—In the 8080 microprocessor chip, 8-bit regis-
ters that can participate in arithmetic and logical operations with the
contents of the accumulator.

instruction code—A unique 8-bit binary number that encodes an opera-
tion that the 8080 microprocessor chip can perform.

19

0,-0 BIORECTIONAL
OaTABUS

BATA 807
BUFFER/LATCH]

wory wom
INTERNAL DATA oS i ITERNAL DATA BUS

[Accu'uuumn-l r v'ej_lw =3 WoLnExER
al)
T 7
Iewpaca | Teweaco
ACCOMULATOR - | g
CATEH) G| nea atg
INSTRUCTION 3 O]
— ‘Decooen HIlE ko,
AN l—{ |5 -
H O o ReaisTER
VeveLE: 1 feg ARRAY
ENCODING o T
& STACK POINTER
|] PROGRAMCOUNTER]
INCREMENTER/DECREMENT ER
oS 'ADORESS LATCH
| T
AND
covmor |
eomen [—= vav aponess ueren ")
SUPPLIES | v 5y OATABUS INTERRUPT HOLD WA Donesser e
o Lumire Contnl “contnow controw conTRoy svie ceock
— oo
WA DaiN INTE INT HOLOWOLOWAIT | ‘Sync o) 02 RESET o
Ak eaoy aooeahus

Courtesy Intel Corp.

Fig. 3-3. Functional block diagram of the 8080 central processing unit (CPU). Note the internal

data bus, which i with the | bidirectional data bus through a data bus
buffer/latch located within the 8080 chip.

instruction decoder—A decoder within the 8080 microprocessor chip
that decodes the instruction code into a series of actions that the
microprocessor performs.

instruction register—The 8-bit register in the 8080 microprocessor chip
that stores the instruction code of the instruction being executed.

program counter—The 16-bit register in the 8080 microprocessor chip
that contains the memory address of the next instruction byte that
will be executed in a computer program.

stack pointer—The 16-bit register in the 8080 microprocessor chip that
stores the memory address of the stack, which is a region of memory
that stores temporary information.

The Intel Corporation Intellec 8/ Mod 80 Microcomputer Develop-
ment System Reference Manual provides several well-written para-
graphs that summarize the concepts of instruction code, instruction
register, and instruction decoder. These paragraphs are quoted below.
(See Fig. 3-4 also.)

“Every computer has a word length that is characteristic of that ma-
chine. In most eight-bit systems, it is most efficient to deal with eight-
bit binary fields, and the memory associated with such a processor is
therefore organized to store eight bits in each addressable memory
location. Data and instructions are stored in memory as eight-bit bi-
nary numbers, or as numbers that are integral multiples of eight bits:

120

-BIT
INSTRUCTION CODE

l INSTRUCTION REGISTER I

INSTRUCTION
DECODER

;‘I> A series ::'1 > "
of actions An operation

4%

CLOCK up to 266

decoded outputs

Fig. 3-4. The 8-bit instruction code is first stored in the instruction register, from where it is
decoded into a series of clocked actions by the instruction decoder within the 8080
microprocessor chip.

16 bits, 24 bits, and so on. This characteristic eight-bit field is some-
times referred to as a byte.

“Each operation that the processor can perform is identified by a
unique binary number known as an instruction code. An eight-bit word
used as an instruction code can distinguish among 256 alternative ac-
tions, more than adequate for most processors.

“The processor fetches an instruction in two distinct operations. In
the first, it transmits the address in its program counter to the memory.
In the second, the memory returns the addressed byte to the processor.
The CPU stores this instruction byte in a register known as the instruc-
tion register, and uses it to direct activities during the remainder of the
instruction cycle.

“The mechanism by which the processor translates an instruction
code into specific processing actions requires more elaboration than we
can here afford. The concept, however, will be intuitively clear to an
experienced logic designer. The eight bits stored in the instruction
register can be decoded and used to activate selectively one of a num-
ber of output lines, in this case up to 256 lines. Each line represents a
set of activities associated with execution of a particular instruction
code. The enabled line can be combined coincidentally with selected
timing pulses, to develop electrically sequential signals that can be
used to initiate specific actions. This translation of code into action is
performed by the instruction decoder and by the associated control
circuitry.”

The important point here is that the instruction code is translated
into a sequence of specific actions. The two-phase clock is vital to this

”

process. The actions may result in the moving of data from memory to !
the accumulator, or adding the contents of register B to register A, or
complementing the accumulator, or any of the specific operations con-
tained in the 8080 instruction set. Nevertheless, each specific operation
performed by an 8080 instruction is the result of one or more specific
actions caused by the instruction decoder.

WHAT TYPES OF OPERATIONS DOES THE
8080 MICROPROCESSOR PERFORM? i

The purpose of this section is not to subdivide the 8080 instruction
set into categories, but rather to identify the basic types of operations
that the chip actually perforras.

® Move A Byte FRoM ONE LOCATION TO ANOTHER
From one general-purpose register to another
From a general-purpose register to memory, and vice versa
From the accumulator to memory, and vice versa
From the accumulator to a general-purpose register, and vice versa
From memory to the instruction register
From memory to the program counter, and vice versa
From memory to the stack pointer
From the accumulator to an output latch
From an input device to the accumulator
From an external three-state buffer to the instruction register
From the flag register to memory, and vice versa
From a general-purpose register to the stack pointer
From the program counter to the stack, and vice versa
From the general-purpose registers to the stack, and vice versa
From the accumulator to the stack, and vice versa
From the flag register to the stack, and vice versa
From an input device to a general-purpose register
From a general-purpose register to an output device
From a general-purpose register to the program counter

® ARITHMETIC AND LocicaL OPERATIONS :

AND contents of register or memory with accumulator

OR contents of register or memory with accumulator

Exclusive-or contents of register or memory with accumulator

Compare contents of register or memory with accumulator

Add contents of register or memory to accumulator (with or with-
out carry)

Subtract contents of register or memory from accumulator (with or
without borrow)

Rotate contents of accumulator

Increment contents of general-purpose register, register pair, ac-
cumulator, memory, or stack pointer

Decrement contents of general-purpose register, register pair, ac-
cumulator, memory, or stack pointer

Add contents of register pair to contents of register pair or stack
pointer

Decimal adjust the contents of the accumulator

@ MisCELLANEOUS OPERATIONS
No operation
Halt
Enable the interrupt system
Disable the interrupt system
Complement the accumulator
Set the carry flag
Complement the carry flag

Most of the time, all that the 8080 microprocessor chip does is to
move a byte from one location to another or perform an arithmetic or
logical operation. Rarely does it perform one of the miscellaneous oper-
ations. In other words, the chip does not just compute it; it moves bytes
around.

8080 MNEMONIC INSTRUCTIONS

You should learn as soon as possible the 8080 mnemonics so that you
can do assembly language programming, read other assembly language
programs for the 8080, and improve your capability to understand the
instruction sets for other microprocessor chips. The 8080 mnemonics
are listed by groups in the Intel 8080 Microcomputer Systems User’s
Manual, which you should obtain. Here, the mnemonics are listed in
alphabetic order, and then described in detail. There are two reference
sources for this material:

Intel 8080 Microcomputer Systems User’s Manual, Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051, 1975. $5.00.

puCOM-8 Software M anual, NEC Microcomputers, Inc., Five Militia
Drive, Lexington, Massachusetts 02173, 1975. $7.50.

The authors gratefully acknowledge permission to use the above refer-
ence sources.

Hexa-
Mnemonic Octal decimal Description
ACI <B2> 316 CE Add immediate byte to accumulator
(with carry)
ADC M 216 8E Add memory contents to accumulator
(with carry)

123

Mnemonic
ADC r

ADD M
ADD r
ADI <B2>
ANA M
ANA r
ANI <B2>

CALL <B2> <B3>
CC <B2> <B3>
CM <B2> <B3>
CMA

CMC

CMP M

CMP r

CNC <B2> <B3>
CNZ <B2> <B3>
CP <B2> <B3>
CPE <B2> <B3>
CPI <B2>

CPO <B2> <B3>
CZ <B2> <B3>

DAA

DAD B

DAD D

DAD H

DAD SP

DCR M

DCR r

DCX B

DCX D

DCX H

DCX SP

DI

EI

HLT

IN <B2>

INR M

INR r

INX B

INX D

INX H

INX SP

JC <B2> <B3>
JM <B2> <B3>
JMP <B2> <B3>
JNC <B2> <B3>
JNZ <B2> <B3>

124

Hexa-
Octal decimal

218 +
208 86
208 T
306 Ccé6
246 A6
268 +
346 E6
315 CD
334 DC
374 FC
057 2F
077 3F
276 BE
278 i
324 D4
304 C4
364 F4
354 EC
376 FE
344 E4
314 CC
047 27
011 09
031 19
051 29
071 39
065 35
0D5 T
013 0B
033 1B
053 2B
073 3B
363 F3
373 FB
166 76
333 DB
064 34
0D4 t
003 03
023 13
043 23
063 33
332 DA
372 FA
303 C3
322 D2
302 c2

Description

Add register contents to accumulator

(with carry)
Add memory contents to accumulator
Add register contents to accumulator
Add immediate byte to accumulator
AND memory contents with accumulator
AND register contents with accumulator
Anp immediate byte with accumulator

Call subroutine unconditionally

Call subroutine if carry flag is set

Call subroutine if sign flag is set

Complement contents of accumulator

Complement carry flag

Compare memory contents with accu-
mulator

Compare register contents with accumu-
lator

Call subroutine if carry flag is reset

Call subroutine if zero flag is reset

Call subroutine if sign flag is reset

Call subroutine if parity flag is set

Compare immediate byte with accumu-
lator

Call subroutine if parity flag is reset

Call subroutine if zero flag is set

Decimal adjust the accumulator contents
Add register pair B to register pair H
Add register pair D to register pair H
Add register pair H to register pair H
Add stack pointer to register pair H
Decrement memory contents
Decrement register contents
Decrement contents of register pair B
Decrement contents of register pair D
Decrement contents of register pair H
Decrement stack pointer

Disable interrupt system

Enable interrupt system
Halt unconditionally

Input data into accumulator
Increment memory contents
Increment register contents
Increment contents of register pair B
Increment contents of register pair D
Increment contents of register pair H
Increment stack pointer

Jump if carry flag is set

Jump if sign flag is set

Jump unconditionally

Jump if carry flag is reset

Jump if zero flag is reset

Hexa-

Mnemonic Octal decimal Description

JP <B2> <B3> 362 F2 Jump if sign flag is reset

JPE <B2> <B3> 352 EA Jump if parity flag is set

JPO <B2> <B3> 342 E2 Jump if parity flag is reset

JjZ <B2> <B3> 312 CA Jump if zero flag is set

LDA <B2> <B3> 072 3A Load accumulator direct with contents of
memory addressed by <B2> <B3>

LDAX B 012 0A Load accumulator indirect with contents
of memory addressed by register pair B

LDAX D 032 1A Load accumulator indirect with contents

of memory addressed by register pair

D
LHLD <B2> <B3> 052 2A Load L and H with contents of M and
M1, respectively, where M = <B2>
<B3>
LXI B <B2> <B3> 001 0l Load immediate bytes into register pair B
LXI D <B2> <B3> 021 11 Load immediate bytes into register pair D
LXI H <B2> <B3> 041 21 Load immediate bytes into register pair H
LXI SP <B2> <B3> 061 31 Load immediate bytes into stack pointer

MVI M <B2> 066 36 Move immediate byte into memory

MVI r <B2> 0D6 T Move immediate byte into register

MOV, Mr 168 t Move register contents to memory

MOV r,M 1D6 + Move memory contents to register

MOV rlr2 1DS + Move register 2 contents to register 1

NOP 000 00 No operation

ORA M 266 B6 OR memory contents with accumulator

ORA r 268 + OR register contents with accumulator

ORI <B2> 366 F6 Or immediate byte with accumulator

OUT <B2> 323 D3 Output accumulator contents

PCHL 351 E9 Load program counter with contents of
register pair H (indirect jump)

POP B 301 Cl Pop register pair B off stack

POP D 321 D1 Pop register pair D off stack

POP H 341 El Pop register pair H off stack

POP PSW 361 F1 Pop program status word (accumulator
and flags) off stack

PUSH B 305 C5 Push register pair B contents on stack

PUSH D 325 D5 Push register pair D contents on stack

PUSH H 345 E5 Push register pair H contents on stack

PUSH PSW 365 F5 Push program status word (accumulator
and flags) on stack

RAL 027 17 Rotate accumulator contents left through
carry

RAR 037 1F Rotate accumulator contents right
through carry

RC 330 D8 Return if carry flag is set

RET 311 Cc9 Return unconditionally

RLC 007 07 Rotate accumulator contents left

RM 370 F8 Return if sign flag is set

RNC 320 DO Return if carry flag is reset

RNZ 300 Co Return if zero flag is reset

RP 360 FO Return if sign flag is reset

Mnemonic
RPE
RPO
RRC
RST n

RZ
SBB M

SBB r
SBI <B2>
SHLD <B2> <B3>

SPHL
STA <B2> <B3>
STAX B

STAX D

STC

SUB M

SUB r
SUI <B2>

XCHG
XRA M
XRA r
XRI <B2>
XTHL

Hexa-

Octal decimal
350 E8
340 EO
017 OF
3N7 t
310 Cc8
236 9E
23S t
336 DE
042 22
371 F9
062 32
002 02
012 0A
067 37
226 96
228 i
326 Dé
353 EB
256 AE
258 ¥
356 EE
343 E3

Description

Return if parity flag is set

Return if parity flag is reset

Rotate accumulator contents right

Call subroutine at location HI = 000 and
LO = O0NO

Return if zero flag is set

Subtract memory contents from accumu-
lator (with borrow)

Subtract register contents from accumu-
lator (with borrow)

Subtract immediate byte from accumu-
lator (with borrow)

Store contents of register pair H into M
and M+1, respectively, where M =
<B2> <B3>

Move register pair H contents to stack
pointer

Store accumulator contents direct into
memory location address <B2> <B3>

Store accumulator contents indirect into
memory location addressed by register
pair B

Store accumulator contents indirect into
memory location addressed by register
pair D

Set carry flag

Subtract memory contents from accumu-
lator

Subtract register contents from accumu-
lator

Subtract immediate byte from accumu-
lator

Exchange contents of register pair D with
contents of register pair H

Exclusive-or memory contents with ac-
cumulator

Exclusive-or register contents with ac-
cumulator

Exclusive-or immediate byte with accu-
mulator

Exchange top of stack with contents of
register pair H

Not all possible 256 instruction codes are employed by the 8080 micro-
processor chip. Missing codes include the following:

+These instructions are not easily translated into hexadecimal notation without
register or other information. This is one reason why we have chosen to work with

octal numbers.

126

Octal
010
020
030
040
050
060
070
313
331
335
355
375

Hexadecimal
08
10
18
20
28
30
38
CB
D9
DD
ED
FD

OCTAL/HEXADECIMAL LISTING OF THE 8080
INSTRUCTION SET

In addition to listing the 8080 instruction set alphabetically accord-
ing to the mnemonic code, it is also useful to list the instructions in
octal code. Such a list is provided below. You may wish to make a copy
of it and keep it handy. The authors have found it to be quite useful
when they are developing short programs in machine code. The indi-
cation - indicates that the instruction byte has no influence on the

8080; it is not a valid instruction.

Hexa-
Octal decimal

Mnemonic
000 00 NOP
001 01 LXI B <B2> <B3>
002 02 STAX B
003 03 INX B
004 04 INR B
005 05 DCR B
006 06 MVI B <B2>
007 07 RLC
010 08 -
011 09 DAD B
012 0A LDAX B
013 0B DCX B
014 0C INR C
015 oD DCR C
016 OE MVI C <B2>
017 OF RRC
020 10 -

Description

No operation

Load immediate into register pair B and C

Store A indirect into M addressed by B
and C

Increment contents of register pair B and
C by one

Increment register B by one

Decrement register B by one

Move immediate into register B

Rotate A left

Add contents of B,C to H,L and store
in H,L

Load A indirect from M addressed by B
and C

Decrement contents of register pair B
and C by one

Increment register C by one

Decrement register C by one

Move immediate into register C

Rotate A right

127

Octal decimal
021 11
022 12
023 13
024 14
025 15
026 16
027 17
030 18
031 19
032 1A
033 1B
034 1C
035 1D
036 1E
037 1F
040 20
041 21
042 22
043 23
044 24
045 25
046 26
047 27
050 28
051 29
052 2A
053 2B
054 2C
055 2D
056 2E
057 2F
060 30
061 31
062 32
063 33
064 34
065 35
066 36
067 37

128

Hexa-

Mnemonic
LXI D <B2> <B3>

STAX D
INX D

INR D

DCR D

MVI D <B2>
RAL

DAD D
LDAX D
DCX D

INR E

DCR E

MVI E <B2>
RAR

LS(I H <B2> <B3>
SHLD <B2> <B3>
INX H

INR H

DCR H

MVI H <B2>
DAA

DAD H
LHLD <B2> <B3>
DCX H

INR L

DCR L

MVI L <B2>
CMA

LXI SP <B2> <B3>
STA <B2> <B3>

INX SP
INR M
DCR M
MVI M <B2>

STC

Description
Load immediate into register pair D and
E

Store A indirect into M addressed by D
and E

Increment contents of register pair D
and E by one

Increment register D by one

Decrement register D by one

Move immediate into register D

Rotate A left through carry

Add contents of D,E to H,L and store

in HL

Load A indirect from M addressed by D
and E

Decrement contents of register pair D
and E by one

Increment register E by one

Decrement register E by one

Move immediate into register E

Rotate A right through carry

Load immediate into register pair H and
L

Store L and H into M and M+1, where
M = <B2> <B3>

Increment contents of register pair H
and L by one

Increment register H by one

Decrement register H by one

Move immediate into register H

Decimal adjust A

Add contents of HL. to HL. and store
in HL

Load L and H with contents of M and
M+1, where M == <B2> <B3>

Decrement contents of register pair H
and L by one

Increment register L by one

Decrement register L by one

Move immediate into register L

Complement A

Load immediate into stack pointer

Store A direct into M addressed by <B2>
<B3>

Increment register SP by one

Increment contents of M by one

Decrement contents of M by one

Move immediate into M addressed by H
and L

Set carry flip-flop to logic one

070 38 - -
071 39 DAD SP Add stack pointer contents to H,L and
store in H,L
072 3A LDA <B2> <B3> Load A direct with contents of M ad-
dressed by <B2> <B3>
073 3B DCX SP Decrement register SP by one
074 3C INR A Increment register A by one
075 3D DCR A Decrement register A by one
076 3E MVI A <B2> Move immediate into register A
077 3F CMC Complement carry flip-flop
100 40 MOV B,B Move contents of register B to register B
101 41 MOV B,C Move contents of register C to register B
102 42 MOV B,D Move contents of register D to register B
103 43 MOV B,E Move contents of register E to register B
104 44 MOV BH Move contents of register H to register B
105 45 MOV B,L Move contents to register L to register B
106 486 MOV BM Move contents of M to register B
107 47 MOV BA Move contents of register A to register B
110 48 MOV C,B Move contents of register B to register C
111 49 MOV C,C Move contents of register C to register C
112 4A MOV C,D Move contents of register D to register C
113 4B MOV C.E Move contents of register E to register C
114 4C MOV CH Move contents of register H to register C
115 4D MOV C,L Move contents of register L to register C
116 4E MOV CM Move contents of M to register C
117 4F MOV CA Move contents of register A to register C
120 50 MOV DB Move contents of register B to register D
121 51 MOV D,C Move contents of register C to register D
122 52 MOV D,D Move contents of register D to register D
123 53 MOV DE Move contents of register E to register D
124 54 MOV DH Move contents of register H to register D
125 55 MOV D, Move contents of register L to register D
126 56 MOV DM Move contents of M to register D
127 57 MOV DA Move contents of register A to register D
130 58 MOV E,B Move contents of register B to register E
131 59 MOV E,C Move contents of register C to register E
132 5A MOV E,D Move contents of register D to register E
133 5B MOV EE Move contents of register E to register E
134 5C MOV EH Move contents of register H to register E
135 5D MOV E,L Move contents of register L to register E
136 5E MOV EM Move contents of M to register E
137 5F MOV EA Move contents of register A to register E
140 60 MOV H,B Move contents of register B to register H
141 61 MOV H.C Move contents of register C to register H
142 62 MOV H,D Move contents of register D to ragister H
143 63 MOV H,E Move contents of register E to register H
144 64 MOV HH Move contents of register H to register H
145 85 MOV HL Move contents of register L to register H
146 66 MOV HM Move contents of M to register H
147 67 MOV HA Move contents of register A to register H
150 68 MOV LB Move contents of register B to register L
151 69 MOV L,C Move contents of register C to register L
152 6A MOV LD Move contents of register D to register L
153 6B MOV LE Move contents of register E to register L
154 6C MOV LH Move contents of register H to register L
129

Octal decimi
155 6D
156 6E
157 6F
160 70
161 71
162 72
163 73
164 74
165 75
166 76
167 7
170 78
171 79
172 TA
173 7B
174 7C
175 7D
176 7E
177 7F
200 80
201 81
202 82
203 83
204 84
205 85
206 86
207 87
210 88
211 89
212 8A
213 8B
214 8C
215 8D
216 8E
217 8F
220 90
221 91
222 92
223 93
224 94

130

Hexa

al

Mnemonic

MOV LL
MOV LM
MOV LA
MOV M,B
MOV M,C
MOV M,D
MOV M,E
MOV M,H
MOV M,L
HLT
MOV M,A
MOV AB
MOV A,C
MOV A,D
MOV AE
MOV AH
MOV AL
MOV AM
MOV AA
ADD B
ADD C
ADD D
ADD E
ADD H
ADD L
ADD M
ADD A
ADC B

ADC C
ADC D
ADC E
ADC H
ADC L

ADC M
ADC A

SUB B
SUB C
SUB D
SUB E

SUB H

Description

Move contents of register L to register L

Move contents of M to register L

Move contents of register A to register L

Move contents of register B to M

Move contents of register C to M

Move contents of register D to M

Move contents of register E to M

Move contents of register H to M

Move contents of register L to M

Halt

Move contents of register A to M

Move contents of register B to register A

Move contents of register C to register A

Move contents of register D to register A

Move contents of register E to register A

Move contents of register H to register A

Move contents of register L to register A

Move contents of M to register A

Move contents of register A to register A

Add contents of register B to register A

Add contents of register C to register A

Add contents of register D to register A

Add contents of register E to register A

Add contents of register H to register A

Add contents of register L to register A

Add contents of M to register A

Add contents of register A to register A

Add carry and contents of register B to
tegister A

Add carry and contents of register C to
register A

Add carry and contents of register D to
register A

Add carry and contents of register E to
register A

Add carry and contents of register H to
register A

Add carry and contents of register L to
register A

Add carry and contents of M to register A

Add carry and contents of register A to
register A

Subtract contents of register B from reg-
ister A

Subtract contents of register C from reg-
ister A

Subtract contents of register D from reg-
ister A

Subtract contents of register E from reg-
ister A

Subtract contents of register H from reg-
ister A

225
226
227
230
231
232
233
234
235
236
237

240
241

243
244
245
246
247
250

251
252
253
254
255
256
257

260
261
262
263
264
265
266
267
270

AB
AC
AD
AE
AF

BO
Bl
B2
B3
B4
B5
B6
B7
B8

SUB L

SUB M
SUB A
SBB B

SBB C
SBB D
SBB E
SBB H
SBB L
SBB M
SBB A
ANA B
ANA C
ANA D
ANA E
ANA H
ANA L
ANA M
ANA A
XRA B
XRA C
XRA D
XRA E
XRA H
XRA L
XRA M
XRA A
ORA B
ORA C
ORA D
ORA E
ORA H
ORA L
ORA M

ORA A
CMP B

Subtract contents of register L from reg-
ister A

Subtract contents of M from register A

Clear register A

Subtract carry and contents of register B
from register A

Subtract carry and contents of register C
from register A

Subtract carry and contents of register D
from register A

Subtract carry and contents of register E
from register A

Subtract carry and contents of register H
from register A

Subtract carry and contents of register L
from register A

Subtract carry and contents of M from
from register A

Subtract carry and contents of register A
from register A

AND contents of register B with register A

AND contents of register C with register A

AND contents of register D with register A

AND contents of register E with register A

AND contents of register H with register A

AND contents of register L with register A

AND contents of M with register A

AxD contents of register A with register A

Exclusive-or contents of register B with
register A

Exclusive-or contents of register C with
register A

Exclusive-or contents of register D with
register A

Exclusive-or contents of register E with
register A

Exclusive-or contents of register H with
register A

Exclusive-or contents of register L with
register A

Exclusive-or contents of M with
register A

Exclusive-or contents of register A with
register A

OR contents of register B with register A

OR contents of register C with register A

OR contents of register D with register A

OR contents of register E with register A

O contents of register H with register A

OR contents of register L with register A

Or contents of M with register A

OR contents of register A with register A

Compare contents of register B with reg-
ister A

131

Octal decimal
271 B9
272 BA
273 BB
274 BC
275 BD
276 BE
277 BF
300 Cco
301 Cl
302 Cc2
303 C3
304 C4
305 C5
306 [o/¢]
307 C7
310 C8
311 C9
312 CA
313 CB
314 CC
315 CD
316 CE
317 CF
320 DO
321 D1
322 D2
323 D3
324 D4
325 D5
326 D6
327 D7
330 D8
331 D9
332 DA
333 DB
334 DC

132

Hexa-

Mnemonic
CMP C

CMP D
CMP E
CMP H
CMP L

CMP M
CMP A

RNZ
POP B

JNZ <B2> <B3>
JMP <B2> <B3>

CNZ <B2> <B3>
PUSH B

ADI <B2>
RST 0
RZ

RET

JZ <B2> <B3>
CZ <B2> <B3>
CALL <B2> <B3>

ACI <B2>

RST 1
RNC

POP D

JNC <B2> <B3>
OUT <B2>

CNC <B2> <B3>
PUSH D

SUI <B2>
RST 2
RC

JC <B2> <B3>
IN <B2>
CC <B2> <B3>

Description

Compare contents of register C with reg-
ister A

Compare contents of register D with reg-
ister A

Compare contents of register E with reg-
ister A

Compare contents of register H with reg-
ister A

Compare contents of register L with reg-
ister A

Compare contents of M with register A

Compare contents of register A with reg-
ister A

Return from subroutine of zero flip-flop
= logic 0

Pop stack and store in register pair B
and C

Jump if zero flip-flop = logic 0

Jump unconditionally to M addressed by
<B2> <B3>

Call subroutine if zero flip-flop = logic 0

Push contents of register pair B and C
on stack

Add immediate to register A

Call subroutine at address 0005

Return from subroutine if zero flip-flop
= logic 1

Return from subroutine

Jump if zero flip-flop = logic 1

Call subroutine if zero flip-flop = logic 1

Call subroutine located at M = <B2>
<B3>

Add immediate and carry flip-flop to
register A

Call subroutine at address 010s

Return from subroutine if carry flip-flop
= logic 0

Pop stack and store in register pair D
and E

Jump if carry flip-flop = logic 0

Output to device addressed by <B2>

Call subroutine if carry flip-flop = logic 0

Push contents of register pair D and E on
stack

Subtract immediate from register A

Call subroutine at address 020s

Return from subroutine if carry flip-fop
= logic 1

Jump if carry flip-flop = logic 1

Input from device addressed by <B2>

Call subroutine if carry flip-flop = logic 1

Let us examine the 64 MOV instructions that begin with the octal
digit 1. These instructions cause eight bits of data to be transferred be-
tween (a) the accumulator and a general-purpose register, (b) the
accumulator and memory, (c) a general-purpose register and memory,
or (d) two different registers. There is a consistent coding pattern,
which is described in the following paragraph.

The three-octal-digit instruction, in which the first digit is 1, can be
represented as follows:

1 D S

g ! N

instruction destination source
class register register
(in octal) (in octal)

The source register is the one that contains the 8-bit data byte that is
being transferred. The destination register is the one that receives the
transferring 8-bit data byte. Thus, in the octal/hexadecimal listing, we
“nove contents of [source register] to the [destination register].” The
mnemonic is:

MOV [destination register], [source register]

Examine the 8080 instruction listing and verify the conclusions given
above. Octal instruction 141 must mean “move contents of register C to
register H,” and sure enough it does. In these operations, the source
register will still contain the transferred data since the MOV operation
is simply a copy operation.

ARITHMETIC AND LOGIC OPERATION DECODING

We are also told by Intel Corporation that arithmetic and logic oper-
ations correspond to the following 3-bit binary codes:

Arithmetic or Logic Operation 3-Bit Code Octal Code

add 000 0
add with carry 001 1
subtract 010 2
subtract with borrow 011 3
AND 100 4
exclusive-oR 101 5
OR 110 6
compare 111 7

If we examine the 64 arithmetic and logic operations that begin with
the octal digit 2, we can spot yet another consistent coding pattern
shown below.

135

The three-octal-digit instruction, in which the first octal digit is 2,
can be represented as follows:

2 X S

P

instruction arithmetic source
class or logic register
operation (in octal)
(in octal)

In the octal/hexadecimal listing, we perform an arithmetic or logic
operation using a source register [with, to, or from] the accumulator.
The mnemonic is:

[arithmetic or logic operation] [source register]

Examine the 8080 instruction listing and verify these additional conclu-
sions. Note again that we are doing on paper what the instruction de-
coder does electronically.

So far, we have decoded 128 of the 244 microprocessor instructions.
We are doing well, so let us continue. We note eight additional arith-
metic/logical instructions:

306 ADI <B2>
316 ACI <B2>
326 SUI <B2>
336 SBI <B2>
346 ANI <B2>
356 XRI <B2>
366 ORI <B2>
376 CPI <B2>

The coding pattern is simply the following: the three-octal-digit instruc-
tion, in which the first octal digit is 3 and the last octal digit is 6, can be
represented as follows:

3 X 6

e ! ™S

instruction arithmetic immediate
class or logic
operation
(in octal)

According to the octal/hexadecimal listing, we perform an arithmetic
or logic operation using the immediate 8-bit byte [with, to, or from] the
accumulator. The mnemonic is:

136

335
336

337
340

341

342
343

344
345

346
347
350
351

352
353

354
355
356

357
360

361
362
363
364
365
366
367
370
371
372
373
374
375
376

377

DD
DE

DF
EO

El

E2
E3
E4
E5
F6

E7
E8

E9

EA
EB

EC
ED
EE

EF
FO

F1
F2
F3
F4
F5
Fé
F7
F8
F9
FA
FB
FC
FD
FE
FF

SBI <B2>

RST 3
RPO

POP H

JPO <B2> <B3>
XTHL

CPO <B2> <B3>
PUSH H

ANI <B2>
RST 4
RPE
PCHL

JPE <B2> <B3>
XCHG

CPE <B2> <B3>
XRI <B2>

RST 5
RP

POP PSW

JP <B2> <B3>
DI

CP <B2> <B3>
PUSH PSW
ORI <B2>

RST 6

RM

SPHL

JM <B2> <B3>

EI
CM <B2> <B3>

CPI <B2>

RST 7

Subtract immediate and carry flip-flop
from register A

Call subroutine at address 030s

Return from subroutine if parity flip-flop
= logic 0

Pop stack and store in register pair H
and

Jump if parity flip-flop = logic 0

Exchange top of stack with contents of
Hand L

Call subroutine if parity flip-flop = logic 0

Push contents of register pair H and L
on stack

Anp immediate with contents of register A

Call subroutine at address 040s

Return from subroutine if parity flip-flop
= logic 1

Jump indirect to M addressed by register
pair H and L

Jump if parity flip-flop = logic 1

Exchange contents of registers H,L with
registers D,E ‘

Call subroutine if parity flip-flop = logic 1

Exclusive-or immediate with contents of
register A

Call subroutine at address 050

Return from subroutine if sign flip-flop =
logic 0

Pop stack and store in register A and flag
flip-flops

Jump if sign flip-flop = logic 0 [positive
sign}

Disable interrupt

Call subroutine if sign flip-flop = logic 0

Push contents of register A and flags on
stack

Or immediate with contents of register A

Call subroutine at address 060s

Return from subroutine if sign flip-flop =
logic 1

Transfer contents of registers HL to
stack pointer

Jump if sign flip-flop = logic 1 [minus
sign]

Enable interrupt

Call subroutine if sign flip-flop = logic 1

Compare immediate with contents of
register A

Call subroutine at address 0705

133

AN EXAMPLE OF INSTRUCTION DECODING

We have previously defined the operation code, also known as the
instruction code, as the 8-bit code for the specific operation that the
8080 microprocessor will perform. Study the octal/hexadecimal listing
of the 8080 instruction set given on the preceding pages. You will ob-
serve that the first octal digit can be a 0, 1, 2, or 3 and that specific
classes of operations correspond to the digits 0, 1, 2, and 3. Thus we
can write the following:

First Octal Digit Class of Operation

0 Data operations only, with the possible exception of
octal instructions 067 and 077

1 Data transfer operations only, all of which have the
common Intel mnemonic MOV

2 Arithmetic and logic operations only, including add,
subtract, AND, exclusive OR, OR, and compare

3 Miscellaneous operations, including all conditional

operations such as jump, call subroutine, and return
from subroutine

We have just decoded the 244-instruction set of the 8080 microprocessor
into four classes of operations, each class containing related operations
(perhaps with the exception of the final class, within which the opera-
tions are not all closely related). We have done the exact same thing on
paper that the instruction decoder within the microprocessor does
electronically.

REGISTER DECODING

Since we succeeded so well in decoding the set of 244 instructions
into four distinct classes, let us examine the octal/hexadecimal instruc-
tion set listing for other coding patterns. We are told by Intel Corpora-
tion that the accumulator, the six general-purpose registers (B, C, D,
E, H, and L), and memory M correspond to the following 3-bit bi-
nary codes:

Register Name 3-Bit Code Octal Code
000
001
010
011
100
101

memory 110
accumnulator (A) 111

CEEOOW
N U WD

134

the time that the jump occurs. This allows the processor later to re-
sume execution of the main program, when it is finished with the last
instruction of the subroutine.®

return from subroutine, return—A special type of jump in which the
central processor resumes execution of the main program at the value
of the program counter at the time that the call occurred.

subroutine—1. In computer technology, the portion of a program that
causes a computer to carry out a well-defined mathematical or logical
operation. 2. Usually called a closed subroutine. A small subprogram
to which control may be transferred from a main program, and re-
turned to the main program at the conclusion of the subroutine.

closed subroutine—Subroutine not stored in the main path of the rou-
tine. Such a subroutine is entered by a jump operation; provision is
made to return control to the main program at the end of the opera-
tion.?

routine—Set of instruction codes arranged in proper sequence to direct
the computer to perform a desired operation or sequence of opera-
tions. Alternatively, a subdivision of a program consisting of two or
more instructions that are functionally related.®

program—Complete plan for the solution of a problem. More specifi-
cally, the complete sequence of machine instructions and routines
necessary to solve a problem.?

With the 8080 microprocessor, branch instructions, except for the
unconditional ones, correspond to the following 3-bit code for the least
significant three bits:

Branch Instruction 3-Bit Code Octal Code
return 000 0
jump 010 2
call 100 4

The instruction class for a branch instruction is always 3; this is the first
octal digit of the three-digit instruction.
Branch instructions can be either conditional or unconditional:

conditional instruction—In the 8080 microprocessor, an instruction that
is subject to a condition, viz., the logic state of a specified flag.
unconditional instruction—In the 8080 microprocessor, an instruction
that is not subject to any condition, such as the logic state of a speci-
fied flag,
We shall now discuss the unconditional jump, call, and return instruc-
tions, which have the following instruction codes:

303 <B2> <B3> unconditional jump (JMP)
315 <B2> <B3> unconditional call {(CALL)
311 unconditional return (RET)

139

——carc]

o /—+1°
Main _ progrom
CALL
- — ® ©
0] —d
TP ®
-

[cae |

===
-
NP Subroutine No. |
(@,]
(O]0) N—
Subroutine _No.
R el
® M. ® -
{A) Program with jump instructions. (B) Program with call and
return instructions.
Fig. 3-6. Diag il the diff k the ditional jump, call, and
return i i A call i ion always requires a return i ion in the subrouti

Note that the unconditional return instruction is one-byte, whereas the
other two are three-byte instructions.

The differences between unconditional jump, call, and return instruc-
tions can be seen with the aid of Fig. 3-6. The jump instruction @ cre-
ates a loop in the main program in Fig. 3-6A. If one would start at the
beginning of this program, there would be no way in which one could
get past this jump instruction. Let us assume that we can get past it
and proceed to jump instructions ® and ®, which both jump to the
same location, a subprogram, Unfortunately, from this subprogram the
jump instruction @ forces a retumn to a single point in the main pro-
gram. A second loop is thus created as a consequence of jump instruc-
tions ® and ®@.

140

[arithmetic or logic operation] I
where the mnemonics for the arithmetic or logic operations are:

Immediate Instruction
Arithmetic or Logic Operation Mnemonic
add ADI
add with carry ACI
subtract SUI
subtract with borrow SBI
AND ANI
exclusive or XRI
OR ORI
compare CPI

IMMEDIATE OPERATION DECODING

The term immediate addressing is defined as follows:

immediate addressing—The instruction contains the data itself. This
data is either a single 8-bit data byte or two 8-bit data bytes. The
least significant byte is first and the most significant byte is second
when there are two 8-bit data bytes.

Immediate instructions can be represented as shown in Fig. 3-5. Eight
immediate instructions were given in the preceding section. The re-

maining twelve such instructions are:

<B1>
<82>

006 MVIB
016 MVIC
026 MVID
036 MVIE
046 MVIH
056 MVIL
066 MVIM
076 MVIA
001 LXIB
021 LXID
041 LXIH
061 LXI Sp

ooI l
or 110
11t &] L1

Data Byte
[|

(A) Two-byte immediate instruction.

<B2>
<B2>
<B2>
<B2>
<B2>
<B2>
<B2>
<B2>
<B2> <B3>
<B2> <B3>
<B2> <B3>
<B2> <B3>

|)y

Instruction Co
1

de

1.1 1

<e>

Dota Byte

<B3>

Date Byte

{B) Three-byte immediate instruction.
Fig. 3-5. Immediate instructions.

We can conclude that all immediate instructions that have a single data
byte have either a 0 or 3 octal digit as the instruction class and 6 as the
third octal digit. The mnemonic code, MVI [destination register] means
“move the following 8-bit data byte to the [destination register].” The
memory location M is really not a register, but let us not quibble over
this minor detail.

BRANCH OPERATION DECODING

To quote the Intellec 8/ Mod 80 Microcomputer Development System
Reference Manual once again:

“The instructions that make up a program are stored in the system’s
memory. The central processor examines the contents of the memory,
in order to determine what action is appropriate. This means that the
processor must know which location contains the next instruction.

“Each of the locations in memory is numbered, to distinguish it from
all other locations in memory. The number which identifies a memory
location is called its address.

“The processor maintains a counter which contains the address of the
next program instruction. This register is called the program counter.
The processor updates the program counter by adding ‘1 to the counter
each time it fetches an instruction, so that the program counter is al-
ways current.

“The programmer therefore stores his instructions in numerically ad-
jacent addresses, so that the lower addresses contain the first instruc-
tions to be executed and the higher addresses contain later instructions.
The only time the programmer may violate this sequential rule is . .
with a branch instruction such as jump, call, subroutine, or return from
subroutine.

Thus, we can define the following terms:

address—The 16-bit binary number which identifies a memory location.

program counter—The register that contains the address of the next in-
struction byte that must be executed in a computer program.

branch instruction, branch operation—An instruction that causes a pro-
gram jump to a specified address and execution of the instruction at
that address. During the execution of a branch instruction, the central
processor replaces the contents of the program counter with the speci-
fied address.

jump—1. To cause the next instruction to be selected from a specified
storage location in a computer. 2. A deviation from the normal se-
quence of execution of instructions in a computer.*

call subroutine, call-1. To transfer control to a specified closed subrou-
tine. 2. A special type of jump in which the central processor is logi-
cally required to “remember” the contents of the program counter at

Let us now discuss the main program and two subroutines in Fig.
3-6B. This program flows smoothly and there are no problems with it.
Thus:

® Call instruction ® calls Subroutine No. 2. When this subroutine is
finished, program control returns to the instruction immediately
following call instruction ®.

® Call instruction ® calls Subroutine No. 1. When this subroutine is
finished, program control returns to the instruction immediately
following call instruction ®.

® Finally, call instruction @ calls Subroutine No. 1 also. However,
the second time that Subroutine No. 1 finishes, program control
returns to the instruction immediately following call instruction ®.

Clearly, the call instruction is a “smart” instruction, since it remembers
where in the main program the call instruction occurred. In contrast,
the jump instruction in the program on the left is a “dumb” instruction;
it does not remember where it jumped from. Jump instructions are
rarely used for the transfer of control to subprograms. Call instructions
are used instead, and return instructions are added to convert the sub-
programs into subroutines.

CONDITIONAL BRANCH INSTRUCTIONS
The three conditional branch instructions can be stated as follows:

conditional jump “Jump if [condition flag] is at [logic state] to mem-
ory location addressed by bytes B2 and B3. Other-
wise, continue to the next sequential instruction.”
conditional call: “Call subroutine if [condition flag] is at [logic
state] at memory location addressed by bytes B2
and B3. Otherwise, continue to the next sequential
instruction.”
conditional return: “Return from subroutine to main program if [con-
dition flag] is at [logic state]. Otherwise, continue
to the next sequential instruction.”

The jump and call conditional instructions are three-byte instructions,
which can be represented by:

LO Address Byte

HI Address Byte

14

whereas the return conditional instructions are single-byte:

A popular technique in developing computer programs is flow-
charting.

flowchart, flow diagram—A chart showing all the logical steps of a com-
puter program. A program is coded by writing down the successive
instructions that will cause the computer to perform the logical oper-
ations necessary for solving the problem, as represented on a flow-
chart.*

flowchart symbol—A symbol used on a flowchart to represent data, flow,
equipment, or an operation.*

decision—In a computer, the process of determining further action on
the basis of the relationship of two similar items of data.*

decision symbol—On a flowchart, a symbol used to mark a choice or
branching in the sequence of programming of a digital computer.*

We have digressed here because we shall use the symbol for decision
commonly found in flowcharts (see Fig. 3-7), and Figs. 3-8 through 3-
10 will aid our discussion of the three conditional instructions. The
symbol in Fig. 3-7 represents the following decisions: If the flag is at
logic 0, go to the indicated instruction; if the flag is at logic 1, go to the
alternative instruction.

The JZ instruction shown in Fig. 3-8A requires the following deci-
sion: If the zero flag is at logic 0, the program executes the next sequen-
tial instruction after the JZ instruction; if the zero flag is at logic 1,
the program jumps to the memory address contained within the second
and third bytes of the instruction. The JNZ instruction (Fig. 3-8B)
behaves similarly, but the flag conditions are reversed.

The CZ instruction shown in Fig. 3-9A is similar to the JZ instruction
but better: If the zero flag is at logic 0, the program executes the next
sequential instruction after the CZ instruction; if the zero flag is at
logic 1, the address of the following instruction is stored in the stack,
and the program jumps to the subroutine given by the memory address
contained within the second and third bytes of the instruction. With the

fiog=0 flog=1

Fig. 3-7. Decision symbol used in flowcharts.

142

Moin_program Main _program

FE3
flag= O flag = | - - tlag = | flag = O

(A) JZ instruction. (B) JNZ instruction.
Fig. 3-8. The conditional instructions JNZ and JZ.

CNZ instruction, the flag conditions are reversed (Fig. 3-9B). These
instructions are quite popular.

With the RZ instruction shown in Fig. 3-10A, the following decision
is made: If the zero flag is at logic 0, the subroutine executes the next
sequential instruction after the RZ instruction; if the zero flag is at logic
1, a 16-bit address is retrieved from the stack and the program control
returns to the main program at the instruction immediately following

Main__progrom Main program

- — [o]
= = ———1 Il =1 ! k]
o flag:= 0 flag = | T DAL flag = O

Subroutine Subroutine

L—‘ RET L—— ‘ RET

(A) CZ instruction. (B) CNZ instruction.
Fig. 3-9. The conditional instructions CZ and CNZ.

Main__ progrom Main program

— —
CALL CALL
Subroutine Subroutine
O
|2 T
flog:l flag =0 instruction flag: 0 flog: | instruction
RET RET
(A) RZ instruction. (B) RNZ instruction.
Fig. 3-10. Diag ill i Jitional i RZ and RNZ.

the three-byte call subroutine instruction. The figure points out that
a return instruction must be executed during any pass through the sub-
routine. If the RZ instruction is skipped, some other return instruction,
such as RET, must be present to transfer control back to the main pro-
gram, With the RNZ instruction, the flag conditions are reversed (Fig.
3-10B).

In the following section, we shall discuss the condition flags in greater
detail.

CONDITION FLAG DECODING

A flag is an ubiquitous digital electronic device that is widely used in
machine language programming and in computer/instrument interfac-
ing. Unfortunately, it is not easy to find a suitable definition for this
term. The best seems to be the following:

flag, condition flag—A single flip-flop that indicates that a certain condi-
tion has arisen during the course of (a) arithmetic or logical manip-
ulations in a computer program, or (b) data transmission between a
pair of digital electronic devices such as a computer and an instru-
ment. For example, a flag indicates when the accumulator has a value
of 0005 As another example, a flag can be a circuit that provides a

144

signal which indicates that an input device is ready to transmit data
to a computer.

The important point is that a flag is a flip-flop that provides a 1-bit
piece of information about a condition that exists.

According to the Intellec 8/ Mod 80 Reference Manual, there are five
condition flags associated with the execution of instructions in the 8080
microprocessor. These flags are:

zero

carry

sign

parity
auxiliary carry

and are each represented by a one-bit register, or flip-flop, contained
within the microprocessor chip. When you read the Intel literature,
keep in mind the following:

When a flag is “set,” the flag bit is at logic 1;
when a flag is “reset,” the flag bit is at logic 0.

A synonym for “reset” is “cleared.” Arithmetic or logical instructions
performed on either the accumulator contents, the contents of one of the
six general-purpose registers, or the contents of memory, influence the
flags in the following ways:

zero flag—If the result of an instruction has the value 000s, this flag is
set to logic 1; otherwise, it is reset to logic 0.

carry flag—1f the result of an instruction produces a carry (from addi-
tion or rotation) or a borrow (from subtraction or comparison) out
of the MSB of the 8-bit data byte, the carry flag is set to logic 1;
otherwise, it is reset to logic 0.

sign flag—1f the result of an instruction produces a logic 1 in the MSB
of the 8-bit data byte, this flag is set to logic 1 (indicating a negative
result); otherwise, it is reset to logic 0 (indicating a positive result).®

parity flag—1f the result of an instruction produces an 8-bit data byte
the modulo 2 sum of the bits of which is logic 0 (indicating even
parity), this flag is set to logic 1; otherwise, it is reset to logic 0 (in-
dicating odd parity).®

auxiliary carry flag—1f the result of an instruction causes a carry out of
bit 3 into bit 4 of the resulting 8-bit data byte, the auxiliary carry flag
is set to logic 1; otherwise, it is reset to logic 0. This flag is affected
by single-precision additions, subtractions, increments, decrements,
comparisons, and logical operations, but it is principally used with
addition instructions preceding a DAA (Decimal Adjust Accumu-
lator) instruction.®

145

T

Four of the five condition flags correspond to the following 3-bit bi-
nary code, which is contained within all conditional jump, call, and re-
turn instructions. This section is shown in the representation for byte
B1 of all three instructions:

Flag
Logic 3-Bit Octal
Condition Flag Mnemonic State Code Code

Result is not zero NZ 0 000 0
Result is zero Z 1 001 1
Result has no carry NC 0 010 2
Result has a carry C 1 011 3 |
Result has odd parity PO 0 100 4
Result has even parity PE 1 101 5
Result is positive P 0 110 6
Result is negative (minus) M 1 111 7

The consistent coding pattern for all conditional branch instructions

is therefore:
3 X Y

7 1 ™~

instruction condition branch
class flag operation
(in octal) (in octal)

The 24 different conditional instructions are summarized in Table 3-2.
(The auxiliary carry flag is not a valid condition flag; it has limited use
in conjunction with the DAA instruction.) Table 3-2 can be best under-
stood by reference to Figs. 3-8 to 3-10A. Though these three figures
have been drawn with reference to the condition of the zero flag, it
should be clear that they apply, with the appropriate changes, to the
remaining three condition flags as well. The basic issue with all of these
conditions is:

Should the jump, call, or return instruction be ignored (with pro-

gram control continuing to the next sequential instruction) or not

(with program control transferring to some other memory location)?
REGISTER PAIR DECODING

The six general-purpose registers are all eight bits in length, Since
sixteen bits are required to address any location within the 65,536 pos-

146

Table 3-2. Summary of the 24 Different Conditional Instructions
in the 8080 Microprocessor Instruction Set

Jump Call Return

Jump, call, or return if JNZ 302 <B2> <B3> CNZ 304 <B2> <B3> RNZ 300
the result of an instruc-

tion is not zero

Jump, call, or return if JZ 312 <B2> <B3> Cz 314 <B2> <B3> RZ 310
the result of an instruc-

tion is zero

Jump, call, or return if JINC 322 <B2> <B3> CNC 324 <B2> <B3> RNC 320
the result of an instruc-

tion has no carry

Jump, call, or return if JC 332 <p2> <B3> CC 334 <p2> <B3> RC 330
the result of an instruc-

tion has a carry

Sump, call, or return if JPO 342 <pB2> <B3> CPO 344 <B2> <B3> RPO 340
the result of an instruc-

tion has odd parity

Jump, call, or return if JPE 352 <B2> <B3> CPE 354 <B2> <B3> RPE 350
the result of an instruc-

tion has even parity

Jump, call, or return if JP 362 <B2> <B3> CP 364 <B2> <B3> RP 360
the result of an instruc-

tion is positive

Jump, call, or return if JM 372 <B2> <B3> CM 374 <p2> <B3> RM 370
the result of an instruc-

tion is negative

sible locations in memory, it is convenient to have operations that em-
ploy pairs of registers rather than single registers. In this way, 16-bit
words can be handled and memory locations can be addressed, if nec-
essary, directly. Both the stack pointer and the program counter are
16-bit registers, so instructions that allow one to set the sixteen bits in
these registers would be useful.

Intel Corporation has established four register pairs which corre-
spond to the following 2-bit binary codes:

Register Pair Name Registers 2-Bit Code
B B and C 00
D D and E 01
H Hand L 10
PSW A and flags 11

Since register pairs are used to designate 16-bit memory addresses, it is
important to identify a HI memory address byte and a LO memory
address byte. In the above pairs, registers B, D, H, and flags are the HI
bytes, i.e., the eight most significant bits in the 16-bit register pair word,

147

and registers C, E, L, and flags are the LO bytes, i.e., the eight least
significant bits in the 16-bit register pair word.

Some of the register pair instructions, such as push and pop, require
a considerable amount of explanation, Since we will discuss them in a
later chapter, at a time when we will have a “need to know,” we won't
go into any detail here. In the space below, we will briefly summarize
the register pair operations and provide the byte representation for
each register pair instruction. The letters rp in the byte representations
refer to the 2-bit register pair code just given above.

PUSH: Push data onto stack, a single-byte instruction. The contents of
the specified register pair are saved in two bytes of memory indicated
by the stack pointer. (We shall discuss the stack pointer later.)

ol loen

POP: Pop data off stack, a single-byte instruction. The contents of the
specified register pair are restored from two bytes of memory indicated
by the stack pointer. (This instruction requires more explanation, which

will be given later.)

DAD: Double add, a single-byte instruction. The 16-bit number in the
specified register pair is added to the 16-bit number held in the H and L
registers using two’s complement arithmetic. The result replaces the
contents of the H and L registers. This is a useful instruction for

memory indexing.

INX: Increment register pair, a single-byte instruction. The 16-bit
number held in the specified register pair is incremented by one.

DCX: Decrement register pair, a single-byte instruction. The 16-bit
number held in the specified register pair is decremented by one.

R D

(=]
o
=]
-

(=]
o
e
-

148

XCHG: Exchange registers, a single-byte instruction. The 16 bits of
data held in the H and L registers are exchanged with the 16 bits of
data held in the D and E registers.

11101011

XTHL: Exchange stack, a single-byte instruction. The 16 bits of data
held in the H and L registers are exchanged with the 16 bits of data
in the top two stack bytes.

1110001 1

SPHL: Load stack pointer from H and L, a single-byte instruction. The
16 bits of data held in the H and L registers replace the contents of the
stack pointer. The contents of the H and L registers are unchanged.

LXI: Load register pair immediate, a three-byte instruction. The third
byte of the instruction (the most significant 8 bits of the 16-bit immedi-
ate data) is loaded into the first register of the specified pair, while the
second byte of the instruction (the least significant 8 bits of the 16-bit
immediate data) is loaded into the second register of the specified pair.
If the stack pointer is specified as the register pair, the second byte of
the instruction replaces the least significant eight bits of the stack
pointer, while the third byte of the instruction replaces the most signifi-
cant eight bits of the stack pointer.

R XXX
Lo]

Fig. 3-11 summarizes several different register pair operations. The
LXI rp command replaces the contents of one of the four register pairs
by the second and third bytes in the LXI instruction. LXI SP is partic-
ularly important for locating the stack pointer immediately after you
apply power to the microcomputer system. XCHG, a single-byte in-
struction, exchanges the contents of the D register pair with the con-

149

]-LE.".E_.I Program Counter l

Fig. 3-11, Summary of the more important register pair operations. Both the program counter
and stack pointer are 16-bit registers.

tents of the H register pair. PCHL replaces the 16-bit program counter
word by the H register pair. In view of the definition for the program
counter:

program counter—The 16-bit register in the 8080 microprocessor that
contains the address of the next instruction or instruction byte that
must be executed in a computer program.

it should be clear that the PCHL instruction is a jump instruction.
Finally, SPHL replaces the 16-bit stack pointer value by the value of
the H register pair. It is another way of relocating the stack pointer.

The pop and push instructions are defined below and summarized in
Fig. 3-12.

pop—Transferring one or more bytes from a stack to some other regis-
ter or group of registers. Retrieving data from a stack.

push—Replacing the contents of one or more memory locations in a
stack with the contents of a register or group of registers. Putting
data into a stack.

stack—The area of memory set aside by the programmer in which data
or addresses are stored and retrieved.

stack pointer—The 16-bit memory address of the top of the stack.

top of stack—The memory address of the last data byte placed on a
stack.

The most common information that resides in a stack is the memory
address that the program will return to after execution of a subroutine.
Other information, as shown in Fig. 3-12, includes the contents of the
six general-purpose registers, the accumulator, and the flags.

In Fig. 3-12B, the storage location M(SP) means the contents of that
memory location whose 16-bit address is contained in the stack pointer
register. The meanings of M(SP—2), M(SP~1), and M(SP+1) should
be clear. There exist four different push instructions and four different

150

(A) PUSH operations.

2 e

PO
»
&

2

QQ

(B) POP operations.

Fig. 3-12. Diagrams illustrating the PUSH and POP operations, each of which involves a
register pair and two memory locations.

pop instructions, each of which operates with a register pair and two
memory locations within the stack. For example, in the PUSH B in-
struction, the contents of the B register replace the contents of memory
location M(SP—1) and the contents of the C register replace the con-
tents of memory location M{SP—2); after doing this, the stack pointer
is decremented by two to allow subsequent push instructions to put
additional data bytes on the stack. The POP B instruction reverses
this process. The contents of M(SP+1) replaces the contents of the B

151

register and the contents of M(SP) replaces the contents of the C reg-
ister; after doing this, the stack pointer is incremented by two to make
available two additional bytes at the top of the stack that can be
popped into a register pair.

The push and pop operations will be discussed further in Chapter 8.

INCREMENT AND DECREMENT OPERATION DECODING
The terms increment and decrement can be defined as follows:

increment—To increase the value of a binary word. Typically, to in-
crease the value by one.

decrement—To decrease the value of a binary word. Typically, to de-
crease the value by one.

The coding patterns for increment and decrement instructions are
shown below.

The three-octal-digit increment instruction, in which the first octal
digit is 0 and the last octal digit is 4, can be represented as follows:

0 D 4

pd T S

instruction register increment
class (in octal) operation

The three-octal-digit decrement instruction, in which the first octal
digit is 0 and the last octal digit is 5, can be represented as follows:

0 D 5

—] ™~

instruction register decrement
class (in octal) operation

The increment and decrement instructions can be stated as follows:

increment: “Increment [register] by 1.”
decrement: “Decrement [register] by 1.”

The mnemonics are INR [register] and DCR [register].

We have already discussed or accounted for 218 of the 256 micro-
processor instructions. It is a tedious business, and the danger is that
we are considering too many different instructions without testing some
of them. Our main interest has been to demonstrate how the 8080
microprocessor instructions are decoded by the instruction decoder.
It should be apparent that there is a consistent set of coding rules be-
hind the entire 8080 instruction set. Registers, register pairs, arithmetic

152

operations, logical operations, conditional instructions, and the like all
have specific coding patterns within the 8080 instruction set.

DATA AND MEMORY ADDRESSING MODES

Since the entire computer program and data are located in memory,
it should be clear that the addressing of individual memory locations for
the purpose of, for example, acquiring data bytes, is an important part
of any computer program. Such addressing can be performed in a
number of ways, such as:

direct addressing—An 8-bit data byte is acquired via a three-byte in-
struction that contains the 16-bit memory address at which the data
byte is located. Byte B2 contains the LO memory address and byte
B3 contains the HI memory address.

indirect addressing—An 8-bit data byte is acquired via a one-byte in-
struction that employs a register pair, usually H and L, to generate
the 16-bit memory address. The HI memory address is stored in H
and the LO memory address is stored in L. We often denote by the
letter M the memory location addressed by registers H and L.

immediate addressing—An 8-bit data byte is acquired via a two-byte
instruction that contains the data byte as byte B2.

stack pointer addressing—Two 8-bit data bytes are acquired via a one-
byte instruction that transfers the data from a memory area called a
stack to a register pair (or, if desired, to the program counter regis-
ter). A stack pointer register provides the location of the stack, and
is automatically incremented by two after each POP operation. The
data in the stack has originally been entered by a PUSH operation.

In microprocessor instructions included in the “data transfer group,”
the memory location M refers to that location addressed by the con-
tents of register pair H and L.

ACCUMULATOR INSTRUCTIONS

The different types of accumulator instructions described in this
chapter can be classified as follows:

@ 1.oad an 8-bit data byte into the accumulator, either from memory,
another register, or the second byte of an immediate instruction.

® Move an 8-bit data byte from the accumulator into either a mem-
ory location or another register.

@ Load an 8-bit data byte into the accumulator from an input device.

® Move an 8-bit data byte from the accumulator into an output
device.

@ Rotate the contents of the accumulator.

153

® Complement the accumulator.

® Increment or decrement the contents of the accumulator.

@ Push the contents of the accumulator on the stack, or pop the stack
and replace the contents of the accumulator.

® Add, subtract, compare, AND, OR, or exclusive-or the contents of a
register, an immediate byte, or memory location with the contents
of the accumulator and store the result in the accumulator.

® Clear the accumulator.

In the following subsections, we shall discuss several instructions that
merit additional comment.
R C of A !

Fig. 3-13 provides schematic representations for the four different
rotate instructions:

e S W W
RaR] [Pelsfefe]e]']
B s s

M

(<)
—
o
»
(<]
[
——
et
o

1 1

RAL m I7|s|5|4lalz||l
RLC r7|e|5|4|3]zl|
| BN R AN [

Fig. 3-13. Representations of the four different rotate instructions in the 8080 instruction set.

1

[

[

154

007 RLC Rotate contents of accumulator left one position. The least
significant bit and the carry flag are both set to the value
shifted out of the most significant bit position in the 8-
bit accumulator byte.

017 RRC Rotate contents of accumulator right one position. The
most significant bit and the carry flag are both set to the
value shifted out of the least significant bit position in
the 8-bit accumulator byte.

027 RAL Rotate contents of accumulator left one position through
the carry flag. The least significant bit is set equal to
the carry bit and the carry flag is set to the value shifted
out of the most significant bit in the 8-bit accumulator
byte.

037 RAR Rotate contents of accumulator right one position through
the carry flag. The most significant bit is set equal to the
carry bit and the carry flag is set to the value shifted out
of the least significant bit in the 8-bit accumulator byte.

The carry bit and the 8-bit accumulator byte can be viewed as a 9-
bit binary word, in which the ninth bit becomes logic 1 whenever the
sum of two 8-bit binary words produces a carry out of the most signifi-
cant bit (bit 7). The rotate instructions are useful for the following
situations:

® During the multiplication of a pair of 8-bit binary data bytes. To
multiply a data byte by 2, simply shift the entire data byte to the
left one position.

® During the division of a pair of 8-bit binary data bytes. To divide
a data byte by 2, simply shift the entire data byte to the right one
position.

® During the testing of external flag bits entered into the accumula-
tor with the aid of an IN microprocessor instruction. Each external
flag can be tested in turn by rotating the accumulator through the
carry bit and testing the logic state of the carry bit.

The schematic representation for the RAR instruction can be ex-
plained as follows:

The carry bit is moved to bit 7 of the accumnulator byte. Simultaneous
with this action, bit 7 is moved to bit 6, bit 6 is moved to bit 5, bit 5
is moved to bit 4, bit 4 is moved to bit 3, bit 3 is moved to bit 2, bit 2
is moved to bit 1, bit 1 is moved to bit 0, and bit 0 is moved to the
carry bit.

The remaining rotate instructions can be explained in a similar man-
ner. The arrows in the representations designate the destinations of
each of the bits shown.

155

Decimal Adjust Accumulator Contents

The purpose of the DAA instruction, 047, is to convert the result from
the addition of two bed numbers via straight binary addition into two
packed binary-coded-decimal words, each of which contains four bits.
This instruction can, on occasion, exhibit rather confusing behavior.
To quote directly from the Intel 8080 Assembly Language Program-
ming Manual (1974):

047 DAA “The eight-bit hexadecimal number in the accumulator is
adjusted to form two four-bit binary-coded-decimal
(bed) digits by the following two-step process:

(1) If the least significant four bits of the accumulator
represents a number greater than 9, or if the Auxiliary
Carry bit is at logic 1, the accumulator is incremented by
six. Otherwise, no incrementing occurs.

(2) If the most significant four bits of the accumulator
now represent a number greater than 9, or if the normal
bit is at logic 1, the most significant four bits of the accu-
mulator are incremented by six, Otherwise, no increment-
ing occurs.

If a carry out of the least significant four bits occurs during
Step (1), the Auxiliary Carry bit is set to logic 1; other-
wise it is reset to logic 0. Likewise, if a carry out of the
most significant four bits occurs during Step (2), the nor-
mal Carry bit is set to logic 1; otherwise, it is unaffected.

~otE: This instruction is used when adding decimal num-
bers. It is the only instruction whose operation is affected
by the Auxiliary Carry bit.

Condition bits affected: Zero, Sign, Parity, Carry, Auxiliary
Carry.”

When you use this very unusual instruction, we would encourage
you to heed the following rule:

Use the decimal adjust accumulator (DAA) instruction only after
an ADD, ADC, or ADI instruction.

Why? Because only after an ADD, ADC, or ADI can you be certain
that the logic states of the auxiliary carry and carry bits are correct.
One gimmick that you can employ is to add zero to an 8-bit byte that
you wish to decimal adjust. This can be done with three consecutive
instruction bytes:

156

306 ADI Add following byte to contents of accumulator
000 000 Zero
047 047 Decimal adjust contents of accumulator

These three instruction bytes will allow you to decimal adjust the con-
tents of the accumulator after the following instructions: IN <B2>
and INR A. The authors have tried DCR A and SUI <B2>, but did not
observe anything useful. The moral here is that you should be very
careful with the DAA instruction. You might try various programs that
incorporate it and demonstrate to yourself how tricky it is.

Clear Accumulator

There are two instructions that will allow you to clear the accumula-
tor, i.e., set the contents of the accumulator register to 00000000,:

227 SUB A Subtract the contents of the accumulator from the con-
tents of the accumulator

257 XRA A Exclusive-or the contents of the accumulator with the
contents of the accumulator

Both instructions take only 2 us execution time.

8080 INSTRUCTION GROUPS

To conclude our discussion of instruction decoding, here is a handy
8080 instruction set reference in which the 256 instructions are sub-
divided into the five groups suggested by Intel Corporation:

1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4, Branch Group

5. Stack, I/0, and Machine Control Group

In each group, octal instructions, mnemonics (Intel), and a description
of the instruction are provided.

Data Transfer Group

100 MOV BB Move contents of register B to register B
101 MOV B,C Move contents of register C to register B
102 MOV B,D Move contents of register D to register B
103 MOV BE Move contents of register E to register B
104 MOV BH Move contents of register H to register B
105 MOV B.L Move contents of register L to register B
106 MOV BM Move contents of memory location M to register B
107 MOV BA Move contents of accumulator to register B
110 MOV C,B Move contents of register B to register C
111 MOV CC Move contents of register C to register C
112 MOV C,D Move contents of register D to register C

157

113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167

170
171
172
173
174
175
176

177

158

MOV
MOV

MOV

CE

Move contents of register E to register C

Move contents of register H to register C

Move contents of register L to register C

Move contents of memory location M to register C

Move contents of accumulator to register C

Move contents of register B to register D

Move contents of register C to register D

Move contents of register D to register D

Move contents of register E to register D

Move contents of register H to register D

Move contents of register L to register D

Move contents of memory location M to register D

Move contents of accumulator to register D

Move contents of register B to register E

Move contents of register C to register E

Move contents of register D to register &

Move contents of register E to register E

Move contents of register H to register E

Move contents of register L to register E

Move contents of memory location M to register E

Move contents of accumulator to register E

Move contents of register B to register H

Move contents of register C to register H

Move contents of register D to register H

Move contents of register E to register H

Move contents of register H to register H

Move contents of register L to register H

Move contents of memory location M to register H

Move contents of accumulator to register H

Move contents of register B to register L

Move contents of register C to register L

Move contents of register D to register L

Move contents of register E to register L

Move contents of register H to register L

Move contents of register L to register L

Move contents of memory location M to register L

Move contents of accumulator to register L

Move contents of register B to memory location M

Move contents of register C to memory location M

Move contents of register D to memory location M

Move contents of register E to memory location M

Move contents of register H to memory location M

Move contents of register L to memory location M

Halt

Move contents of accumulator to memory loca-
tion M

Move contents of register B to accumulator

Move contents of register C to accumulator

Move contents of register D to accumulator

Move contents of register E to accumnulator

Move contents of register H to accumulator

Move contents of register L to accumulator

Move contents of memory location M to accu-
mulator

Move contents of 1

to

006 MVI B <B2> Move immediate byte B2 into register B

016 MVI C <B2> Move immediate byte B2 into register C

026 MVI D <B2> Move immediate byte B2 into register D

036 MVI E <B2> Move immediate byte B2 into register E

046 MVI H <B2> Move immediate byte B2 into register H

056 MVI L <B2> Move immediate byte B2 into register L

066 MVI M <B2> Move immediate byte B into memory location M

076 MVI A <B2> Move immediate byte B2 into accumulator

001 LXI B <B2> <B3> Load immediate two bytes B2 and B3 into regis-
ter pair B

021 LXI D <B2> <B3> Load immediate two bytes B2 and B3 into regis-
ter pair D

041 LXI H <B2> <B3> Load immediate two bytes B2 and B3 into regis-
ter pair H

061 LXI SP <B2> <B3> Load immediate two bytes B2 and B3 into regis-
ter pair SP

002 STAX B Store accumulator indirect into memory location
M addressed by register pair B

012 LDAX B Load accumulator indirect from memory location
M addressed by register pair B

022 STAX D Store accumulator indirect into memory location
M addressed by register pair D

032 LDAX D Load accumulator indirect from memory location

M addressed by register pair D

042 SHLD <B2> <B3> Store L direct into memory location M addressed
by two bytes B2 and B3; store H direct into
the succeeding memory location

052 LHLD <B2> <B3> Load L direct from memory location M addressed
by two bytes B2 and B3; load H direct from
the succeeding memory location

062 STA <B2> <B3> Store accumulator direct into memory location M
addressed by two bytes B2 and B3

072 LDA <B2> <B3> Load accumulator direct from memory location
M addressed by two bytes B2 and B3

353 XCHG Exchange the contents of registers H and L with
the contents of registers D and E, respectively

371 SPHL Move the contents of registers H and L to stack

pointer register

The above group of data transfer instructions transfer data to and from
registers and memory. Condition flags are not affected by any instruc-
tions in this group.

Arithmetic Group

This group of instructions performs arithmetic operations on data in
registers and memory. With certain exceptions, all instructions in this
group affect the zero, sign, parity, and carry flags according to the stan-
dard rules. The only exceptions are the INR and DCR instructions
(carry flag not affected), the INX and DCX instructions (no flags
affected), and DAD instruction (only carry flag affected). All subtrac-
tion operations are performed via two’s complement arithmetic and

159

set the carry flag to logic 1 to indicate a borrow and clear it to indicate

no borrow.

200 ADD B
201 ADD C
202 ADD D
203 ADD E
204 ADD H
205 ADD L
206 ADD M
207 ADD A
210 ADC B
211 ADC C
212 ADC D
213 ADC E
214 ADC H
215 ADC L
216 ADC M
217 ADC A
220 SUB B
221 SUB C
222 SUB D
223 SUB E
224 SUB H
225 SUB L
226 SUB M
227 SUB A
230 SBB B
231 SBB C
232 SBB D
233 SBB E
234 SBB H

Add contents of register B to contents of accumulator

Add contents of register C to contents of accumulator

Add contents of register D to contents of accumulator

Add contents of register E to contents of accumulator

Add contents o fregister H to contents of accumulator

Add contents of register L to contents of accumulator

Add contents of memory location M to contents of accu-
mulator

Add contents of accumulator to contents of accumulator

Add carry bit and contents of register B to contents of
accumulator

Add carry bit and contents of register C to contents of
accumulator

Add carry bit and contents of register D to contents of
accumulator

Add carry bit and contents of register E to contents of
accumulator

Add carry bit and contents of register H to contents of
accumulator

Add carry bit and contents of register L to contents of
accumulator

Add carry bit and contents of memory location M to con-
tents of accumulator

Add carry bit and contents of accumulator to contents of
accumulator

Subtract contents of register B from contents of accumu-
Jator

Subtract contents of register C from contents of accumu-
lator

Subtract contents of register D from contents of accumu-
lator

Subtract contents of register E from contents of accumu-
lator

Subtract contnets of register H from contents of accumu-
lator

Subtract contents of register L from contents of accumu-
lator

Subtract contents of memory location M from contents
of accumulator

Subtract contents of accumulator from contents of accu-
mulator, i.e., clear accumulator

Subtract carry bit and contents of register B from contents
of accumulator

Subtract carry bit and contents of register C from contents
of accumulator

Subtract carry bit and contents of register D from contents
of accumulator

Subtract carry bit and contents of register E from contents
of accumulator

Subtract carry bit and contents of register H from contents
of accumulator

235
236

237

004
014
024
034
044
054
064
074

005
015
025
035
045
055
065
075

003
023

063
013
033
053
073
011
031
051

071

047

306
316

326
336

270

SBB L
SBB M
SBB A

INR B
INR C
INR D
INR E
INR H
INR L
INR M
INR A

DCR B
DCR C
DRC D
DCR E
DCR H
DCR L
DCR M
DCR A

INX B
INX D
INX

INX SP

DCX B
DCX D
DCX H
DCX SP
DAD B
DAD D
DAD H

DAD SP

DAA

ADI <B2>
ACI <B2>

SUI <B2>
SBI <B2>

CMP B

Subtract carry bit and contents of register L from contents
of accumulator

Subtract carry bit and contents of memory location M
from contents of accumulator

Subtract carry bit and contents of accumulator from con-
tents of accumulator

Increment contents of register B by one
Increment contents of register C by one
Increment contents of register D by one
Increment contents of register E by one
Increment contents of register H by one
Increment contents of register L by one
Increment contents of memory location M by one
Increment contents of accumulator by one

Decrement contents of register B by one
Decrement contents of register C by one
Decrement contents of register D by one
Decrement contents of register E by one
Decrement contents of register H by one
Decrement contents of register L by one
Decrement contents of memory location M by one
Decrement contents of accumulator by one

Increment contents of register pair B and C by one
Increment contents of register pair D and E by one
Increment contents of register pair H and L by one
Increment contents of stack pointer register by one

Decrement contents of register pair B and C by one
Decrement contents of register pair D and E by one
Decrement contents of register pair H and L by one
Decrement contents of stack pointer register by one
Add contents of register pair B and C to contents of reg-
ister pair H and L and store in register pair H and L
Add contents of register pair D and E to contents of reg-
ister pair H and L and store in register pair Hand L
Add contents of register pair H and L to contents of reg-
ister pair H and L and store in register pair H and L
Add contents of stack pointer register to contents of reg-
ister pair H and L and store in register pair Hand L

Adjust 8-bit number in the accumulator to form two 4-bit
binary coded decimal digits (used after an add instruc-
tion that adds two bed numbers)

Add immediate byte B2 to contents of accumulator

Add carry bit and immediate byte B2 to contents of
accumulator

Subtract immediate byte B2 from contents of accumulator

Subtract carry bit and immediate byte B2 from contents
of accumulator

Compare contents of register B with contents of accumu-
lator; the lat ins unch d. The condi-
tion flags are set as a result of the subtraction of the
contents of register B from the contents of the accumu-
lator

161

271
272
273
274
275
276
277
376

CMP C
CMP D
CMP E
CMP H
CMP L
CMP M
CMP A
CPI <B2>

Logical Group
This group of instructions performs logical operations on data in reg-
isters and memory and on condition flags. With certain exceptions, all
instructions in this group affect the zero, sign, parity, auxiliary carry,
and carry flags according to the standard rules. The only exceptions are
the RLC, RRC, RAL, RAR, CMC, and STC instructions [only the
carry flag is affected] and the CMA instruction [no flags affected].

240
241
242
243
244
245
246

247
250

251
252
253
254
255
256
257
260
261
262

263
264

162

ANA B
ANA
ANA
ANA
ANA
ANA
ANA

ANA
XRA

XRA
XRA
XRA
XRA
XRA
XRA
XRA
ORA
ORA
ORA

ORA
ORA

mEgo® > 2 P o@D Mg 0 ®» zrmmgo

Compare contents of register C with contents of accumu-
lator

Compare contents of register D with contents of accumu-
lator

Compare contents of register E with contents of accumu-
lator

Compare contents of register H with contents of accumu-
lator

Compare contents of register L. with contents of accumu-
lator

Compare contents of memory location M with contents of
accumulator

Compare contents of accumulator with contents of accu-
mulator

Compare immediate byte B2 with contents of accumulator

AND contents of register B with contents of accumulator

AND contents of register C with contents of accumulator

AND contents of register D with contents of accumulator

AND contents of register E with contents of accumulator

AND contents of register H with contents of accumulator

AND contents of register L. with contents of accumulator

AND contents of memory location M with contents of accu-
mulator

AND contents of accumulator with contents of accumulator

Exclusive-oRr contents of register B with contents of accu-
mulator

Exclusive-or contents of register C with contents of accu-
mulator

Exclusive-oR contents of register D with contents of accu-
mulator

Exclusive-or contents of register E with contents of accu-
mulator

Exclusive-oF contents of register H with contents of accu-
mulator

Exclusive-oR contents of register L with contents of accu-
mulator

Exclusive-or contents of memory location M with contents
of accumulator

lusive-or « of

accumulator, i.e., clear accumulator

Or contents of register B with contents of accumulator

OR contents of register C with contents of accumulator

OR contents of register D with contents of accumulator

OR contents of register E with contents of accumulator

OR contents of register H with contents of accumulator

lator with contents of

265 ORA L Or contents of register L with contents of accumulator

266 ORA M OR contents of memory location M with contents of accu-
mulator

267 ORA A OR contents of accumulator with contents of accumulator

007 RLC Rotate contents of accumulator left one position. The least

significant bit and the carry flag are both set to the

value shifted out of the most significant bit position

017 RRC Rotate contents of accumulator right one position. The
most significant bit and the carry flag are both set to
the value shifted out of the least significant bit position

027 RAL Rotate contents of accumulator left one position through
the carry flag. The least significant bit is set equal to
the carry bit and the carry flag is set to the value shifted
out of the most significant bit

037 RAR Rotate contents of accumulator right one position through
the carry flag. The most significant bit is set equal to
the carry bit and the carry flag is set to the value
shifted out of the least significant bit

057 CMA Complement the accumulator
067 STC Set the carry flag, i.e., the carry bit, to logic 1
077 CMC Complement the carry bit

346 ANI <B2> Anp immediate byte B2 with contents of accumulator

356 XRI <B2> Exclusive-or immediate byte B2 with contents of accumu-
lator

366 ORI <B2> Or immediate byte B2 with contents of accumulator

Branch Group

This group of instructions alters the normal sequential program flow.
No condition flags are affected by any instruction in this group. The
two types of branch instructions are unconditional and conditional.
Unconditional transfers simply perform the specified operation on the
16-bit program counter register. Conditional transfers examine the
status of one of the four processor flags (zero, sign, parity, and carry)
to determine if the specified branch is to be executed. The conditions
that may be specified are as follows:"

carry flag is at logic 1 carry flag is at logic 0
zero flag is at logic 1 zero flag is at logic 0
sign flag is at logic 1 sign flag is at logic 0
parity flag is at logic 1 parity flag is at logic 0
302 JNZ <B2> <B3> Jump to memory location addressed by bytes B2
and B3 if zero flag is at logic 0
312 JZ <B2> <B3> Jump to memory location addressed by bytes B2
and B3 if zero flag is at logic 1
322 JNC <B2> <B3> Jump to memory location addressed by bytes B2
and B3 if carry flag is at logic 0
332 JC <B2> <B3> Jump to memory location addressed by bytes B2
and B3 if carry flag is at logic 1
342 JPO <B2> <B3> Jump to memory location addressed by bytes B2

and B3 if parity flag is at logic 0

163

T~

352 JPE <B2> <B3> Jump to memory location addressed by bytes B2 {
and B3 if parity flag is at logic 1 i

362 JP <B2> <B3> Jump to memory location addressed by bytes B2
and B3 if sign flag is at logic 0 i

372 JM <B2> <B3> Jump to memory location addressed by bytes B2 |
and B3 if sign flag is at logic 1 |

304 CNZ <B2> <B3> Call subroutine at memory location addressed by i
bytes B2 and B3 if zero flag is at location 0

314 CZ <B2> <B3> Call subroutine at memory location addressed by

bytes B2 and B3 if zero flag is at logic 1
324 CNC <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if carry flag is at logic O

334 CC <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if carry flag is at logic 1
344 CPO <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if parity flag is at logic 0
354 CPE <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if parity flag is at logic 1
364 CP <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if sign flag is at logic 0
374 CM <B2> <B3> Call subroutine at memory location addressed by
bytes B2 and B3 if sign flag is at logic 1
300 RNZ Return from subroutine if zero flag is at logic 0
310 RZ Return from subroutine if zero flag is at logic 1
320 RNC Return from subrout'ne if carry flag is at logic 0
330 RC Return from subroutine if carry flag is at logic 1
340 RPO Return from subroutine if parity flag is at logic 0
350 RPE Return from subroutine if parity flag is at logic 1
360 RP Return from subroutine if sign flag is at logic 0
370 RM Return from subroutine if sign flag is at logic 1
303 JMP <B2> <B3> Unconditional jump to memory location

addressed by bytes B2 and B3

311 RET Unconditional return from subroutine
315 CALL <B2> <B3> Unconditional call of subroutine at memory loca-
tion addressed by bytes B2 and B3

307 RST 0 Call subroutine at HI = 000s and LO = 0005
317 RST 1 Call subroutine at HI = 000s and LO = 010,
327 RST 2 Call subroutine at HI = 000s and LO = 020,
337 RST 3 Call subroutine at HI = 000s and LO = 030,
347 RST 4 Call subroutine at HI = 000s and LO = 0105
357 RST 5 Call subroutine at HI = 000s and LO = 050
367 RST 6 Call subroutine at HI = 000s and LLO = 060,
377 RST 7 Call subroutine at HI = 000s and LO = 070s
351 PCHL Move contents of H and L register pair to pro-

gram counter register, i.e., jump indirect to
memory location M addressed by register pair
Hand L

Stack, 1/0, and Machine Control Group

This group of instructions performs I/O, manipulates the stack, and
alters internal control flags. With one exception, no condition flags are

164

affected by any instructions in this group. The only exception is the
POP PSW instruction, which affects all flags.

333

323
373
363
166

000
343

301

321

341

361

305

325

345

IN <B2>

OUT <B2>
EI

DI

HLT

NOP
XTHL

POP B

POP D

POP H

POP PSW

PUSH B

PUSH D

PUSH H

Replace contents of accumulator by 8-bit data byte from
input device selected by the device code given in byte
B2

Send contents of accumulator as 8-bit data byte to output
device selected by the device code given in byte B2

Enable the interrupt system following the execution of
the next instruction

Disable the interrupt system immediately following the
execution of this instruction

Halt the microprocessor, The registers and flags are un-
affected

No operation. The registers and flags are unaffected

Exchange the top of the stack with the contents of the
H and L register pair. The contents of register L is
exchanged with the contents of the memory location
SP, whose address is specified by the contents of the
stack pointer register. The contents of register H is
exchanged with the contents of memory location SP-+1

Pop stack and move contents to register pair B and C.
Move contents of memory location SP to register C and
contents of memory location SP+1 to register B. In-
crement contents of stack pointer register by two

Pop stack and move contents to register pair D and E.
Move contents of memory location SP to register E and
contents of memory location SP4-1 to register D. Incre-
ment contents of stack pointer register by two

Pop stack and move contents to register pair H and L.
Move contents of memory location SP to register L and
contents of memory location SP+-1 to register H. Incre-
ment contents of stack pointer register by two

Pop stack and move contents to the accumulator and re-
store the condition flags. Move contents of memory
location SP to restore the condition flags and contents
of memory location SP+1 to the accumulator. Incre-
ment contents of stack pointer register by two. The HI
and LO bytes of the PSW register pair is given by

| Accumulator Byte IS ZOACO P 1 Cl
PR N T . | | T

The letters S, Z, AC, P, and C refer to the sign, zero,
auxiliary carry, parity, and carry flags.

Push stack by moving contents of register pair B and C
to memory locations SP—1 and SP-2, respectively.
Decrement contents of stack pointer register by two

Push stack by moving contents of register pair D and E
to memory locations SP—1 and SP—2, respectively.
Decrement contents of stack pointer register by two

Push stack by moving contents of register pair H and L
to memory locations SP—1 and SP—2, respectively.
Decrement contents of stack pointer register by two

165

365 PUSH PSW

Push stack by moving contents of accumulator and the

condition flags to memory locations SP—1 and SP—2,
respectively. Decrement contents of stack pointer regis-
ter by two. The location of the logic states for the five

flags are given for the POP PSW instruction above

8080 INSTRUCTION SUMMARY

Single-Byte Instructions

INRr 084
DCRr 0S5
MOV rr: 1DS
ADDr 208
ADCr 218
SUBr 228
SBB 4 238
ANAr 245
XRAr 258
ORAT 268
CMPr 27§

INX B 003 POP B
INX D 023 POP D
INX H 043 POP H
INX SP 063 POPPSW
DCX B 013 PUSH B
DCX D 033 PUSH D
DCX H 053 PUSH H
DCX SP 073 PUSHPSW

DAD B 011 STAX B
DAD D 031 STAX D
DAD H 051 LDAX B
DAD SP 071 LDAX D

301
321
341
361
305
325
345
365

002
022
012
032

RNZ 300 XCHG
RZ 310 XTHL
RNC 320 SPHL
RC 330 PCHL
RPO 340 HLT
RPE 350 NOP
RP 360 DI
RM 370 EI
RET 311 DAA
RLC 007 CMA
RRC 017 STC
RAL 027 CMC
RAR 037 RST

353
343
371
351
166
000
363
373
017
057
067
077
3X7

Sand D:B=0,C=1,D=2E =3, H= 4, L = 5, M = 6, accumulator = 7

X: 0 through 7

Two-Byte Instructions

ADI <B2> 306 IN <B2> 333
ACI <B2> 316 OUT <B2> 323
SUI <B2> 326
SBI <B2> 336
ANI <B2> 346
XRI <B2> 356
ORI <B2> 366
CPI <B2> 376

Three-Byte Instructions

JNZ <B2> <B3>
JZ <B2> <B3>
JNC <B2> <B3>
JC <B2> <B3>
JPO <BZ> <B3>
JPE <B2> <B3>
JP <B2> <B3>
M <B2> <B3>
JMP <B2> <B3>

302 CNZ <B2> <B3>
312 CZ <B2> <B3>
322 CNC <B2> <B3>
332 CC <B2><B3>
342 CPO <B2> <B3>
352 CPE <B2> <B3>
362 CP <B2> <B3>
372 CM <B2> <B3>
303 CALL <B2> <B3>

ASSEMBLY LANGUAGE

304
314
324
334
344
354
364
374
315

MVI B <B2>
MVI C <B2>
MVI D <B2>
MVI E <B2>
MVI H <B2>
MVI L <B2>
MVI M <B2>
MVI A <B2>

LXI B <B2><B3>
LXI D <B2> <B3>
LXI H <B2><B3>

006
016
026

046
056
066
076

001
021
041

LXI SP <B2> <B3> 061

STA <B2> <B3>
LDA <B2> <B3>
SHLD <B2> <B3>
LHLD <B2> <B3>

062
072
042
052

Once you begin to program in binary, octal, or hexadecimal machine
language, you will quickly learn that it can be rather difficult. The
problem is that many machine language instructions refer to specific

166

locations in memory. If you desire to make changes in the program,
you may need to change memory locations in order to accommodate
new instructions inserted at specified points in the original program.
One way around this problem is to write your programs in assembly
language.

The term assembly refers to the process whereby instructions written
in symbolic form by the programmer are changed to machine language
by a computer. Related terms include the following:

assemble—To translate from a symbolic program to a binary program
by substituting binary operation codes for symbolic operation codes
and replacing symbolic addresses with absolute or relocatable ad-
dresses.*

assembler—A program that prepares a program in machine language
from a program in symbolic language by substituting absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.*

assembly language—A computer language that has one-to-one corre-
spondence with an assembly program. The assembly program directs
a computer to operate on a program in symbolic language to produce
a program in machine language.*

assembly language programming, symbolic language programming—
The writing of program instructions in a language that facilitates the
translation of programs into binary code through the use of mne-
monic instructions such as ADD, MPY, SUB, DIV, STO, etc.*

assembly program—A program that enables a computer to assemble
mnemonic language into machine language. Also called assembly
routine.*

symbolic address—Also called floating address. In digital computer pro-
gramming, a label chosen in a routine to identify a particular word,
function, or other information independent of the location of the in-
formation within the routine.

symbolic code—A code by which programs are expressed in source lan-
guage; that is, storage locations and machine operations are referred
to by symbolic names and addresses that do not depend upon their
hardware-determined names and addresses. Also called pseudocode.*

symbolic coding—In digital computer programming, any coding sys-
tem using symbolic rather than actual computer addresses.*

symbolic programming—A program using symbols instead of numbers
for the operations and locations in a computer. Although the writing
of the program is easier and faster, an assembly program must be
used to decode the symbol into machine language and to assign in-
struction locations.*

It is important to understand the difference between machine and
assembly languages. In machine language programming:

167

® Each instruction in the program is a specific binary number or
group of binary numbers.

® Storage locations for data and information are given specific binary
addresses in memory.

® Subroutines are located at specific binary addresses in memory.

@ Each instruction in the program is located at a specific binary ad-
dress in memory.

® Once written, the program is ready to run.

® As alternatives to binary memory addressing, octal or hexadecimal
memory addressing can be employed.

® Changes in the program are made with difficulty. Changes in the
binary addresses of instructions, data, or subroutines may be
required.

In assembly language programming:

® Each instruction in the program is a single mnemonic code or
group of mnemonic codes.

® Storage locations for data and information are also given symbolic
(or mnemonic) names.

@ Subroutines are located at addresses given by mnemonic names
called labels.

® Each instruction in the program is located at an address character-
ized by a label.

® Once written, the program isn’t ready to run. It must be passed
through an assembler to convert the symbolic (or mnemonic) code
into machine language.

® Binary, octal, or hexadecimal memory addressing are not usually
employed, although they can be where convenient.

® Changes in the program are made with relative ease. Since none
of the memory addresses for instructions, data, or subroutines have
been set, new steps can be inserted anywhere in the assembly lan-
guage program without causing any difficulty.

The differences between machine and assembly language instructions
will be explored in the next section.

MACHINE LANGUAGE VS. ASSEMBLY LANGUAGE PROGRAMS

We will now write a simple computer program in both 8080 machine
and 8080 assembly language and compare the two programs. The pro-
gram is typical of that which we will use in subsequent chapters:

® Subtract the contents of the accumulator from the contents of the
accumulator, i.e., clear the accumulator.

® Send a device select pulse and the contents of the accumulator to
a device called “PRINTER,” which has a device code of 000s.

® Jump unconditionally to the first instruction in the program, which
is at a memory location called “START,” which is at the memory
location HI = 000 and LO = 000s.
Octal coding is used in the machine language program, which is
as follows:

LO Memory Octal

Address Instruction Comments
000s 227 Subtract the contents of the accumulator from the
contents of the accumulator, i.e., clear the accu-
mulator
001 323 Send a device select pulse and the contents of the

accumulator to the device given in the second
byte of the instruction

0025 000 Device code

003 303 Jump unconditionally to memory location given by
following two bytes

004 000 LO memory address byte

005s 000 HI memory address byte

And the assembly language program is:

*000 000
START, SUB A
OUT PRINTER
JMP START
START
PRINTER, 000
$

where the labels are:
START = memory address at which the program starts,
PRINTER = name of output device.

The terms label and operand are defined as follows:

label—One or more characters that serve to define a byte of data, the
location of an instruction or subroutine, or an input or output device.

operand—The quantity that is affected, manipulated, produced, or op-
erated upon.

To emphasize a point made previously, in assembly language program-
ming, we desire to be able to address data locations, data bytes, devices,
instructions, and subroutines by symbolic names instead of by 8-bit or
16-bit octal codes.

Note that in the assembly language program, no octal codes are pres-
ent. All instructions are written in terms of their mnemonics and the
output device is given a name, PRINTER. The starting location of the
program is called START rather than HI = 000s and LO = 000s. The

169

use of assembly language programming is considerably easier than
machine langnage programming, but the latter has one important ad-
vantage: it is ready to be executed on the microcomputer, whereas the
assembly language program is not. With an assembly language pro-
gram, one must sort through a table and assign address values to labels
and operation code values to operands. One can “hand assemble” a
program by assigning address values and by looking up octal equiva-
lents for the mnemonics. Computers are also extremely well suited to
this task using “assembler” or “cross assembler” programs.

INTRODUCTION TO THE EXAMPLES

Since programming is one of the important new skills that you must
master if you wish to effectively use microcomputers, here we provide
a variety of programming examples that test some of the characteristics
of the 8080 instruction set. Some of the more unusual instructions are
emphasized, such as PUSH, POP, and DAA, along with several output
programs that you can use in conjunction with an 8-bit latch/display
circuit, which you will learn how to construct in Chapter 7.

EXAMPLE NO. 1

Purpose
The purpose of this example is to demonstrate how to clear the micro-
computer memory.

Program
LO Memory Octal
Address Instruction Mnemonic Comments
000 227 SUB A Clear the accumulator
001 041 LXI H Load the following two data bytes
into registers L and H, respec-
tively
002 011 L data byte
003 000 H data byte
004 167 MOV MA Move contents of accumulator to
the memory location addressed
by the register pair H and L
005 043 INX H Increment the register pair H and L
by one
006 303 JMP Unconditional jump to the memory
location given in the following
two bytes
007 004 LO memory address byte
010 000 HI memory address byte
Comments

This program permits you to clear read/write memory, essentially all
65,536 locations if you so desire, starting at HI =000 and LO = 011.

170

As soon as it clears location HI = 877 and LO = 377, it starts to clear
the program itself. It gets as far as memory location HI = 000 and LO
= 004. Finally, it loops indefinitely between locations LO = 004 and
LO =010.

The NOP instruction is 000. Thus, a cleared read/write memory loca-
tion, if treated as an instruction byte, will not perform any useful micro-
computer operation. By clearing the read/write memory beforehand,
you can prevent undesired program execution when you are testing a
new program. [One problem is that you usually do not have 65K of
microcomputer memory. A nonexistent memory location provides the
8080 microprocessor chip with a 377; when this is treated as an instruc-
tion byte, the 8080 calls a subroutine at locations HI = 000 and LO =
070. To minimize such a problem, you may wish to load instruction
byte 166 (HLT) at HI = 000 and LO = 070.] It should be noted, how-
ever, that it is not necessary to clear the memory before it is used by the
microcomputer.

EXAMPLE NO. 2

Purpose

The purpose of this example is to attempt to read the contents of the
B and C registers, which are set to the values 010; and 001, respec-
tively.

Program
LO Memory Octal
Address Instruction Mnemonic Comments
000 041 LXI H Load the following two data bytes
into registers L and H, respec-
tively
001 200 L data byte
002 000 H data byte
003 001 LXI B Load the following two data bytes
into registers C and B, respec-
tively
004 001 C data byte
005 010 B data byte
006 166 HLT Halt
Comments

You should be able to successfully execute this program, but you will
not know whether anything happened since all data remains within the
8080 chip. See the following example (Example No. 3) for one of the
possible solutions to the problem of monitoring the contents of the in-
ternal registers.

7

EXAMPLE NO. 3

Purpose

The purpose of this example is to write into memory the contents of
the B and C registers, which are set to the values 0105 and 0015, re-

spectively.
Program
LO Memory Octal
Address Instruction Mnemonic Comments
000 041 LXI H Load the following two data bytes
into registers L. and H, respec-
tively
001 200 L data byte
002 000 H data byte
003 001 LXI B Load the following two data bytes
into registers C and B, respec-
tively
004 001 C data byte
005 010 B data byte
006 160 MOV M,B Move contents of register B to
memory location addressed by the
register pair H and L
007 043 INX H Increment the register pair H and L
by one
010 161 MOV M,C Move contents of register C to
memory location addressed by the
register pair H and L !
011 166 HLT Halt
Comments

With Example No. 2, you learned that it is impossible to observe
directly the contents of registers, B, C, D, E, H, and L. You can observe
the contents of the accumulator more or less directly with the aid of an
OUT instruction and a pair of latches (you will do this in Chapter 7).
However, you must resort to some gimmicks in order to determine the
contents of the six general-purpose registers. Such gimmicks include the
following:

® Storing the contents of the registers in memory, then examining i
the contents of memory while the microcomputer is in the HOLD |
state. |

@ Pushing the contents of the registers onto the stack, then examining
the contents of the memory locations in the stack while the micro-
computer is in the HOLD state.

® Moving the contents of each register to the accumulator, then pro-
viding an OUT instruction and latching the contents of the accu-
mulator, You can do this with each register in turn, and can actu-

172

ally follow the register contents while the microcomputer is still
running.
Tt would be nice to have a group of seven LED registers, each register
containing eight bits, that would continuously display the contents of
the six general-purpose registers and the accumulator. With the 8080
microprocessor, it is not possible to do so as direct outputs from the
chip.

EXAMPLE NO. 4

Purpose

The purpose of this example is to load into the stack region of mem-
ory the contents of the B and C registers, which are set to the values
0105 and 011, respectively.

Program
LO Memory Octal
Address Instruction ~ Mnemonic Comments
000 061 LXI SP Load the following two data bytes
into the stack pointer register
001 202 LO stack pointer byte
002 000 HI stack pointer byte
003 001 LXI B Load the following two data bytes
into registers C and B, respec-
tively
004 001 C data byte
005 010 B data byte
006 305 PUSH B Replace the contents of memory lo-
cations M(SP—1) and M(SP—2)
by the contents of registers B and
C, respectively
007 166 HLT Halt
Comments

This program loads the contents of register B into memory location
HI = 000 and LO = 201, and the contents of register C into memory
location HI = 000 and LO = 200. The stack pointer is decremented by
one before each register’s contents is pushed on the stack. Once the
program has come to a halt, you can address the stack locations and
demonstrate that the register contents have been stored there.

EXAMPLE NO. 5
Purpose

The purpose of this example is to pop prestored data from the stack
region in memory, increment and decrement the contents of the popped
data, and then push it back on the stack. Register pair B is employed.

173

Program
LO Memory Octal

Address Instruction Mnemonic Comments
000 061 LXI SP Load the following two data bytes
into the stack pointer register
001 200 LO stack pointer byte
002 000 HI stack pointer byte
003 227 SUB A Clear the accumulator
004 301 POP B Replace the contents of registers B

and C by the contents of stack
locations M(SP+41) and M(SP),

respectively

005 004 INR B Increment contents of register B by
one

006 015 DCR C Decrement contents of register C
by one

007 305 PUSH B Replace the contents of memory lo-

cations M(SP—1) and M(SP—2)
by the contents of registers B and
C, respectively (Note: keep in
mind that the stack pointer has
been incremented by two as a
result of the POP B instruction at
address 004s)
010 166 HLT Halt

Data

LO Memory Memory
Address Data

200 222
201 333
Comments

When you execute this program, you will observe octal byte 221 in
memory location HI = 000 and LO = 200, and octal byte 334 in mem-
ory location HI = 000 and LO = 201. The initial contents of register B
are stored at LLO = 201; the initial contents of register C are stored at
LO = 200. Register B is incremented, and register C is decremented.
The stack pointer will first increment by two, and then decrement by
two. At the end of the program, the stack pointer will be at HI = 000
and LO = 200.

EXAMPLE NO. 6

Purpose

The purpose of this example is to monitor the state of the five flags,
after a simple arithmetic operation, with the aid of the PUSH PSW in-
struction.

174

Program
LO Memory Octal

Address Instruction Mnemonic Comments
000 081 LXI SP Load the following two data bytes
into the stack pointer register
001 202 LO stack pointer byte
002 000 HI stack pointer byte
003 227 SUB A Subtract the contents of the accu-

mulator from the conterits of the
accumulator, i.e., clear the accu-
mulator

004 365 PUSH PSW Replace the contents of memory lo-
cations M(SP—1) and M(SP—2)
by the contents of the accumu-
lator and the state of the five con-
dition flags, respectively

005 166 HLT Halt

Comments

This is a useful program that permits you to test how arithmetic and
logical instructions influence the five flags: sign, zero, auxiliary carry,
parity, and carry. After you perform an arithmetic operation at LO=
003, you push the contents of the flags and the accumulator onto the
stack. After the microcomputer has halted, you can go directly to the
stack region and determine the flag status. The 16-bit program status
word appears as follows in the stack:

I Accumulator Byte JszoAcoPic[
P DA WO G W WO DN M N S T

The accumulator byte is the HI register byte and is stored at LO = 201.
The flag byte is stored at LO = 200. The letters S, Z, AC, P, and C in
the above illustration refer to the sign, zero, auxiliary carry, parity, and
carry flags.

When you execute this program and examine memory location
LO = 200, you will observe the 8-bit byte 01010110, which signifies the
following:

Z =0 Result is positive
S =1 Result is zero
AC =1 (meaningless)
P =1 Result has even parity
C =0 Result has no carry

If you modify the instruction bytes at LO = 004 through LO =006 as
shown below and then execute the program, you will observe the 8-bit
byte 00000010 at LO = 200.

175

LO Memory Octal

Address Instruction Mnemonic Comments
004 074 INR A Increment the contents of the accu-
mulator by one
005 365 PUSH PSW Push the contents of the accumula-
tor and the flags onto the stack
006 166 HLT Halt

The accumulator byte at LO = 201 will be 001. These results signify
the following:

Result is positive

Result is not zero

Result has no carry from bit D3 to bit D4 in the accumula-
tor

Result has odd parity

0 Result has no carry

S o0oo

This type of program shows you the state of individual flags before you
attempt to use conditional branch instructions. All logical and most
arithmetic operations alter the flags. Once you know how a flag will
behave, you can employ the appropriate arithmetic/logical instructions
and conditional branch instructions in your main program.

EXAMPLE NO. 7

Purpose

The purpose of this example is to explore the conditional jump in-
structions and to determine when a jump occurs. (See Fig. 3-14.)

Program
LO Memory Octal
Address Instruction Mnemonic Comments
000 061 LXI SP Load the following two data bytes
into the stack pointer register
001 200 LO stack pointer byte
002 000 HI stack pointer byte
003 361 POP PSW Pop the « of the acc lator
and the flags from the stack
004 * * Operation code for any of the eight
conditional instructions (JNZ, JZ,
JNC, JC, JPO, JPE, JP, or JM)
005 004 LO memory address byte
006 000 HI memory address byte
007 166 HLT Halt
200 * * Flag data byte that will be popped
off stack
201 000 Accumulator data byte that will be

popped off stack

176

Main _program Main program

iz Nz]
flag= O flag = | - - flag = | l tlag = O

instruction

{A) JZ instruction. (B) JNZ instruction.
Fig. 3-14. Conditional instructions JZ and JNZ.

Prior to executing this program, you first load memory with a program
status word, the flag byte appearing at HI = 000 and LO = 200, and the
accumulator data byte at HI =000 and LO = 20L. You also load a
desired conditional jump instruction at memory address HI = 000 and
1O = 004. Having done so, execution of the program permits you to
test how different flag bits influence the execution of any of the eight
conditional jump instructions.

To demonstrate the program, you may wish to compare the JNZ and
JZ conditional jump instructions, which are represented schematically
in Fig. 3-14.

With a flag byte of 002 at LO = 200 and the JNZ instruction byte,
302, at LO = 004, you should observe that the executed program loops
between LO = 004 and LO = 006. The sign flag, S, is at logic 0, which
indicates to the 8080 chip that the “not zero” condition exists; a jump
to HI =000 and LO = 004 therefore occurs. If you change the flag
byte from 002 to 102, no jump will occur and the program will come
to a halt.

With a flag byte of 002 and the JZ instruction byte, you should ob-
serve that the program comes to a halt. When you change the flag to
102, the program loops between LO = 004 and LO = 006. This behav-
jor is predictable from the nature of the JZ instruction, in which a jump
occurs only if the zero flag, Z, is at logic 1.

We can summarize the program behavior for different popped flag
bytes and different conditional jump instructions as shown in the fol-
lowing list.

Conditional

Flag Byte at Flag Bit of Logic State of Jump Program
LO = 200 Interest Flag Bit Instruction Behavior
002 Z 0 INZ loops
102 Z 1 JNZ halts
002 Z 0 JZ halts
102 Z 1 JZ loops
002 C 0 JNC loops
003 C 1 JNC halts
002 C [} JC halts
003 C 1 JC loops
002 P 0 JPO loops
0086 P 1 JPO halts
002 P 0 JPE halts
006 P 1 JPE loops
002 S 0 JP loops
202 S 1 JP halts
002 S 0 ™ halts
202 S 1 M loops

In each case in the above listing, we have tested one of the flag bits for
the indicated conditional jump instruction.

EXAMPLE NO. 8

Purpose
The purpose of this example is to demonstrate the execution of a
program that contains a nest of subroutines.

Program No. 1
To change the stack pointer location to HI =003 and LO = 003,
use the following program:

LO Memory Octal

Address Instruction ~ Mnemonic Comments
000 061 LXP SP Load stack pointer with address
given by following two bytes
001 003 LO address byte of stack pointer
002 003 HI address byte of stack pointer
003 166 HLT Halt
The flowchart for this program is shown in Fig. 3-15.
RELOCATE STACK
POINTER TO
HI = 003
LO =003
l Fig. 3-15. Flowchart for Program No. 1.
HALT

178

Program No. 2

After executing Program No. 1, load the main program, which starts
at HI = 000.

LO Memory Octal

Address Instruction Mnemonic Comments

000 317 RST 1 Call subroutine at HI = 000 and
LO =010

001 166 HLT Halt

010 327 RST 2 Call subroutine at HI = 000 and
LO = 020

011 311 RET Return from subroutine

020 337 RST 3 Call subroutine at HI = 000 and
LO =030

021 311 RET Return from subroutine

030 000 NOP No operation

031 311 RET Return from subroutine

The flowchart for Program No. 2 is shown in Fig. 3-16.

Comments

Since this example demonstrates how the microcomputer handles
nested subroutines, the program execution is listed below in full detail.

Address
Bytes Data

HI LO Bus Mnemonic Comments

000 000 317 RST 1 Store program counter on stack, then jump
to subroutine at LO = 010

003 002 000 Program counter HI address byte

003 001 001 Program counter LO address byte

000 010 327 RST 2 Store program counter on stack, then jump
to subroutine at LO = 020

003 000 000 Program counter HI address byte

002 377 011 Program counter LO address byte

000 020 337 RST 3 Store program counter on stack, then jump
to subroutine at LO = 030

002 376 000 Program counter HI address byte

002 375 021 Program counter LO address byte

000 030 000 NOP No operation

000 031 31 RET Pop program off of stack, i.e., return from

Subroutine 3

Let us pause at this point in the program execution and examine what
has happened so far. We have called three subroutines. Three sets of
program counter bytes have been stored on the stack and the stack
pointer has been shifted down. We have now executed our first RET
instruction and are ready to observe the program counter bytes being
popped off the stack.

002 375 021 Program counter LO address byte
002 376 000 Program counter HI address byte

179

MAIN PROGRAM SUBROUTINE | SUBROUTINE 2
' . ~ (

1 | '
CALL SUBROUTINE| | *x CALL SUBROUTINE : X CALL SUBROUTINE
Hi = 000 Lo=oto|! Hi= 000 LO=020 HI= 000 LO=030

3K STACK related oparation

Fig. 3-16. Flowchart for Program No. 2.

000 021 311 RET Pop program counter off of stack, i.e., return
from Subroutine 2

002 377 011 Program counter LO address byte

003 000 000 Program counter HI address byte

000 011 311 RET Pop program counter off of stack, i.e., return
from Subroutine 1

003 001 001 Program counter LO address byte

003 002 000 Program counter HI address byte

000 001 000 HLT Halt

The above program should convince you that you can nest any number
of subroutines. The only requirement is that you provide sufficient
read/write memory for the stack. The microcomputer will handle all of
the bookkeeping chores associated with the call and return instructions.
You may now wish to refer again to the flowchart for Program No. 2.

EXAMPLE NO. 9

Purpose

The purpose of this example is to demonstrate how you can deter-
mine the consequences of different accumulator instructions.

Some 8080 Accumulator Instructions

Many of the 8080 instructions involve the accumulator register,
which is also known as register A. In this example, you are provided
with a simple program that will allow you to test a variety of accumula-
tor instructions, which include some of the following:

Octal
Instruction Mnemonic Comments

007 RLC Rotate contents of accumulator left one posi-
tion

or7
027
037
047

057
072 <B2> <B3>

074
075
076 <B2>
170
171
172
173
174
175
176

177
200
206

207
210
217
220

227
230

240

247

RRC

RAL

RAR
DAA
CMA
LDA

INR A
DCR A
MVI A
MOV AB
MOV AC
MOV AD
MOV AE
MOV AH
MOV AL

MOV AM

MOV AA
ADD B

ADD M

ADD A
ADC B
ADC A
SUB B

SUB A
SBB B

ANA B
ANA A

Rotate contents of accumulator right one
position

Rotate contents of accumulator left one posi-
tion through carry flag

Rotate contents of accumulator right one
position through carry flaz

Decimal adjust accumulator

Complement the contents of the accumulator

Load the accumulator direct with the con-
tents of the memory address given by the
<B2> and <B3> address bytes

Increment the contents of the accumulator
by one

Decrement the contents of the accumulator
by one

Load the accumulator with the 8-bit byte
that immediately follows

Move the contents of register B to the
accumulator

Move the contents o
accumulator

Move the contents of
accumulator

Move the contents of
accumulator

Move the contents of register H to the
accumulator

Move the contents of register L to the
accumulator

Move the contents of the memory location,
whose address is given by the register
pair H and L, to the accumulator

Move the contents of the accumulator to the
accumulator

Add the contents of register B to the con-
tents of the accumulator

Add the contents of the memory location,
whose address is given by the register pair
H and L, to the contents of the accumu-
lator

Add the contents of the accumulator to the
contents of the accumulator

Add carry bit and contents of register B to
the c of the lator

Add carry bit and contents of accumulator
to the contents of the accumulator

Subtract the contents of register B from the
contents of the accumulator

Clear the accumulator

Subtract the carry bit and contents of regis-
ter B from the contents of the accumulator

AND the contents of register B with the con-
tents of the accumulator

A the contents of the accumulator with
the contents of the accumulator

=S

register C to the

N

register D to the

-

register E to the

Octal

Instruction Mnemonic Comments

250 XRA B Exclusive-or the contents of register B with
the contents of the accumulator

257 XRA A Clear the accumulator

260 ORA B Or the contents of register B with the con-
tents of the accumulator

267 ORA A OR the contents of the accumulator with the
contents of the accumulator

270 CMP B Compare the contents of register B with the
contents of the accumulator

276 CMP M Compare the contents of the memory loca-

277
306 <B2>

316 <B2>

326 <B2>

336 <B2>

346 <B2>

356 <B2>

361
366 <B2>

376 <B2>

Program

tion, whose address is given by the regis-
ter pair H and L, with the contents of the
accumulator

CMP A Compare the contents of the accumulator
with the contents of the accumulator

ADI Add the 8-bit byte that immediately follows
to the contents of the accumulator

ACI Add the 8-bit byte that immediately follows
and the carry bit to the contents of the
accumulator

SUI Subtract the 8-bit byte that immediately
follows from the contents of the accumu-
lator

SBI Subtract the 8-bit byte that immediately
follows and the carry bit from the con-
tents of the accumulator

ANI AND the 8-bit byte that immediately follows
with the contents of the accumulator

XRI Exclusive-or the 8-bit byte that immedi-
ately follows with the contents of the
accumulator

POP PSW Pop the stack and store the contents in the
accumulator and the flag flip-flops

ORI OR the 8-bit byte that immediately follows
with the contents of the accumulator

CPI Compare the 8-bit byte that immediately
follows with the contents of the accumu-
lator

LO Memory Octal

Address
000

001
002
003
004
005
008

182

Instruction ~ Mnemonic

061 LXI SP Load the following two data bytes
into the stack pointer register

000 LO stack pointer byte

001 HI stack pointer byte

227 SUB A Clear the accumulator

016 MVI C Move following byte into register C
002 Timing byte for register C

315 CALL Unconditional call of subroutine

located at memory address given
by following two bytes

007 100 LO memory address byte

010 000 HI memory address byte

011 007 RLC Rotate the contents of the accumu-
lator left one position

012 074 INR A Increment the contents of the accu-
mulator by one

013 000 NOP No operation

014 000 NOP No operation

015 000 NOP No operation

016 323 ouT Generate device select pulse that al-

lows an 8-bit latch to latch the
contents of the accumulator

017 000 000 Device code for 8-bit latch

020 303 JMP Unconditional jump to location given
by following two address bytes

021 004 LO memory address byte

022 000 HI memory address byte

Subroutine (Generates a Time Delay)
LO Memory Octal

Address Instruction ~ Mnemonic Comments
100 021 LXI D Move following two bytes into reg-
isters E and D, respectively
101 301 Timing byte for register E
102 150 Timing byte for register D
103 035 DCR E Decrement contents of register E by
‘ one
104 302 JNZ If register E is 000s, ignore this

instruction; otherwise, jump to
memory address given in follow-
ing two bytes

105 103 LO address byte

108 000 HI address byte

107 025 DCR D Decrement contents of register D by
one

110 302 INZ If register D is 000s, ignore this

instruction; - otherwise, jump to
memory address given in follow-
ing two bytes

111 103 LO address byte

112 000 HI address byte

113 015 DCR C Decrement contents of register C by
one

114 302 JNZ If register C is 000s, ignore this

instruction; otherwise, jump to
memory address given in follow-
ing two bytes

115 100 LO address byte

116 000 HI address byte

117 311 RET Unconditional return from this sub-
routine

Comments

This program requires an 8-bit output latch and display to permit
you to observe the results of the arithmetic and logical operations that
you perform on the accumulator contents. Refer to the circuits de-
scribed in Chapter 7.

The subroutine starting at HI = 000 and LO = 100 generates time
delays ranging from 0.200 second to 51.2 seconds through variations in
the timing byte for register C at LO memory address 005.

If you execute the program as it stands, you will observe that the out-
put display quickly fills up with logic 1’s, starting from right to left. At
memory addresses 011 through 015, you have five program bytes with
which you can perform different types of accumulator operations. Thus,
with the program segment:

011 076 MVI A Load the following byte into the
accumulator

012 360 360 Data byte corresponding to the
binary word 11110000,

013 346 ANI AND the data that follows with the
contents of the accumulator

014 252 252 Data byte corresponding to the
binary word 10101010,

015 000 NOP No operation

you should observe that the AND operation between the byte 11110000
and the byte 10101010 produces the logical result 10100000, an opera-
tion that proceeds bit by bit. By changing the logical instruction at
LO =013, you can demonstrate the behavior of the or and exclusive-
OR instructions on the same initial data.

If you execute the following program segment contained within the
main program:

011 074 INR A Increment the contents of the accu-
mulator by one

012 067 STC Set the carry flag to logic one

013 077 CMC Complement the carry flag

014 047 DAA Decimal adjust the accumulator

015 000 NOP No operation

you should observe a decimal output count from 0 to 99 on the output
display. The 047 instruction is the decimal adjust accumulator instruc-
tion, which converts the result of adding two bed numbers in binary
back to a pair of packed bed numbers. It is not a binary-to-bed conver-
sion instruction as such.

EXAMPLE NO. 10

Purpose
The purpose of this example is to demonstrate the BCD Input and
Direct Conversion to Binary Routine, which is No. 80-147 in the Intel

184

Microcomputer User’s Library. This program was developed by M. H.
Gansler.

Program

LO Instruc-
Memory tion

Address Byte Mnemonic Description

000 076 MVI A Move immediate byte to the accumulator

001 * Two-bed-digit data byte that is to be con-
verted to an 8-bit binary number

002 117 MOV CA Move contents of accumulator to register C

003 346 ANI Anp immediate byte with contents of the
accumulator

004 017 017 Mask byte that masks out the most signifi-
cant bed digit

005 137 MOV E,A Move contents of accumulator to register E

006 171 MOV AC Move contents of register C to the accu-
mulator

007 346 ANI AND immediate byte with contents of the
accumulator

010 360 360 Mask byte that masks out the least signifi-
cant bed digit

011 017 RRC Rotate the accumulator contents one bit
to the right and into the carry flag

012 017 RRC Rotate the accumulator contents one bit
to the right and into the carry flag

013 117 MOV CA Move contents of accumulator into regis-
ter C

014 017 RRC Rotate the accumulator contents one bit to
the right and into the carry flag

015 017 RRC Same as above

016 201 ADD C Add contents of register C to the contents
of the accumulator

017 007 RLC Rotate the accumulator contents one bit to
the left and into the carry flag

020 203 ADD E Add contents of register E to the contents
of the accumulator

021 323 ouT Output contents of accumulator to output
port given in the next instruction byte

022 000 000 Device code for output port zero

023 166 HLT Halt

Comments

The program starts with the two-bed-digit number in the accumula-
tor. The result is stored in the accumulator.

To convert the program into a subroutine, substitute the RET in-
struction for the HLT instruction at LO = 023. The program can be
located anywhere in memory.

If you attempt to execute this program, you may wish to compare
your results with those shown below:

185

Decimal Number

Purpose

1
10
20
50
75
80
90
99

Observed Binary Number
00000001
00001010
00010100
00110010
01001011
01010000
01011010
01100011

EXAMPLE NO. 11

The purpose of this example is to demonstrate a 16-digit bed addi-
tion subroutine, in which two bcd numbers are added together to
produce a result that is less than or equal to 9,999,999,999,999,999. This
program is listed and described in considerable detail in the uCOM-8
Software Manual and is given here courtesy of NEC Microcomputers,
Inc. The program is started at memory location HI =003 and

LO =024.
Program

LO Memory
Address

024

025
026

027

030
031

ADDI16: 032

033

034
035

036
LOOP2: 037

186

Instruc-

tion
Byte
021

347
003

041

357
003

365

305

016
010

257
032

Mnemonic
LXI D

LXI H

PUSH PSW

PUSH B
MVI C

XRA A
LDAX D

Description

Load immediate two bytes into registers
E and D, respectively

Registers D and E contain the 16-bit
address of the least significant digits
in the augend

Load immediate two bytes into registers
L and H, respectively

Registers H and L contain the 16-bit
address of the least significant digits
in the addend

Push the program status word onto the
stack (NoTE: Make certain that you
have loaded the stack pointer before
you execute this program.)

Push the contents of register pair B,C
onto the stack

Move the immediate byte into register C

Binary number equal to one-half the
number of bed digits. Thus, for 16
bed digits, the octal code would be
010

Clear the accumulator and carry flag

Load the accumulator from the memory
location addressed by register pair
DE

040 216 ADC M Add the contents of the memory loca-
tion addressed by register pair HL
to the contents of the accumulator

041 047 DAA Decimal adjust the contents of the ac-
cumnulator
042 022 STAX D Store the contents of the accumulator

into the memory location addressed
by register pair D,E

043 015 DCR C Decrement contents of register C by one

044 312 12 Jump to the memory location DONE2
if the contents of register C are zero

045 054 LO address byte of DONE2

016 003 HI address byte of DONE2

047 053 DCX H Decrement contents of register pair H,L
by one

050 033 DCX D Decrement contents of register pair D,E
by one

051 303 JMP Jump to the memory location LOOP2

052 037 LO address byte of LOOP2

053 003 HI address byte of LOOP2

DONE2: 054 301 POP B Pop contents of register pair B,C off of

stack

055 361 POP PSW Pop the program status word off of stack

056 172 MOV AD Move contents of register D to accumu-
lator

057 323 ouT Output contents of accumulator

060 001 001 Device code of port one

061 173 MOV AE Move contents of register E to accumu-
lator

062 323 OouUT Output contents of accumulator

063 000 000 Device code of port zero

064 166 HLT Halt

Discussion

This program starts with a 16-digit bed augend in LO memory ad-
dresses 340 through 347, with the least significant bed digit in location
347 and the most significant bed digit in location 340. The 16-digit bed
addend is initially in LO memory addresses 350 through 357, with the
least significant bed digit in location 357 and the most significant bed
digit in location 350. The terms addend and augend are defined as
follows:2

augend—In an arithmetic addition, the number increased by having
another number (called the addend) added to it.

addend—A quantity which, when added to another quantity (called the
augend), produces a result called the sum.

Program execution starts at HI = 003 and LO = 024. The sum replaces
the augend.

Consider an augend of 1,000,000,000,000,099 and an addend of
8,000,000,000,000,001. The memory map for these two 16-digit bed
numbers is as follows (all at HI = 003):

187

LO Memory
Address
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357

BCD Octal

Digits Code
1,0 020
0,0 000
00 000
0,0 000
0,0 000
0,0 000
0,0 000
9,9 231
8,0 200
0,0 000
0,0 000
0,0 000
00 000
0,0 000
0,0 000
0,1 001

Binary
Code
00010000
00000000
00000000
00000000
00000000
00000000
00000000
10011001
10000000
00000000
00000000
00000000
00000000
00000000
00000000
00000001

When these two numbers are added, the sum (9,000,000,000,000,100)
replaces the augend in memory locations HI = 003 and LO =340 to

HI =003 and LO = 347.

You should observe the following sequence of bed numbers in suc-

cessive memory locations starting at LO = 340:

90
00
00
00
00
00
01
00

which correspond to the 16-digit bed number 9,000,000,000,000,100.
You may wish to add the following bed numbers and compare your
results with the predicted sums.

Augend
3,000,000,000,000,100
0,000,000,000,123,456
0,000,000,000,927,928
9,999,999,999,999,999

Purpose

Addend
1,000,000,000,000,001
0,000,000,000,240,833
0,000,000,000,844,992
0,000,000,000,000,001

EXAMPLE NO. 12

Sum
4,000,000,000,000,101
0,000,000,000,364,289
0,000,000,001,772,920
0,000,000,000,000,000

The purpose of this example is to demonstrate the Binary to BCD
Subroutine, No. 8-67 in the Intel Microcomputer User’s Library. The

program was developed by Niels S. Gundestrup of the Geophysical

Isotope Laboratory in Denmark.

Instruc-
LO Memory tion
Address Byte Mnemonic

222 021 LXI D
223 *
224 *
225 041 LXI H
226 340
227 003

BNBCD: 230 365 PUSH PSW
231 305 PUSH B
232 325 PUSH D
233 345 PUSH H
234 353 XCHG
235 001 LXI B
236 360
237 330
240 315 CALL
241 276
242 003
243 001 LXI B
244 030
245 374
246 315 CALL
247 276
250 003
251 001 LXI B
252 234
253 377
254 315 CALL
255 276

Description

Move immediate two bytes into register
pair D. This is the 16-bit binary
number that will be converted to a
5-bed-digit number

Least significant 8 bits of 16-bit binary
number

Most significant 8 bits of 16-bit binary
number

Move immediate two bytes into register
pair D. This is the memory address
of the most significant digit (MSD)
of the 5-digit bed number. The re-
maining four digits are stored in suc-
cessive memory locations, one digit
per location

L register byte

H register byte

Push contents of program status word
on stack

Push contents of register pair B on stack

Push contents of register pair D on
stack

Push contents of register pair H on
stack

Exchange the contents of register pair
H with the contents of register pair
D

Move immediate two bytes into register
pair B (10,000)

C register byte

B register byte

Call subroutine DECNO, which per-
forms the binary to bed conversion
(MSD)

LO address byte

HI address byte

Move immediate two bytes into register
pair B (1000)

C register byte

B register byte

Call subroutine DECNO

LO address byte

HI address byte

Move immediate two bytes into register
pair B (100)

C register byte

B register byte

Call subroutine DECNO

LO address byte

LO Memory
Address
256
257

260
261
262
263
264
265

266
267
270

271

DECNO: 276

305
306
307
310

311
312

313
314
315

316
Comments

Instruc-
tion
Byte
003
001

366
377
315
276
003
175

306

000
022

341
321
301
361
311
076
000
325
135

124
074
011
332
301
003
075

153
142

321
022
023
311

Mnemonic

LXI B

JC

DCR A

MOV L.E
MOV HD

POP D
STAX D
INX D
RET

Description

HI address byte

Move immediate two bytes into register
pair B (10)

C register byte

B register byte

Call subroutine DECNO

LO address byte

HI address byte

Move contents of register L to the
accumulator

Add immediate byte to contents of
accumulator

[Note: 260 if ASCII code is desired]

Store contents of accumulator in the
memory location addressed by regis-
ter pair D

Pop register pair H off stack

Pop register pair D off stack

Pop register pair B off stack

Pop program status word off stack

Return from subroutine

Move following byte to accumulator

[Note: 260 if ASCII code is desired]

Push register D on stack

Move contents of register L to register

E
Move contents of register H to register
D

Increment contents of accumulator by
one

Add contents of register pair B to con-
tents of register pair H and store in
register pair H

Jump if carry flag is at logic 1

LO address byte

HI address byte

Decrement contents of accumulator by
one

Move contents of register E to register L

Move contents of register D to register

Pop register pair D off stack

Store contents of accumulator in the
memory location addressed by regis-
ter pair D

Increment contents of register pair D
by one

Return from subroutine DECNO

This program starts with a 16-bit binary number in register pair
D,E. The number is converted into a 5-bcd-digit number that is stored

190

starting at HI = 003 and LO = 340. The most significant bed digit is
stored at this location, and the remaining four digits in subsequent lo-
cations. The least significant bed digit is stored at LO = 344. The pro-
gram BNBCD starts at HI = 003 and LO = 230; however, the 16-bit
binary number must exist in register pair D, and the location of the
most significant digit in register pair H. We have used LXI instructions
to set this information in the registers before BNBCD is executed.

The output can be either as decimal numerals or as 8-bit ASCIL
code, with the most significant bit (the parity bit) at logic 1. A slight
error in the original program has been corrected to permit the LSD to
be stored in ASCII code.

TEST

This test probes your understanding of the programming techniques
and concepts that are described in this chapter. Please write your an-
swers on a separate piece of paper.

3.1, Explain the difference between the following pairs of concepts:
instruction vs. operation
instruction vs. program
assembly language instruction vs. mnemonic instruction
mnemonic instruction vs. machine language instruction
machine code vs. mnemonic code
register vs. register pair
program counter vs. stack pointer
bit vs. byte
byte vs. word
word vs. memory address
HI address byte vs. LO address byte
program vs. subroutine
routine vs. program
instruction register vs. instruction decoder
jump vs. call
zero flag vs. sign flag
carry flag vs. auxiliary carry flag
PUSH vs. POP
conditional jump vs. unconditional jump
label vs. operand
parity flag vs. sign flag
accumulator vs. ALU
data byte vs. address byte
octal code vs. hexadecimal code
increment vs. decrement
OR vs. exclusive OR
subtract vs. compare
stack vs. stack pointer
the IN vs. OUT instructions

191

3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.

3-9.

3-10.

the B register pair vs. the H register pair
the MOV vs. MVI instructions

the ADD vs. ADC instructions

carry vs. borrow

Summarize the five basic instruction groups and provide examples of
instructions within each group.
Write a simple microcomputer program in both machine code and in
assembly language. With assembly language, use operands and labels.
Describe the five condition flags and the logic states that characterize
specific conditions.
Explain the difference between octal code and hexadecimal code, and
give several examples of 8-bit data bytes written in each type of code.
Give an example of how the PUSH instruction behaves.
Give an example of how the POP instruction behaves.
List at least nine different ways in which data can be loaded into the
accumulator.
Describe the four different types of rotate instructions in the 8080
microprocessor instruction set.
What 8080 microcomputer instructions would you use to:

Clear the accumulator

Set the accumulator to 11111111,

Output data from the accumulator to an output device

Input data into the accumulator from an input device

Move data from register E into the accumulator

Move data from the accumulator into memory location H = 0004

and L = 2004
Move data into the accumulator from memory location H = 000
and L = 2014

Move data byte 10101110, into the accumulator

Check the logic state of each bit in the accumulator

Multiply the contents of the accumulator by 4

Divide the contents of the accumulator by 8

Store the contents of the accumulator in a memory location stored in
register pair B and C

Load the accumulator from a memory location stored in register pair
Dand E

Move the contents from the accumulator to a memory location

Set the carry bit to logic 0

Use the least number of instructions that you can in each case.

Your performance on this test will be acceptable if you can answer
all of the above questions correctly in a four-hour closed-book exami-
nation.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you
would be able to do the following:

® Explain what the difference is between an instruction, operation,
program, machine code instruction, assembly language instruction,
and mnemonic instruction.
You have learned the distinctions between the above terms in the text
provided in this chapter.

@ Define the terms: assemble, bit, byte, flag, mnemonic symbol, de-
vice code, HI address byte, LO address byte, increment, decre-
ment, label, jump, call, return, label, operand, carry flag, parity
flag, zero flag, sign flag, register, register pair, subroutine, two-
byte instruction, three-byte instruction, unconditional operation,
conditional operation, branch instruction, stack, stack pointer, pro-
gram counter, accumulator, ALU, data byte, and instruction
register.

Definitions for these terms have been provided at the beginning and
throughout this chapter.

Classify the 8080 instructions into five groups.
The five groups are: data transfer, arithmetic, logical, branch, and a
final group composed of stack, I/0, and machine control instructions.
An extensive list of the instruction set has been provided based on
these five groups.

Explain how an 8-bit instruction can be written in both octal code
and hexadecimal code.
This has been discussed in a section within this chapter.

® List the mnemonic codes, following the Intel Corporation recom-
mendations, for at least ten different 8080 instructions.
There are 78 different instructions, so this objective should be rather
easy to fulfill.

@ Explain the difference between machine language and assembly

language.
We have done this near the end of the chapter.

Identify the HI address byte and the LO address byte in a 16-bit
memory address word.
You should have no difficulty with this objective.

Explain what the differences are between a bit, a byte, a word, and

an address.
Definitions have been provided, with reference to the 8080 micro-
processor.

List at least ten different registers that can be found in the 8080
microprocessor chip.
A list is provided in this chapter. The most important registers are the
accumulator, B, C, D, E, H, L, stack pointer, and program counter
registers, which total nine.

193

® Explain how the microprocessor decodes:

194

instruction classes

registers

register pairs

immediate operations

branch operations

condition flags

increment operations

decrement operations

Much of this chapter has been devoted to this subject.

CHAPTER 4

Generating a Device
Select Pulse

In this chapter, you will learn how to generate device select pulses
from an 8080 microcomputer. These pulses will be employed in subse-
quent chapters in this Bugbook to latch output data and also to allow
data to be input into the accumulator. The 8080 microprocessor is
very powerful in that it can generate up to 256 different output device
select pulses and 256 different input device select pulses. This should
be more than enough for any reasonable application for the 8080 micro-
processor.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

@ Identify the OUT and IN instructions in an 8080 microprocessor
program.

® Draw a schematic diagram for a circuit that can generate up to
256 different device select pulses.

® Explain how device select pulses are generated by the 8080 micro-
processor.

® Write simple microcomputer programs that employ IN or OUT
instructions.

® Draw a block diagram for a 74154 four-line-to-sixteen-line de-
coder.

195

DEFINITIONS

device select pulse—A software-generated positive or negative clock
pulse from a computer that is used to strobe the operation of one or
more I/O devices, including individual integrated-circuit chips.

I/O—Abbreviation for input/output.*

1/ 0O device—Input/output device. Any digital device, including a single
integrated-circuit chip, that transmits data or strobe pulses to a com-
puter or receives data or strobe pulses from a computer.

machine cycle—A subdivision of an instruction cycle, which is the time
required to execute a complete instruction. A machine cycle is the
smallest period required to perform a group of related actions dur-
ing the execution of an instruction cycle.

8080 MICROPROCESSOR 1/O INSTRUCTIONS
There are only two 8080 microprocessor input/output instructions:

333 <B2> IN Generate a device select pulse to allow an 8-bit
data byte to be read from the input device and
replace the contents of the accumulator.

323 <B2> OUT Generate a device select pulse to allow an 8-bit
data byte present in the accumulator to be sent
to an output device. The contents of the accumu-
lator remain unchanged.

These two instructions have the following form:

1/0 Operation Code
<et> L L i 1 1 1 1

<B2> Device Code
" |

where the device code is an 8-bit byte that specifies one among 256
different devices. Both of the above instructions are quite similar to
each other. The only difference between the two revolves around what
occurs in the accumulator. With the input instruction, the accumulator
contents change, whereas with the output instruction, they do not.
The term device select pulse can be defined in the following manner:

device select pulse—A software-generated positive or negative clock
pulse from a computer that is used to strobe the operation of one or
more I/O devices, including individual integrated-circuit chips.

The importance of the device select pulses resides in their use to strobe
input data into the accumulator during an input instruction or to strobe
the latching of output data from the accumulator during an output
instruction. However, they can also be used to strobe the operation

196

of I/O devices under conditions where data transfer to or from the
accumulator does not occur. Thus, as pointed out in some detail in
Chapter 1, device select pulses are single clock pulses that can be
used in a variety of ways, for example, to simulate the behavior of a
555 astable, a pulser, or a 74121 or 555 monostable.

The mnemonics for the above two instructions are IN <B2> and
OUT <B2>, and each requires ten clock cycles, or 5 us, to execute.
Neither instruction affects any of the five condition flags in the 8080
microprocessor. The symbol <B2> indicates that a second instruction
byte, in this case a device address, must be present in the program
immediately following the IN or OUT instruction code.

DEVICE SELECT PULSE DECODING

The generation of 256 different device codes is accomplished with
the aid of the eight least-significant bits in the 16-bit memory address
word, i.e., the LO memory address byte, or the eight most-significant
bits in the memory address word, ie., the HI memory address byte.
Either 8-bit byte is acceptable for the generation of the device code
in the 8080 microprocessor; we have used the LO address bus byte in
our examples.

Decoders, such as the 74154 four-line-to-sixteen-line decoder, the
pin configuration and block diagram of which are given in Fig. 4-1,
decode the 8-bit device code into as many as 256 different device select
pulses. A single decoder can provide sixteen different pulses. Four bits
of the 8-bit device code are applied at the inputs A through D at pins
23 to 20. The sixteen outputs are obtained at pins 1 through 11 and 13
through 17. The two strobe inputs, G1 and G2, must both be at logic 0
to enable the chip. The unique output state is at logic 0; the remaining
fifteen outputs are all at logic 1.

INPUTS ouTPUTS
Ve _
1] zu {5 U
@ C O G2 Gl 15 14 13 12 1
4o n |
|
L‘xzsass7sgno
'ﬁiﬁsftﬂsﬂ%bfh [o] fuf
GND
QUTPUTS
(A) Pin configuration. (B) Block diagram.

Fig. 4-1. The 74154 four-line-to-sixteen-line decoder chip.

One 74154 Decoder, Sixteen Device Select Pulses

A variety of different strategies can be employed to decode the 8-bit
device code and generate individual device select pulses. The simplest
decoder circuit is shown in Fig. 4-2: Sixteen different device select
pulses are generated with the aid of the four least significant bits in
the LO memory address word and either the IN or the OUT synchro-
nization pulse from the 8080 microcomputer. The IN or OUT pulse
strobes the decoder at G1; G2 is tied to logic 0. The device select pulse
generated with this circuit is a negative clock pulse, which for some
uses must be inverted with the aid of a 7404 hex inverter chip.

Most simple microcomputer interface circuits will not require more
than sixteen device select pulses.

Acceptable device codes for the diagram of Fig. 4-2 include the
following, where X indicates that either a logic 0 or logic 1 is accept-
able in the indicated bit position:

XXXX0000 XXXX1000
XXXX0001 XXXX1001
XXXX0010 XXXX1010
XXXX0011 XXXX1011
XXXX0100 XXXX1100
XXXX0101 XXXX1101
XXXX0110 XXXX1110
XXXX0111 XXXX1111

Separate decoder chips must be used for input and output devices.
Thus, a pair of 74154 decoders permits you to select up to sixteen dif-
ferent input devices and sixteen different output devices.

}Six’nn different
device select pulses.

r
500n8

Fig. 4-2. A simple decoder circuit that can generate sixteen different device select pulses.
The decoding of the address bus is not absolute.

198

S e 74154 Decoders, 256 Device Select Pulses

A circuit that requires a single TN or OUT connection and can gen-
erate up to 256 different device select pulses is shown in Fig. 4-3. The
most significant four bits in the 8-bit LO memory address word select
the decoder on the right, whereas the four least significant bits select
the specific output channel on the selected decoder. All device select
pulses are negative clock pulses.

A3 D w
A2 [4
Al L]
AO A
0—f62
SN74154 No.I5
8
p—-qa
20 pry 012 o—{e2
AT—10 p{ 3 6l
As—> c 15
as—>1®° = SN74154 No.14
aa-2a _—
o
SN74I54 |— 8 256 different
— A device select
— pulses.
_ o-e2 = o —oz
N
or L—81g (I; T
out SN74164 No.13
o
o
.
.
.
0
c
B
0 ~—02

SN 74154 No. O

Fig. 4-3. Diagram of a circuit that can generate 256 different device seloct pulses.

Other Decoder Circuits

There are many other methods which may be used to generate the
OUT and IN device select pulses associated with microcomputer I/O
devices. While the hardware may change and may be different from
application to application, the software is always the same. You always
specify either an OUT (323) or IN (333) instruction and a device
code.

The decoder circuit shown in Fig. 4-4 demonstrates how two 74154
decoder chips and appropriate two-input NoRr gates can be used to
also generate a unique one-of-256 device select pulse for each device
code. While this circuit requires fewer decoders than the scheme
shown in Fig. 4-3, a NoR gate is needed for each device select pulse
generated. You could also use or gates if you required negative rather

+8v GND
24 12
ar 224 15 HI—
T —
a5 —22] —
a4 —234 _—
74184 [—
No.2 7
o—edee —
ol —
o
ol \ A bevice
sor 1 2 select
pulse
7402
18 15T (or 7432
) OR gate)
0—e2
—
74154 |—
No.1 —
sf— ‘J
A3 —:I" —
a2 —
ne B
AO o}
24 12
+8V GND

Fig. 4-4. Another circuit that can generate 256 different device select pulses. Only one of the
256 NOR gates required is shown.

than positive device select pulses. Fig. 4-5 shows how you can gen-
erate the output device select pulses 000, 001, 002, 003, and 004; the
scheme decodes only output instructions. You must duplicate the Fig.
4-5 hardware for input device address decoding.

The preceding decoder schemes are used to generate input and out-
put device select pulses for the purpose of transferring data or gen-
erating control signals only when a number of devices are located close
together, usually on the same printed-circuit board. Peripheral or re-
mote units usually have a simple decoder for the specific device. For
example, if you wish to generate a unique device address, such as 371,
and either an input or output device select pulse, you would employ
the circuit given in Fig. 4-6.

You could use a pair of 7485 comparator chips to produce a unique
device select pulse, such as the output pulse DS 306, only when both
sets of eight inputs exactly match (Fig. 4-7). This is a very flexible
circuit that is used in systems where the device code must be changed.

If you require several device select pulses, combinations of the pre-
ceding schemes and decoders are effective. The circuit shown in Fig.
4-8 can be used to generate device addresses 070, 071, 072, and 073.
The 7430 eight-input NaND gate decodes the A2 to A7 address bits.
When the correct combination of address inputs appear at this gate,
the 7442 decoder is enabled at input D (pin 12). The C input to the
7442 chip is used as another enable, in this case, either the IN or OUT

+3Vv GND
Joa L2
a7 —221D
P 4
as —24n
as—Ep
74184 —D_
0—He2 7402
LE ! n
13
2}
ouT L i
10
o :
7402
0262 P
74154 "_;Dn‘—
LY
JURET-] PR . 7402
i2—fdc 2 ,
Al —h2d B 1 2
e
'24 2 7402
+3V GND

Fig. 4-5. Decoding scheme for the generation of output select pulses 000, 001, 002, 003,
and 004.

201

-~00 - ——= -

7430
. 404
A0
2 | Input
N — bs 371
7402
= " Output
ou L 08 371
T402

Fig. 4-6. Absolute decoder circuit based upon the use of a 7430 8-input NAND gate chip.

pulse. A pair of comparators could have been used in place of the
7430 chip and associated 7404 inverters.

While the hardware has changed in the preceding decoding circuits,
the basic software necessary to generate the addresses and IN and
OUT pulses remains the same.

A SAMPLE MICROCOMPUTER PROGRAM

A simple program that demonstrates the use of the OUT instruction
is given on the following page.

+3V GND

7404
— u
b
S 306
ouT 3

7432

Fig. 4-7. Absolute decoder circuit based upon the use of a pair of 7485 4-bit comparator chips.

202

A8 ——————————— 7430
+5V GND

O-=-=-00
»
@™

[, o
IN or OUT =—m~——yC
Al 248
A0-24A

i

D5 073
7442

Fig. 4-8. Absolute decoder circuit based upon the use of 7430 8-input NAND gate and 2
7442 decoder.

LO Memory Octal

Address Instruction Mnemonic Comments
000 076 MVI A Move the following instruction byte into
the accumulator
001 023 023 Data byte
002 323 ouT Generate a device select pulse to output

eight bits of accumulator data to the de-
vice with the device code given in the

following byte

003 321 321 Device code for output device

004 303 Mp Unconditional jump to the memory location
given in the following two bytes

005 000 LO memory address byte

006 000 HI memory address byte

This simple program places data byte 023 into the accumulator; sends
the contents of the accumulator to output device 321; and finally re-
turns to LO memory address 000, at which point the program repeats
itself. The HI memory address is 000, and all of the above numbers
are in three-digit octal code.

If you were to apply an oscilloscope to an 8080 microcomputer and
observe the execution of the above program, you would observe the
timing diagrams shown in Fig. 4-9. The contents of the accumulator
are set first and remain unchanged throughout the program; the ac-
cumulator byte has a value of 00010011, or 023 in octal code. As the
OUT instruction is executed, the LO memory address lines assume
the value corresponding to the device code, which is 321 in the above
program. This value is held on the address lines for 1.3 ps, during
which time the OUT control signal is generated, typically for 500 ns

203

Memory Address
>
o
1
]

1}
1
[}
|
[
|
|
1
|
1
|

D7 2

D6 2

D5 2
D4
D3 =2
D2 2
DI

Accumulator

Do
Time —

Fig. 4-9. Timing diag! pplicable for the ion of a device select pulse and the

latching of accumulator output during a 5-ps OUT instruction. Information is transferred from

the accumulator to an output device and a device select pulse is provided for a period of
only 500 ns.

in an 8080 microcomputer that is operating at 2 MHz. The combina-
tion of the OUT control signal and the eight address lines is sufficient
to generate 256 different device select pulses, as shown in Fig. 4-3.
Data in the accumulator remains the same during the entire 5-us OUT
instruction. The device select pulse generated during this period can
be used to latch this accumulator information, as will be discussed in
Chapter 7.

204

|
|
|
i
i

DEVICE SELECT PULSES AS CONTROL PULSES

Device select pulses are not only used for strobing data transfer
between the microcomputer and input/output devices. They may be
used as control pulses to start or stop machines, clear devices, open
valves, etc. The circuit in Fig. 4-10 shows how a device select pulse
can be used to clear a 7490 decade counter integrated-circuit chip.
Whenever you wish to clear the counter, insert an OUT instruction
in your program with the appropriate device address. The specific
device select pulse used is obtained from a decoding scheme.

A device select pulse can be used in conjunction with a latch, such
as the 74175 chip shown in Fig. 4-11, to store switch data, which in
this case is displayed on a seven-segment display. Data storage occurs
only when the 74175 is clocked. The latch may be cleared by a differ-
ent device select pulse applied at the clear input to the chip. The tim-
ing of when the latch is cleared or when switch data is stored is deter-
mined by your microcomputer program. For example, you may initially
wish to clock the latch and observe the logic switch settings on the
display. You do so with the aid of an output 001 device select pulse
applied at pin 1 on the chip. Later in your program, you may wish to
clear the latch; in this case, an output 000 device select pulse does
the job. The type of program that you would use is as follows:

LO Memory Octal

Address Instruction Mnemonic Comments
000 323 OouUT Send out a 001 device select pulse to clear
001 001 001 the latch
020 323 ouT Send out a 000 device select pulse to dis-
021 000 000 play the updated logic switch data
+ 8V GND

D
o C 7- SEGMENT
iz : DISPLAY

CLOCK

Fig. 4-10. A device select pulse can be used to clear a counter, as shown here for the
7490 chip.

205

+8V GND

(3
13 13
o
LogIC 2 12 che ?; 7-SEGMENT
SWITCHES B { 8 a; B DISPLAY
A A A
74178

Device misct 0005 —=—=—34c1 00K

Device select 001y — T lgjctear

Fig. 4-11. A pair of device select pulses are used here to clock a latch and to clear it.

Notice that output instructions have been consistently used to generate
the control pulses used to control the operation of the 7490 and 74175
chips. Any input device select pulse could have been used with good
results, but there is an important reason why this is not done. When-
ever you output data with an OUT instruction, the data in the ac-
cumulator is copied into an external output device. The microcomputer
does not care whether or not a device exists to accept the data; ac-
cumulator contents are not changed. The situation is different with
an IN instruction. Whenever an input device select pulse is generated,
the microcomputer expects eight bits of data to be transferred to the
accumulator from an input device. If no such device is present, the
accumulator register is usually loaded with all logic 1’s, i.e., with the
octal data byte 377. Therefore, you should always use OUT instruc-
tions to generate control pulses; by doing so, you continue to have
control over the contents of the accumulator.

EXAMPLE

Purpose

The purpose of this example is to show how two 74154 decoders
can be configured to generate sixteen contiguous device select pulses
within the 256 possible device select pulses.

Program
LO Memory Octal
Address Instruction Mnemonic Comments
000 323 ouT Send out a device select pulse to the device
with the device code given by the follow-
ing byte
001 000 000 Device code 000s
002 323 ouT Send out a device select pulse to the device
with the device code given by the follow-
ing byte
003 001 001 Device code 0015

INPUTS oUTPUTS

o ful Jn}ful-fu

[[[]]
i

C D G2 Gl 15 14 13 12

Ve 6A 6 5A SV 4 4v
u] [o

NEegS

OUTPUTS

(A) 7404 chip pin configuration. (B) 74154 chip pin configuration.

+3V GND

Y 62
ouT Bl
74154
i~ No. | 4 9 5
a3 —294p Y ot
1 >°§——— (3 LAMP
A2 [+ 2
it 5 If >0t ——1B MONITORS
AO A
4 7404
+5V GND

(C) Diagram of circuit.

Fig. 4-12. Circuit to generate sixteen contiguous device select pulses.

004 323 ouT Send out a device select pulse to the device
with the device code given by the follow-
ing byte

005 002 002 Device code 0025

008 323 OouT Send out a device select pulse to the device
with the device code given by the follow-
ing byte

007 003 003 Device code 003s

010 303 JMP Unconditional jump to memory address
given in following two bytes

011 000 LO memory address byte

012 000 HI memory address byte

207

Comments

As the microcomputer executes this program, it generates OUT syn-
chronization pulses and provides the device code on the LO address
lines, A0 through A7. This information is used by the decoders to pro-
duce a unique one-out-of-256 pulse for each device code. Although
only four of the possible codes are shown in the schematic diagram
and generated by the program, you can generate all sixteen pulses by
adding software. The No. 1 74154 decoder already has all of the first
sixteen decoded output channels available.

The No. 2 74154 decoder acts as a master decoder to enable, or turn
on, the lower 74154 decoder only when the address lines A4, A5, A6,
and A7 are all at logic 0. The remaining output channels on the No. 2
decoder can be used to enable more decoders to produce additional
output device select pulses.

The above software contains a loop that causes the microcomputer
to continuously output the four output device select pulses.

TEST

This test probes your understanding of the concepts and experiments
in this chapter. Please write your answers on a separate piece of paper.

4-1. What is a device select pulse, and how is it produced with the aid of
interface circuitry to the 8080 microcomputer? Use schematic diagrams
in your answer to this question.

4-2. Describe ten different uses for device select pulses. You can use different
integrated-circuit chips in your answer, but please do not be repetitive.

4-3. Write a simple microcomputer program that generates three different
input device select pulses and two different output device select pulses.

4-4, Draw a series of timing diagrams that show how a 164, device select
pulse is used to allow an output device to latch the contents of the ac-
cumulator, which contains data byte 11010110,.

Your performance on this test will be acceptable if you can answer

all four of these questions correctly in a 40-minute closed-book ex-

amination. You will encounter most of the answers in this book in later
chapters.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you
will be able to do the following:
® Identify the OUT and IN instructions in an 8080 microprocessor
program,
The operation codes for these two instructions are 323 and 333, re-
spectively. Whenever they appear in a microprocessor program, they
are the OUT and IN instructions, without exception.

208

ouaL o r
PULSER 1
o
bl Itivibrator. M: ble pulses as short as 40 ns

(A) The 74121 chip used as a .
can be generated conveniently.

+5v
GND
R-' 2]3]
Q .'____'IL
+
Cont Ta122
DUAL ! " -+ r
PULSER ar | =
] CLEAR

+8v
oND
R 18] 2}
Ny
¢ I+
= | 23
DUAL ; = L
o = |4
PULSER | ar . a
0 cLEAR

(C) The 74123 chip wired as a monostable multivibrator. Two independent monostable

multivibrators are available on the 74123 chip.

8V
8ND +3V GND
Ry ols b s Lo
il
3 " D 0
Q g s T-SEGMENT
R T: 55 gj Bra 1% oiseLar
ouaL b oo
PULSE!) 7490
LSER U A2 hriseen [Lj_l__
Optional GND
Byposs.
Copeoitor

(D) The 555 timer chip used as a monostable multivibrator. Pulses shorter than several micro-
seconds cannot be generated by this chip. The strobe pulse must be shorter than the output
monostable pulse.

Fig. 5-1. Common monostable multivibrators.

making changes in the computer program rather than by changing
resistors or capacitors, as would be the case for the 74121, 74122, 74123,
and 555 monostable multivibrator chips.

This brings us to the question: How do we know how long it takes
to execute a group of microcomputer instructions? We shall discuss
this question in the following section.

HOW LONG DOES IT TAKE TO EXECUTE
A MICROCOMPUTER INSTRUCTION?

A microcomputer, as any digital computer, is a clocked digital elec-
tronic device. This means that all actions occur at or during precisely
defined clock intervals. For example, a typical 8080 microprocessor
chip is operated at a clock rate of 2 MHz. A single clock cycle, or state,
has a period of:

period = 1 cycle/2,000,000 cycles per second (hertz)
= 0.0000005 second
=0.5 us
= 500 ns

where clock cycle, state, and period are defined as:

period—The time required for one complete cycle of a regular, repeat-
ing series of events.
clock cycle, state—A single clock period or stable condition.

Every action within the 8080 microprocessor requires some multiple
of the period of microprocessor clock. A computer instruction is a
typical microprocessor “action,” so it too is performed in some multiple
of the period of the microprocessor clock. The fastest instruction re-
quires only four clock periods, called states or clock cycles:

four cycles = 4 X 500 ns
=2 us
whereas the slowest instruction, XTHL, requires eighteen clock cycles:

eighteen cycles = 18 X 500 ns
=9 us

Clearly, the time required to execute a group of instructions is deter-
mined by the cumulative time to execute each of the individual in-
structions within the group and multiplied by the number of times
such instructions are executed. If we are clever, we can arrange a group
of instructions in such a manner that their execution requires a pre-
determined amount of time, such as 0.20 second. As long as the clock
rate for the microcomputer remains at 2 MHz, it will always take 0.20
second to execute this group of instructions.

214

956 different device select pulses.
This circuit has been given in Fig. 4-3. It employs seventeen 74154
four-line-to-sixteen-line integrated-circuit chips.

@ Explain how device select pulses are generated by the 8080 micro-
processor.

Actually, this chapter has provided only a partial explanation. Each
device select pulse is produced as a consequence of an OUT or IN
strobe pulse and a pulse produced by the action of decoding the 8-bit
device code that appears for 1.3 us on the memory address bus. We
have not discussed how the OUT and IN pulses are produced, a topic
which will be treated in Chapter 6.

|
@ Draw a schematic diagram for a circuit that can generate up to \

@ Write simple microcomputer programs that employ IN or OUT
instructions.
This has been done in several examples in this chapter. Most of the
programs contain only five instruction bytes.

@ Draw a block diagram for a 74154 four-line-to-sixteen-line decoder.
We have used the 74154 chip often in this chapter, so you should be
able to draw a block diagram of it and, by memory, identify some of
the more important pin numbers. G1 and G2 are at pins 18 and 19,
respectively. The output channels start at pin 1 and continue to pin

11. They resume at pin 13.

209

CHAPTER 5

Clock Cycles and
Timing Loops

In this chapter, you will examine the timing of various 8080 instruc-
tions and the use of a microcomputer as a pulse or timing generator.
Microcomputers are used frequently in situations where complex tim-
ing periods and sequences are required. Examples include traffic light
control, oven and microwave range control, and washer and dryer
control.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

@ Define the terms: loop, timing loop, period, clock cycle, and state.

® Program a timing loop that can generate timing delays that are
multiples of 0.200 second.

® Program a timing loop that can generate timing delays that are
multiples of approximately 0.5 millisecond.

® Demonstrate how a microcomputer can act as a monostable multi-
vibrator.

DEFINITIONS

clock cycle—A single clock period.
loop—A sequence of instructions that is executed repeatedly until a
terminal condition prevails.?

m

monostable multivibrator—A circuit having only one stable state, from
which it can be triggered to change the state, but only for a pre-
determined interval, after which it returns to the original state,

period—The time required for one complete cycle of a regular, repeat-
ing series of events.

programmable sequencer—A sequencer in which the order in which the
events or operations occur can be changed with the aid of program-
ming.

sequencer—An electronic device that may be set to initiate a series of
events and to make the events follow in sequence, i.e., in order.t

state—A single clock period, or stable condition.

timing loop—A loop that requires a precise period for its execution,

MONOSTABLE MULTIVIBRATORS
A monostable multivibrator can be defined as follows:

monostable multivibrator—A circuit having only one stable state, from
which it can be triggered to change the state, but only for a pre-
determined interval, after which it returns to the original state.

They are used to generate individual clock pulses of precisely known
pulse width. Such clock pulses are widely used in digital electronics
to coordinate the timing in digital circuits and also to turn external
devices on and off for predetermined time intervals. The schematic
diagrams shown in Fig. 5-1 summarize the common monostable multi-
vibrators that are in use today. The 74121, 74122, and 74123 chips
generate individual clock pulses whose pulse width varies from about
40 ns to several milliseconds. The 555 monostable can generate pulse
width that vary from several microseconds to several minutes. These
chips are discussed in greater detail in Chapter 8 in Bugbook I1.

THE MICROCOMPUTER AS A MONOSTABLE MULTIVIBRATOR

A microcomputer, such as the 8080, can also act as a monostable
multivibrator. It is possible to write a computer program that contains
a timing loop:

timing loop—A loop that requires a precise period for its execution.
loop—A sequence of instructions that is executed repeatedly until a
terminal condition prevails.

It should be clear that such a loop can be interposed between two
OUT instructions in a computer program. With proper external cir-
cuitry, a single clock pulse of pulse width determined by the computer
program can be produced. We might call such a pulse a software-
generated monostable pulse. The pulse width can be controlled by

212

}4——500 m—.-l
¢ ____ N n__n 1

¢, 1

Time —
Fig. 5-2. Timing diagrams for the two-phase clock inputs to an 8080 chip.

In general, the basic “currency” of a computer is time; the faster
that it can perform a series of instructions, the more powerful it is
and the more useful it will be in replacing integrated-circuit chips
such as those in the 7400-series of chips. At the moment, a typical
operating frequency for an 8080-based microcomputer is 2 MHz; this
means that a single clock period is equal to 500 ns. This is the time
duration between successive pulses of one of the two clock phases, ¢1
and ¢,, as shown in Fig. 5-2.

Keep in mind, however, that the speed of 8080 chips may be in-
creased with improvements in manufacturing techniques. It is quite
possible that an improved 8080 chip may operate at a maximum speed
of 4 MHz, which means that a single clock period will be only 250 ns.
Naturally, the R/W, PROM, and ROM chips will also have to be faster
if a useful microcomputer system is to be constructed. And the 8080
is not the last word in computer speed. Improvements in semiconductor
manufacturing techniques, particularly in an area called bipolar tech-
nology, will lead to inexpensive and widely used microprocessor chips
that are clocked at rates as high as 30 MHz, or 33.3 nanoseconds per
clock period.

CLOCK CYCLE LISTING FOR THE 8080 INSTRUCTION SET

On the following page is a complete listing of the 8080 instruction
set that includes the number of clock cycles required for each instruc-
tion. This page is provided by Intel Corporation. In this section, we
shall summarize the conclusions that can be derived from this listing.

The shortest time during which a single instruction can be executed
is four clock cycles, or 2 ps, if we assume that a single clock cycle re-
quires 500 ns. Register arithmetic and logical operations and accumu-
lator contents rotation can be performed in this short interval of time.
Included in such a group are the ADD, ADC, SUB, SBB, ANA, XRA,
ORA, CMP, RLC, RRC, RAL, and RAR instructijons.

All register-to-register MOV instructions as well as increment and
decrement instructions INR, DCR, INX, and DCX, are executed in
five clock cycles, or 2.5 us.

INSTRUCTION SET

Summary of Processor Instructions

Instaciion Codel Clock(2 Instruction Coall Clockt2

Masmonie Oncrption 0 0 Dy 04 O3 0 0, O Cycles | Moemame D D O5 Do B3 0 Oy 0 Cyees
MOV,,. 5 Woveregatr v egstec © 1 0D oS 55 b az Aouen on era T o0 10 00 sm
OVH't Mowregstwiomeny 0 1 1 1 0§ S5 7 ANZ Rewnonno o Tp o 00 0 wm
MOVCH Mo memory e 0 1 D 0 D 1 1 0 7 A P o000 s

o [O B O I R B Tor 000 e
TR e — v 0 v B oo) wPe Teo o0 00w

Wove mmedate memoy 00 1 1 0 1 b0 w0 ##0 T o000 wn

incremen eguter 00 20 c s RST T A aA o

ecrement ey e PRI S B B w [T R R

Inceement merory oo o o0 our oot 0o i1 w0

ectemert menary b0 1101 10 [EE Rt —— 00 3000 0 1

Ad regmec 10 & oo o635 ss s PuBaC

Addeguierto Awshcony 10 0 0 1S S S 4 LD Load immedute eguier G0 0 1000 w0

Subtoct e T o1 os s s s PO E

Subirct e rom & Teo0 s s s win GO o001

it otz

And gt i & To ot oo s s s s LXISP Loat mmedutesuckpomrer 0 0 1 1 0 0 0 1 10

Encluawe OrvgsermihA 1 0 1 0) S S § 4 PUSHH Pushreger P B C Tie o0 o on

01 ragner win & Vo110 s s e sk

Compare regsio wih A Toon s s PUSHD PuhegserParD8En 1 1 0 0 0 1 0 1 n

Asd memory t0 A Toow o0 10y

Adgmemary o Awibcary 1 0 0 0 1 1 1 0 1 PUSHI PuheguierPa B Lo 1 1 1 0 0) 0 % N
SUBM SubmctmemorviomA 1 0 € 1 0 1 3 0 1 sk
SBRM Subact memory iom A S0t o PUSHPSH Pus A snd Fiags I R R A T

wih burow ot
ANAN And memary win A e we o POPB Popregaecpn 8SToN 1 1 0 0 0 0 0 1 10
XRAM Exche O memaywin A 1 01 0 1 4 1 0 7 e
ORAM 01 memury i A Teo ot ot g FOPO PssgsmD8EQ 1 1 0 1 0 0 0 1
WM CompemenaywinA 1 D 1 1 11 1 o sace
D Ade mmediaie o A [T N N B POPK Popregs g HELGH 1 1 1 0 00 0 1 10
act Aot mmedutetoAwi 11 0 0 1) i 0 stack

an POPPSH Fup A nd Fras E T I I R T
sun Sbuact et omA 1 101 0 1 1 0 7 ol
soi Swbbact mmedateiomA 1 10 1 3 1) ¢ S SureAdue teor o0 e m

wit borrow 08 Lows Admer [I I T
AV And mmeiate wih & [I TR XCHG Exchasge DA, HBL T o e
XA EacluweOrimmettewn 111 9 1 4 101 Reguters

A XTHL ExchageropolsackHEL 1 1 1 0 0 0 1 v g
oM Ocmreduewina [T B S SeAL K porer Tt i 0 a8
ool Compare mredatewih A 111 0 11 10 g o R B A B R
AL RoweA et 00 0w 1 0AD 8 cooa 0001w
AR Rowe Angh T R B 04D O Co o0 1 b o0 10
AL RomeAlitiwoshany D 0 0 1 0 1 1 1 ¢ DAD 1 G0 10001 w0
AR Rotue & ngh thugh CEC R B AR N R DADSP Aidstckgouter o HEL 0 0 1 1 1 ¢ 0 1 10

any STAXE S nduect 00 1000 10 7
[v — R A SR T STAXD St A e IEEEEREREE
x oo oo LOAXE Laut Aomdtus b0 o0t 0 1o g
e Voo oo LOAXD (s & et o0 0 1 100 g
i tro o oo w0 BXE cenem 8B Crgutes D 0 0 0 000 1 1 5
wz P00 0010w WXO ueremeni 08 R B
» oo 0 e WXH ncemeal 8 Liegnies 0 01 0 0 0 1 1§
" P 0 om inxsp [A A
e Tt o 00w 0CXE Dacrement s [I A B
o [I I 0CXD Drcremeni 0 € o0 0 1y o1 s
cat Y00 o " OCXH Decremen H8 | 00 10 1 et
o oo 00 DCXSP Derememsuckpome 0 0 1 1 1 0 1 1 5
oo o1 o100 A Comlement A 00 0t
o Toe oo m STE Srvany T T T
onz Too o000 ™C Compleme [R R
o Tt e oo A% Deces scust A 20 1 0 01 1
on Tt o SO Stoed Lane 00 10000
e T o e D Lond W8 Lanrer o0 T o 1o 10
o0 V0 01 00 € Enable nureopis T o e
RET Tro o 00w ol Gable meerupt T v o0 1w
Ao T 000 sm NOP o operauer S0 0 000 00 4
NG et on o cany oo oo sm
NOTES: 1. DDO or S5 --000 8 - 001 C 010D - 011 E - 100 H - 101 L - 110 Memory — 111 A

216

2. Two possible cycle times, (5/11) indicate istruction cycles dependent on candition (lags,

Most of the instructions in which transfers of information to or from
memory occur require at least seven clock cycles, or 3.5 ps. Included in
this group are the register-to-memory or memory-to-register MOV
instructions; the ADD M, ADC M, SUB M, SBB M, ANA M, XRA M,
ORA M, CMP M, MVI, ADI, ACI, SUIL, SBI, ANI, XRI, ORI, and
CPI instructions; and the STAX and LDAX instructions.

The conditional and unconditional jump instructions, MVI M, INR
M, DCR M, RET, IN, OUT, LXI, DAD, and POP instructions all
require ten clock cycles, or 5 ps, for execution.

The conditional call instructions require either eleven or seventeen
clock cycles, depending upon whether or not the subroutine is called.
If it is called, then seventeen clock cycles, or 85 ps, are required.
If not, only eleven clock cycles, or 55 us, are required to perform
this type of instruction.

Similar considerations apply to the conditional return instructions.
If the flag is at such a logic state that a return occurs, then eleven clock
cycles, or 5.5 ps, are required. If no return occurs, then only five clock
cycles, or 2.5 ps, are required for the conditional return instruction.

If you are planning a timing loop of precise time duration, you will
require this listing. You may desire to make a copy of it for your use
while you are programming. Such a listing is also included in the Intel
8080 Microcomputer System Manual.

COUNTING CLOCK CYCLES: SOME SIMPLE
MICROCOMPUTER PROGRAMS

In this section, we shall consider a number of simple computer pro-
grams and learn how to count clock cycles.

Program No. 1

Octal
LO Memory Instruction
Address Byte Mnemonic Comments
000 303 mP Unconditional jump to memory address
given in following two bytes
001 000 LO address byte
002 000 HI address byte

If you look at the Intel instruction set listing, you will observe that
a JMP instruction requires ten clock cycles for execution. Since this
program does not contain any IN or OUT instructions, you will have
a somewhat difficult time in measuring, or employing this program
to generate, 5-us monostable pulses. This program can be discarded
for such a purpose. It is important to note that all three bytes of the
JMP instruction are “used” in ten clock cycles. This overall time ap-
plies to all bytes in a multibyte instruction.

217

Program No. 2

Octal
LO Memory Instruction Clock
Address Byte Mnemonic Cycles Comments

000 323 ouT 10 Generate device select pulse for
device with following device
code

001 000 000 Device code

002 323 ouT 10 Generate second device select
pulse for same device

003 000 000 Device code

004 166 HLT 7 Halt

This program is executed in 27 clock cycles, or 13.5 us. What is inter-
esting about the program, however, is that two device select pulses
are generated and sent to the same device. One pulse is used to turn
the device on, and the other to turn it off. What device can be turned
on and off from a single input? As one example, consider the toggled
JK flip-flop circuit shown in Fig. 5-3.

The preset, clear, J, and K inputs are all left unconnected, which
means they are all at a logic 1 state. Therefore, each clock pulse ap-
plied to the clock input at pin 1 of the 7476 chip will cause the flip-flop
to toggle, i.e., to change state. Let us assume that the flip-flop output,
Q, is initially at logic 0. The first OUT instruction in Program No. 2
generates a single device select pulse which toggles the flip-flop to
logic 1. This output is used as a gating signal to the two-input 7408
AND gate, and permits signals from the ¢, clock to pass through the
gate to the five-decade counter, where they are counted. The second
OUT instruction in Program No. 2 generates a device select pulse that
causes the Q output at pin 15 to return to logic 0; this action disables
the 7408 gate and stops the counting by the five-decade counter.

How long will the counter count? This question can best be an-
swered with the aid of information supplied in Chapter 6. We can
anticipate such information by pointing out that the device select pulse
is not sent to the 7476 flip-flop until the last 500 ns in the 5-us OUT
instruction. It can be shown that the flip-flop is at a logic 1 state for

+3V GND

To five-decade
counter

7476

Fig. 5-3. A 7476 flip-flop toggled at the clock input can be used to gate clock pulses from the
master clock in an 8080-based microcomputer.

218

only ten clock cycles, or 3 ps: 500 ns during the first OUT instruction
and 4.500 s during the second OUT instruction. The 5-us time inter-
val is quite exact: It is not 4.93 ps or 5.05 us, but precisely 5.0000 ps
for a crystal-controlled 2-MHz 8080 clock input.

Program No. 3

Octal
LO Memory Instruction Clock

Address Byte Mnemonic Cycles Comments
000 323 ouT 10 Generate device select pulse
001 000 000 Device code
002 * * * Arithmetic, logical, or other sin-

gle-byte instruction

003 323 ouT 10 Generate device select pulse
004 000 000 Device code
005 166 HLT 7 Halt

Program No. 3 is similar to Program No. 2, except that we have in-
serted an instruction between the two OUT instructions. All single-
byte instructions with the exception of the return instructions can be
tested. For example, if the RLC instruction, which requires four clock
cycles, were inserted at memory address 002, the total counting time,
as measured by the five-decade counter and the 7476 circuit shown on
the preceding page, would be:
counting time = (4 + 10) X 500 ns

= 7000 ns

=7.0 us
If you would subtract 5 us, the time required for Program No. 2, from
this value, you would measure a time of 2.0 us for the RLC instruc-
tion, a time that corresponds to four clock cycles, as indicated in the
8080 timing chart.

Program No. 4

Octal
LO Memory Instruction Clock
Address Byte Mnemonic Cycles Comments

000 323 ouT 10 Generate device select pulse that
sets the 7476 flip-flop

001 000 000 Device code

002 323 ouT 10 Generate device select pulse that
clears the 7476 flip-flop

003 001 001 Different device code

004 166 HLT 7 Halt

Rather than toggle the 7476 flip-flop, you can connect two different
device select signal lines to the preset and clear inputs of the flip-flop.
The circuit is shown in Fig. 5-4. It should be apparent that this is an
equally, or perhaps more, effective way to change the output states
on 2 flip-flop. In this case, though the 7476 flip-flop is a single “device,”

219

To tive - decade
counter

¢Z(YTL) clock

Device Bavice
Sexice Vice
pulse, pulse,
000y oorg
U U
Y4
Q T

LA — |

fo— pulse width

Fig. 5-4. A simple 7476 flip-flop circuit and associated timing diagrams. This circuit can be
used to count clock cycles in an 8080 microcomputer.

two “device select pulses” are required to control it. There need not |
be any correlation between the number of devices present and the |
number of device select pulses required to service such devices. !

Program No. 5
Octal
LO Memory Instruction Clock
Address Byte Mnemonic Cycles Comments

000 006 MVI B 7 Move following data byte into B
register

001 * Data byte

002 323 ouT 10 Generate device select pulse that
sets the 7476 flip-flop

003 000 000 Device code

004 005 DCR B 5 Decrement contents of register B
by one

005 302 JNZ 10 Conditional jump. If contents of
B register are 000, ignore this
instruction and go to memory
address 010. Otherwise, jump
to memory address given in fol- !
lowing two bytes i

006 004 LO address byte

007 000 HI address byte

010 323 ouT 10 Generate device select pulse that
clears the 7476 flip-flop

011 001 001 Different device code

}
012 166 HLT 7 Halt i
|

220

This interesting program contains:

@ A conditional jump instruction [at memory address 005]

@ A timing loop [at memory addresses 004 through 007]

® A data byte that determines the time duration of the timing loop
[at memory address 001]

@ Two OUT instructions that generate two different device select
pulses

The circuit that accompanies this program, along with a pair of timing
diagrams, is shown in Fig. 5-4. The first OUT instruction sends a de-
vice select pulse to the preset input to the 7476 flip-flop at pin 2. The
flip-flop output, Q, is thus set to logic 1, which opens the 7408 gate.
The OUT instruction appearing at memory address 0105 in the pro-
gram clears the flip-flop and closes the gate.

The conditional jump instruction, JNZ, at memory address 005 per-
mits a jump only when the zero flag is at logic 0. The decrement in-
struction at memory address 004 will decrease the contents of the B
register by one on each pass through the loop. Eventually, the B reg-
ister becomes equal to 000, at which time program control moves to
the instruction at memory address 010 owing to the JNZ instruction.
The magnitude of the data byte at memory address 001 determines
the number of loops that occur during the execution of the program.
If this data byte is 001, the program will make only a single pass
through the instructions at memory addresses 004 through 007. On the
other hand, if the data byte is initially 000, the program will loop
956 times. This is because the data byte is decremented before being
tested.

Each time the program loops through addresses 004 through 007,
there is a delay of fifteen clock cycles, or 7.5 us. This time is multiplied
by the number of loop passes that occur. Added to this figure is 5 us,
the time associated with clearing the flip-flop via the OUT instruction
at memory address 010.

The asterisk (*) at memory address 001 indicates that this data byte
can vary from 000 to 377, in octal code. Some calculations will demon-
strate how you can vary the time that Program No. 5 is executed. The
objective here is to demonstrate, via calculations, how the microcom-
puter can be used to generate time delays in external digital circuitry.
It generates these delays through the use of device select pulses and
timing loops.

Assume that the data byte at memory address 001 is equal to 001.
This is the content of the B register at the end of the instruction byte
at memory address 003s. At memory address 004, the contents of the
B register are decremented by 1, and become equal to 000. With the
aid of the conditional jump instruction that follows, program control
is transferred to memory address 010, at which point a device select

73]

pulse is generated to clear the flip-flop. The total number of clock
cycles between the first and second OUT instructions is:

number of clock cycles = [DCR] + [JNZ] + {OUT]
= 5 4+ 10 + 10

At 500 ns per clock cycle, the total elapsed time is:

elapsed time = 25 X 500 ns
=125 pus

The five-decade counter in the circuit indicated in Fig. 5-4 counts
clock pulses for this period.

Now assume that the data byte at memory address 001 is 002. The
total number of clock cycles between the first and second OUT in-
structions is now:

number of clock cycles =2 [DCR] + 2 [JNZ] + [OUT]
= 10 + 20 + 10
=40
which is equivalent to a total elapsed time of:

elapsed time = 40 X 500 ns
= 20.0 us

If the data byte at memory address 011 is 000, there are 256 passes
through the timing loop. The number of clock cycles and total elapsed
time between OUT instructions is:

number of clock cycles = 256 [DCR] + 256 [JNZ] + [OUT]
= 0 1280 + 2560 + 10
= 38!

elapsed time = 3850 X 500 ns
= 1925 us
=1.925ms

This elapsed time of 1.925 milliseconds refers to the time that the 7476
flip-flop output is at a logic 1 state, not to the total elapsed time of the
program.

It should be clear that the pulse width shown in Fig. 5-4 is adjustable.
The exact width is determined by the location of the first and second
OUT instructions (the ones that generate device select pulses 000
and 001) in the microcomputer program. For example, the pulse width
would have the following values as the magnitude of the data byte
present at memory address 001 varies from 000 to 377:

222

Data Byte at LO

Memory Address Number of
001 Clock Cycles Pulse Width (ms)
000 3850 1.925
001 25 0.0125
002 40 0.02
003 55 0.0275
004 70 0.035
005 85 0.0425
010 130 0.065
020 250 0.125
050 610 0.305
100 970 0.485
200 1930 0.965
300 2890 1.445
350 3490 1.745
377 3835 1.9175

You should carefully study the discussion of Program No. 5. It provides
the simplest example of a timing loop that can be written.

TIMING LOOPS

The definition of a timing loop has been given previously in this
chapter. Timing loops are widely employed in microprocessor programs
in systems that control or sequence instruments and machines. Some
characteristics of such loops include the following:

® Timing loops of different time durations are required: microsec-

onds, milliseconds, and seconds.

® The timing loops are used frequently.

o Since they are used frequently, they usually appear in the micro-

computer program as subroutines.

We will now consider such a subroutine, one which we have loaded
into PROM starting at memory location H =060 and L = 000. This
subroutine will generate a timing delay that is precisely equal to
0.2000 second.

Subroutine No. 1

Memory Octal

Address Instruction Clock

H L Byte Mnemonic Cycles Comments

060 000 021 LXI D 10 Move following two bytes into
registers E and D, respectively

060 001 301 301 Timing byte for register E

060 002 150 150 Timing byte for register D

060 003 035 DCR E 5 Decrement register E by one

060 004 302 JNZ 10 If register E is 000s, ignore this

instruction; otherwise, jump to
memory address given in the
following two bytes

223

|
i
i
i
i
i

Memory Octal

Address Instruction Clock

H L Byte Mnemonic Cycles Comments

060 005 003 LO address byte

060 006 060 HI address byte

060 007 025 DCR D 5 Decrement register D by one

060 010 302 INZ 10 If register D is 000, ignore this
instruction; otherwise, jump to
memory address given in the
following two bytes

060 011 003 LO address byte

060 012 060 HI address byte

060 013 015 DCR C 5 Decrement register C by one

060 014 302 JNZ 10 If register C is 000s, ignore this
instruction; otherwise, jump to
memory address given in the
following two bytes

060 015 000 LO address byte

060 016 060 HI address byte

060 017 311 RET 10 Unconditional return from this

subroutine

A flowchart for this 0.200-second subroutine is shown in Fig. 5-5.
Note that the subroutine is entered with a timing byte already present
in register C. As can be seen from the flowchart, there is an E register
loop within a D register loop, which is within a C register loop. A
program that employs this subroutine is given below.

Program No. 6
Octal :

LO Memory Instruction Clock
Address Byte Mnemonic Cycles Comments

100 061 LXI D 10 Move following two bytes into
the stack pointer

101 200 200 LO address byte

102 000 000 HI address byte

103 016 MVI C 7 Move following byte into register
C

104 ® » Timing byte for register C

105 323 ouT 10 Generate device select pulse that
sets the 7476 flip-flop

106 000 000 Device code

107 315 CALL 17 Unconditional call of subroutine
located at memory address
given by following two bytes

110 000 LO address byte

111 060 HI address byte

112 323 ouT 10 Generate device select pulse that
clears the 7476 flip-flop

113 001 001 Different device code

114 166 HLT 7 Halt

224

Let us assume that the timing byte for register C at memory address
H = 0005 and L = 001 is 001. The steps that occur in both Program
No. 6 and Subroutine No. 1 can be summarized as follows:

a. The stack pointer within the 8080 is set to HI = 000 and LO = 200.
A timing byte is moved into register C. This takes a total of seven-
teen clock cycles. However, the five-decade counter connected
to the 7476 flip-flop does not measure this time.

b. A device select pulse is generated via an OUT instruction. This
sets the 7476 flip-flop to logic 1 and starts the counter.

ENTER
LOAD D= 150
E= 301

l

DECREMENT E

E-1l—E
- ®
YES

DECREMENT O
0~1—D

Y

YES

DECREMENT C
C-1—=C

9

YES

RETURN
No. 1, which g 2 0.200-second delay.

Fig. 5-5. Fl for

225

c¢. A subroutine at memory address H = 060 and L = 000 is called
unconditionally. This takes seventeen clock cycles, or 8.5 pus, a
time that is measured by the counter.

d. In the subroutine, timing bytes are moved into registers D and
E. This takes ten clock cycles.

e. A timing loop is established with register E. The contents of this
register are decremented 193 times. A total of 193 X 15 = 2895
clock cycles are required.

f. The contents of the D register are decremented by one. This
takes fifteen clock cycles.

g A second timing loop is established with register E, only this
time the contents of this register are decremented 256 times.
This takes 3840 clock cycles.

h. The contents of the D register are decremented by one. This
takes fifteen clock cycles.

i. Steps g and h are repeated 103 times. The total clock cycles re-
quired are 3840 x 103 plus 15 x 103 clock cycles.

j- The contents of the C register are decremented by one. This takes
five clock cycles. Since the C register is now 0005, the zero flag
is set to logic 1.

k. Ten cycles are consumed with the JNZ instruction at memory lo-
cation H = 060 and L, = 014.

1. There is an unconditional return from the subroutine. This takes
ten clock cycles.

m. Finally, a device select pulse is generated via an OUT instruction.
This takes ten clock cycles. The 7476 flip-flop is cleared to logic
0 and the counting stops.

How many clock cycles are there in all? We calculate the following:

a. i 397,065 |
b. j. 5

c. 17 k. 10

d 10 1 10

e 9,895 m. 10

£ 15

The total number of clock cycles is 400,037, At 500 ns per clock cycle,
this translates into a timing delay of 0.2000185 second. The timing sub-
routine is programmed in such a manner that, if the timing byte for
register C were 002, the total number of clock cycles would be 800,037,
or 0.4000185 second. Each time register C is set at one bit larger than
the previous time, an additional 0.2000000 second is added to the tim-
ing delay.

You will find that a subroutine that generates a 0.200-second timing
delay is quite handy. The maximum time delay that you can generate

226

is 51.2000185 seconds using only the C, D, and E registers. A sampling
of typical time delays is given below.

Timing Byte for Register C Time delay (seconds)
001 0.2000185
002 0.4000185
005 1.0000180
012 2.0000185
031 5.0000185
062 10.0000185
144 20.0000185
372 50.0000185

While the maximum time delay is somewhat over 50 seconds, longer
delays may be necessary. These longer times may be obtained by
nesting subroutines so that a 30-second time delay subroutine is used
120 times to provide an overall time delay of one hour. Program No. 7
shows how this is done.

Program No. 7
Octal
LO Memory Instruction Clock
Address Byte Mnemonic Cycles Comments

000 061 LXI SP 10 Move following two bytes into the
stack pointer

001 200 200 LO address byte

002 000 000 HI address byte

003 001 LXI B 10 Move following two bytes into
registers C and B, respectively

004 226 226 C register byte

005 170 170 B register byte

006 315 CALL 17 Unconditional call of subroutine
located at memory address
given by the following two
bytes

007 000 LO address byte

010 060 HI address byte

011 005 DCR B 5 Decrement register B by one

012 302 JNZ 10 If register B is 000s, ignore this
instruction; otherwise, jump to
the memory address given in
the following two bytes

013 006 1.0 address byte

014 000 HI address byte

015 166 HLT 7 Halt

Here we are using Subroutine No. 1 to generate a 30.000-second time
delay. The timing byte C has a value of 226,, which corresponds to
decimal 150, This 30-second time delay is called 120 times, or 1705 in
octal code, to produce a total time delay of one hour. This is done with

227

only 30 instruction bytes located in memory. We use the principle of
loop nesting to accomplish our desired result:

nesting—In a computer, the inclusion of a loop or routine within a larger
loop or routine.

SEQUENCING WITH A MICROCOMPUTER
In Chapter 4 and in this chapter, you have learned how to:

® Generate individual device select pulses, up to a total of 512 dif-
ferent pulses.

® Write time delay routines that create time delays ranging from 5 us
to minutes or even hours.

® Toggle an external J-K flip-flop to turn on and off a digital device
such as a counter.

® Write program loops that will repeat a sequence of operations after
a predetermined time interval.

Thus, you already have the ability to create a variety of programmable
sequencers, in which you sequence a series of operations at preset time
intervals that are determined by the programmed time delays. Some
definitions are in order:

sequential operation—The carrying out of operations one after the
other.*
sequencer—An electronic device that may be set to initiate a series of
events and to make the events follow in sequence, i.e., in order.*
programmable sequencer—A sequencer in which the order in which the
events or operations occur can be changed with the aid of program-
ming.
These concepts are discussed in some detail in Chapter 5 in Bugbook I.
An example of how device select pulses and time delay routines can
be used to perform sequential operations is shown in Fig. 5-6. In this
example, two liquid streams are added to a large tank, the resulting
solution is heated and stirred to allow a reaction to occur, and finally
the tank contents are drained. Eight different devices are present; a
power switch, three valves, three motors, and a heater. Two device se-
lect pulses are employed per device: one to turn it on and the other to
turn it off. A variety of time delays are required, varying from 0.01 hour,
or 36 seconds, to 65.4 minutes, and all can be readily programmed in
the microcomputer. The 36-second time delay is used at least seven
times. The important point about this system is that the sequence of
operations, and the time intervals between them, can be readily changed
simply by altering the microcomputer program. Again, this is an exam-
ple of software replacing hardware. No counters or special logic circuits

[o] p————p»Device select pulse 00'8' Apply power to system.
0.02 }———-Device select pulse 0048' Open valve No. |
0.03}————» Device select pulse 005g. Staort pump motor No.l
ADD WATER TO TANK
0.33 p————= Device select puise 002g. Stop pump motor No.l
0.34 j———s Device select pulse 003g. Close valve No.1
0.35 p————— Device select pulse006g. Open valve No.2
0.36 p———— Device select pulse 007g- Start pump motor No. 2
ADD CHEMICALS
0.45 ———— Device select pulse OIOB. Stop pump motor No.2
0.46 |————= Device select pulse Of| 8 Close valve No.2
0.47 |———— Device select puise Ol2g. Start heater
HEAT SOLUTION
2
3 0.80p——> Device select pulse Ol3g. Stop heater
I 0.8 p———— Device select puise 020g. Start stirrer motor
w
z
[
\ REACTION OCCURS
1.9 — Device select pulse OZIB. Stop stirrer motor
2.0 p———= Device select pulse Ol4g. Open tank drain valve
DRAIN TANK
2.3 [———’ Device select pulse Ol5g. Close tank drain valve
Fig. 5-6. A seq of operati jated with a batch reactor, a piece of equipment
used by chemical engi to perfi i

229

FAN
MOTOR

HOV AC

°
Q
<3 s
5%
g [2%
e S
>2 1°
w R
el
:'.‘ [
F1 +
~18 o~
i 2 !l H3
52|L-' 5% © ° . 'r'xggg
s &l«
H < s
&, ™ «°
<] .

fon off

—-—_00_~_—

% g
Fig. 5-7. This circuit demonstrates (a) the use of 8-input 7430 NAND gates to decode the 8-bit

device code from the microcomputer, and (b) the use of an optically isolated solid-state relay
to drive a fan motor from a TTL input signal.

are required to sequence the operations. The microcomputer can do
the whole thing with the aid of device select pulses, eight flip-flops,
eight TTL buffers, and eight optoelectronic relays that control ac power
with logic 0 and logic 1 signals from a TTL circuit. The extension of

Fig. 5-8. Typical optically isolated solid-state relays that are available for a price of $10 to $20

in quantities of one. Such relays can control up to 10 A of 115 V ac power from a single TTL

output. The relay at the lower right (AC IN) converts ac power to a dc signal, thus permitting

you to detect when a fan motor or other power-consuming device is in the “on” state. The

small chip is not a semiconductor device, but rather a reed relay that can operate from +5
volts TTL. The Aristan time capsule is a solid-state time delay device.

these ideas to traffic lights, building protection, machine operation, and
a variety of other situations that require sequential operations should
be clear.

CONTROLLING POWER WITH A MICROCOMPUTER

Fig. 5-7 shows a circuit in which a 7476 flip-flop controls ac power to
a fan motor. This is done with the aid of an optically isolated soli d-state
relay (Fig. 5-8), a type of relay that has become very popular within
the last several years. A simple TTL input to this relay can easily con-
trol 10 amperes at 115 volts ac. Although we shall not discuss such re-
lays in this book, it should be clear that a microcomputer can readily
control the fan. The LO memory address is connected to each of the
two 7430 eight-input NAND gates, which decode the 8-bit device code
produced by the OUT instruction. The unique logic 0 state produced
by the 7430 gate is then ored with the OUT pulse.

TEST

This test probes your understanding of the concepts and experiments
in this chapter. Please write your answers on a separate piece of paper.

23

5-1. Define the following terms: loop, timing loop, period, clock cycle, and
state.

5-2. Draw a simple digital circuit that can count clock cycles.

5-3. Write a microcomputer program that will generate timing delays that
are multiples of approximately 100 microseconds.

Your performance on this test will be acceptable if you can answer all

of the above questions correctly in a one-hour closed-book examination.
You will frequently encounter timing loops in microcomputer programs.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you
would be able to do the following:

@ Define the terms: loop, timing loop, period, clock cycle, and state.
This was done at various places in the chapter.

® Program a timing loop that can generate timing delays that are
multiples of 0.200 second.
You did this in Subroutine No. 1.

® Program a timing loop that can generate timing delays that are
multiples of approximately 0.5 millisecond.
You did this in Program No. 6.
® Demonstrate how a microcomputer can act as a monostable multi-

vibrator.
You actually generated single timing pulses with the aid of the micro-
computer program and the 7476 flip-flop.

232

CHAPTER 6

Generating Status
Information

It becomes ever more clear that one of the important functions of the
8080 microprocessor chip is to control the transfer of eight bits of digi-
tal information, called a byte, between the internal data bus, located
within the 8080 chip itself, and the external data bus, located external
to the chip. Internally, information can be stored in registers such as
the accumulator, the general-purpose registers, the program counter,
stack pointer, and instruction register. Externally, information is stored
in memory, the status latch, and input/output devices. In this chapter,
you will learn quite a bit more concerning how all this is done. You
will gain a general understanding of how the microprocessor operates
and interacts with the “outside world” external to the chip.

This is a somewhat advanced chapter, one that you can skip for the
moment if your time is limited. If you wish, you may read Chapters 7
and 8 first, for they will round out your interfacing skills. Then return
to this chapter; you will not miss needed information by skipping it.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

® Explain the differences between the internal and external busses in
an 8080-based microcomputer system.

® List the sources and destinations of information that appears on
the external data bus.

® Explain the differences between a state, clock cycle, instruction
cycle, and machine cycle.

233

@ Explain what a status bit and a status byte are.

@ Describe the nine different types of machine cycles.

® Describe the function of each of the eight different status bits.

® Explain how the control outputs on the 8080 chip can be combined
logically with one or more of the status bits, and provide at least
one example of such a logical combination.

® Draw timing diagrams that depict the behavior of typical micro-
computer instructions. Such diagrams should clearly demonstrate
the logic states of the more important control inputs, control out-
puts, and status bits.

® Explain the different types of data that can appear on the external
data bus.

® Explain state timing for typical machine cycles.

® Explain how single stepping of an 8080 microcomputer occurs,
complete with timing diagrams and circuit diagrams.

® Discuss the characteristics of the 8212 eight-bit input/output port
integrated-circuit chip.

DEFINITIONS

bus—A path over which digital information is transferred, from any of
several sources to any of several destinations. Only one transfer of
information can take place at any one time. While such transfer is
taking place, all other sources that are tied to the bus must be dis-
abled.

to bus—To interconnect several digital devices that either receive or
transmit digital signals by a common set of conducting paths, called
a bus, over which all information between such devices is transferred.

control input—An input pin on the 8080 chip that controls the behavior
of the microprocessor.

control output—An output pin on the 8080 chip that controls the be-
havior of external chips and devices connected to the 8050 chip.

data bus buffer/latch—An 8-bit latch with three-state buffer outputs
that controls the transfer of information between the internal data
bus within the 8080 microprocessor chip and the external data bus.

execution—One of the two functional parts of an instruction cycle.

external bus—The 8-bit bidirectional data bus located external to the
8080 microprocessor chip and to which is connected memory, output
latches and output devices, and input buffers from input devices.

fetch—One of the two functional parts of an instruction cycle. The col-
lective actions of acquiring a memory address and then an instruction
or data byte from memory.

instruction cycle—A successive group of machine cycles, as few as one
or as many as five, which together perform a single microprocessor
instruction within the microprocessor chip.

234

internal bus—A bidirectional data bus located within the 8080 micro-
processor chip and to which is connected the accumulator, instruc-
tion register, general-purpose register, a temporary register, and the
arithmetic/logic unit.

machine cycle—A subdivision of an instruction cycle during which time
a related group of actions occur within the microprocessor chip. In
the 8080 microprocessor, there exist nine different machine cycles.
All instructions are combinations of one or more of these machine
cycles.

nonoverlapping two-phase clock—A two-phase clock in which the clock
pulses of the individual phases do not overlap.

state—A constant interval equal in length to the period of the clock
oscillator that drives the central processing unit.

status bit—A single bit of output information that is placed on the ex-
ternal data bus early during the execution of a machine cycle and is
latched by an integrated-circuit chip called a status latch. Since this
bit is acquired early by the latch, it can be used to control external
events that occur later in the machine cycle.

status byte—An 8-bit byte, i.e., a unit of 8 bits, that contains eight dif-
ferent status bits.

status latch—An integrated-circuit chip, such as, for example, the Intel
8212, that latches the eight status bits when they appear on the exter-
nal data bus.

three-state device—A semiconductor logic device in which there exist
three possible output states: (1) a “logic 0” state, (2) a “logic 17
state, or (3) a state in which the output is, in effect, disconnected
from the rest of the circuit and has no influence upon it.

two-phase clock—A two-output timing device that provides two contin-
wous series of timing pulses that are synchronized together, with a
single clock pulse from the second series always following a single
clock pulse from the first series. Depending on the type of two-phase
clock, the pulses in the first and second series may or may not over-
lap each other.

THE BIDIRECTIONAL DATA BUS

The 8-bit bidirectional data bus is the main data communications
link between the accumulator in the 8080 microprocessor chip and
memory, input devices, output devices, and the status latch. By bidi-
rectional it is meant that data can flow in both directions on the bus,
from the chip to a device, and from a device into the chip. The bus is
three-state. A schematic diagram of data flow on the bus is shown in
Fig, 6-1.

In the discussion of bus in Chapter 7 of Bugbook 11, the following
definitions were provided:

235

OUTPUT
DEVICE

ZaN

8-BIT BIDIRECTIONAL DATA 8US

MEMORY

Accumulator

Inatruction
registor

ALU

DATA BUS
BUFFER / LATCH

Flag flip-flops
Register 8 v
Register C

INPUT STATUS
ote. DEVICE LATCH

8080

Fig. 6-1. The data bus buffer/latch within the 8080 chip serves as an internal interface
between the internal data bus and the external bidirectional data bus.

bus—A path over which digital information is transferred, from any of
several sources to any of several destinations, Only one transfer of
information can take place at any one time. While such transfer is
te]t)king place, all other sources that are tied to the bus must be dis-
abled.

to bus—To interconnect several digital devices which either receive or
transmit digital signals by a common set of conducting paths, called
a bus, over which all information between such devices is transferred.

three-state device—A semiconductor logic device in which there are
three possible output states: (1) a “logic 0” state, (2) a “logic 1”
state, or (3) a state in which the output is, in effect, disconnected
from the rest of the circuit and has no influence upon it.

In the preceding definition for a bus, the important point is that only
one transfer of information can take place at any one time. Since a bus
is a shared group of conducting paths, chaos would result if all the
transmitters on the bus attempted to send information simultaneously.
The basic purpose of a bus is to minimize the number of interconnec-
tions required to transfer information between digital devices. The
fewer the interconnections, the easier it is to lay out printed-circuit
boards. Even within the integrated-circuit chip itself, internal busses
are employed to facilitate chip fabrication. The 8080 microprocessor
chip has an internal bus and communicates with external devices over
an external bus present on printed-circuit boards.

In Fig. 6-1 is given a functional block diagram of the external 8-bit
bidirectional data bus. On the following page is provided a functional
block diagram of the 8080 chip itself. Note the data bus buffer/latch

236

at the top middle part of the diagram. This portion of the 8080 chip is
the buffer between the internal and external data busses. When the
latch is enabled, data can pass in either direction between the two data
busses.

0, 0
a1 OIRSCTIONAL
DATABUS

o Eon et
TERNAL OATA 85 { WreRNACDarA BUS

I

wstavcrion
‘Secoaen
wacne [+
eviie

g T
neo_ | rewrne

g B
9 nes

T
afs

v T aggisTen
nie afs ‘aRRAY

R

L

Stackromten

en068AM COUNTER

=

oo
TRCREVENTER DrCREMENTER
'aDORESS LaTCH)

4

OATABUS INTERRUPT WOLD WAUT ADORESS ButTER
[wir CONTROL 'CONTROL. CONTROL CONTROL Syhc cLogks

eowen [— o12v
sumLies | v ey
——

— oo

WR O Dam NTE INT WOLOWOLOWAIT | SvMc o1 o3 MERET
" heaov

o
A0ORESS Bus

Courtesy Intel Corp.

On the 8-bit bidirectional data bus (the external bus), there are
three transmitters:

® memory,

® any input device, and

@ the data bus buffer/latch within the 8080 chip;
and four receivers:

® memory,

® any output device,

® the status latch, and

® the data bus buffer/latch within the 8080 chip.

Information that appears on the external bus can be one of the
following:

® A data byte that is being transferred from memory, through the
data bus buffer/latch, into the accumulator (or one of the six gen-
eral-purpose registers);

® An instruction byte that is being transferred from memory, through
the data bus buffer/latch, into the instruction register;

® A data byte from an input device that is being transferred through
the data bus buffer/latch into the accumulator;

® A data byte from the accumulator that is being transferred through
the data bus buffer/latch to an output device;

237

® A status byte that is being transferred through the data bus buffer/
latch to the status latch; and

® An instruction byte from an input device that is being transferred,
during an interrupt condition, through the data bus buffer/latch
into the instruction register;

and perhaps others as well, Clearly, the microprocessor has a consider-
able timing problem: It must coordinate the transfer of information
between all transmitters and all receivers on the external 8-bit bidirec-
tional data bus. It has the same problem on the internal bus as well.
How does the microprocessor do all thisP This is what we shall discuss
in this chapter. This discussion will give you a “feeling” for what hap-
pens within a microprocessor chip without bogging you down in the
many subtle details of microprocessor operation. For further details, see
the Intel Corporation literature, specifically their 8080 Microcomputer
System Manual and the Intellec 8/ Mod 80 Microcomputer Develop-
ment System Reference Manual, both of which provide useful informa-
tion and timing diagrams on what occurs during the different micro-
computer_machine cycles.®® Some of the material provided below is
from these two manuals, courtesy of the Intel Corporation.

INSTRUCTION CYCLES

To quote the Intellec 8/ Mod 80 Microcomputer Development Sys-
tem Reference Manual:

“The 8080 is driven by a two-phase clock oscillator, at a maximum
frequency of 2.08 MHz. All processing activities are referred to the
period of this clock. The two nonoverlapping clock phases, labeled ¢,
and ¢, are furnished by external circuitry. The ¢, clock divides the
processing cycle into states. A state is the smallest unit of processing
activity (480 ns when the processor is operating at maximum speed)
and is defined as the interval between two successive positive-going
transitions of the ¢, clock. Timing logic within the 8080 uses the clock
inputs to produce a SYNC pulse, which identifies the first state of every
machine cycle. . .

“. .. As shown in Fig. 6-2, the SYNC signal is related to the leading
edge of the ¢, clock. There is a delay between the low-to-high transi-
tion of ¢, and the positive-going edge of the SYNC pulse. There also
is a corresponding delay between the next ¢ pulse and the falling edge
of the SYNC signal. Status information is displayed on DO through D7
during this same interval. Switching of the status signals (occurs only
when ¢, is at logic 1) .. .”

“An instruction cycle consists of two functional parts, the fetch and
the execution. Each of these functional parts, in turn, consists of a
number of machine cycles. During the fetch, a selected instruction

238

¢ _n__n __n nn

}-——— State —"'l’— State —'+"— S|ﬂ?l'—+— 5'”'—4
L1 L]

4, [LI

SYNC ____[_"‘_‘l

External
data bus V0777
. status bits
Fig. 6-2. Clocks ¢, and ¢, and SYNC timing. SYNC does not occur in the second and third
machine cycles of a DAD instruction,

(one, two, or three bytes) is extracted from memory and deposited in
the CPU’s instruction register. During the execution part, the instruc-
tion is decoded and translated into specific processing activities. The
fetch routine requires one machine cycle for each byte to be fetched.
The duration of the execution portion of the instruction cycle depends
upon the kind of instruction that has been fetched. Some instructions
do not require any machine cycles other than those necessary to fetch
the instruction; other instructions, however, require additional machine
cycles to write or read data to/from memory or 1/O devices. The DAD
instruction is an exception in that it requires two additional machine
cycles to complete an internal register-pair add.

“Every instruction cycle contains one, two, three, four, or five ma-
chine cycles. Each machine cycle, in turn, consists of three, four, or
five states. A state is defined as a constant interval, equal in length to
the period of the clock oscillator which drives the CPU (a phase). That
is, a state is so defined in all but three cases. Exceptions to the rule are
the WAIT state, the hold (HLDA) state, and the halt (HLTA) state,
... A moment's consideration will show that this is reasonable, since
-the WAIT, the HLDA, and the HLTA states depend on external events
and are, by their nature, of indeterminate length. Observe, however,
that even these exceptional states must be synchronized with the pulses
of the driving clock. Thus the durations of all states, including these,
are integral multiples of the clock phase.

“To summarize then, each clock phase marks a state; three to five
states constitute a machine cycle; and one to five machine cycles com-
prise an instruction cycle. A full instruction cycle requires anywhere
from four to eighteen phases for its completion (2.0 microseconds to
9.0 microseconds), depending on the kind of instruction involved.”

The preceding paragraphs are well written and need little elabora-
tion. The important point is that a microprocessor is a clocked digital
electronic device. Clock pulses are required to synchronize and cause
specific operations to occur. A sufficient number of operations within

239

the microprocessor must occur for each instruction that it is not possible
to do all with a single clock train. Thus, a two-phase clock with non-
overlapping pulses ¢, and ¢ is required. For the simplest instruction
cycles, eight individual clock pulses are available to coordinate the
actions within the microprocessor. For simple instructions, this is all
that is required. However, for more complicated instructions, addi-
tional clock pulses are required to coordinate the microprocessor ac-
tions. The most complicated instruction in the 8080 instruction set is
the XTHL instruction, which requires eighteen states, or 36 individual
clock pulses, for its completion. Treat the 8080 microprocessor as a
digital circuit that you could, if you so desired, wire on breadboarding
sockets. It wouldn’t be practical for you to do so, because of the many
wire connections which might be required. Nevertheless, you shouldn't
view the internal workings of the 8080 chip as a mystery. What is in-
side is simply a clocked digital circuit that is run via a pair of synchro-
nized clock trains called a two-phase clock. Much of the internal cir-
cuitry within the 8080 chip is bus oriented, so fewer wire connections
are required than you would ordinarily expect.

Fig. 6-3 is a schematic diagram of a group of three microcomputer
instructions, SUB A, OUT <B2>, and CALL <B2> <B3>, which re-
spectively require four, ten, and 17 states (or clock cycles). This dia-
gram will be discussed in greater detail in the following section.

MACHINE CYCLES

In Fig. 6-3 is a group of three microcomputer instructions each of
which requires its own instruction cycle. The SUB A instruction has
one machine cycle and a total of four states. The two-byte OUT <B2>
instruction requires three machine cycles and a total of ten states.
Finally, the three-byte CALL <B2> <B3> instruction requires five
machine cycles and a total of seventeen states. The different machine
cycles within each instruction are labeled M;, My, .. ., and M;. Five
machine cycles is the maximum number required for any of the three

sus A OuT <B2> CALL <B2> <B3>

MI MI MZ Ml Ml ME M! MO M6
L300 7 O O L
¢ UL UL AR UL AR AR LA AR A AR

Fig. 6-3. State, machine cycle, and instruction cycle timing. There are three microcomputer
instructions shown: SUB A, OUT <B2>, and CALL <B2> <B3>, which are, respectively,
single-byte, two-byte, and three-byte instructions requiring four, ten, and seventeen
clock cycles.

instructions shown in the figure. In this section, we shall discuss the
individual machine cycles within the overall instruction cycle.

There are nine types of machine cycles that may occur within an in-
struction cycle, although not more than five machine cycles will appear
in any given instruction cycle. These types of machine cycles include
the following:

® Fetch—This machine cycle consists of either four or five states, with
the exception of the WAIT, HLDA, and HLTA states, which con-
tain any integral number of states greater than three. During this
cycle, the memory address is acquired, status bits are made available
on the 8-bit external data bus, register transfers occur within the
8080 chip, and simple arithmetic or logical operations are performed.
With some microcomputer instructions, this is the only machine
cycle required. Any microcomputer instruction that requires only
four or five states requires only the fetch machine cycle. This ma-
chine cycle acquires its name from the fact that, during the cycle, the
operation code for the instruction is “fetched” from the memory loca-
tion present in the program counter. This operation code is trans-
ferred to the instruction register within the 8080 chip, where it is
subsequently decoded by the instruction decoder into a series of
actions that the microprocessor performs. During this cycle, the pro-
gram counter is incremented by one, thus giving the location of the
next instruction byte.
® Memory read—This machine cycle consists of three states. During
this cycle, a byte present in the memory location indicated by the
program counter is transferred from memory to one of the registers
within the 8080 chip. Such registers include the accumulator, B, C,
D,E, H, and L.
Memory write—This machine cycle consists of either three or four
states, during which the contents of a register are transferred to the
memory location pointed to by the H and L registers. The H and L
pointer registers may also be incremented or decremented during
this machine cycle.
® Output—This machine cycle consists of three states, during which the
output device code is made available on the 16-bit memory address
bus and the contents of the accumulator are made available on the
8-bit external bidirectional data bus.
Input—This machine cycle also consists of three states, during which
the input device code is made available on the 16-bit memory ad-
dress bus and the data bus buffer/latch within the 8080 microproces-
sor is enabled to allow input data appearing on the external bus to
be transferred to the accumulator.
@ Stack write—During this three-state machine cycle, an 8-bit data
byte is placed upon the external data bus and transferred to the

241

memory location given by either M(SP—1) or M(SP—2), where SP

is the stack pointer register within the 8080 microprocessor.

Stack read—During this three-state machine cycle, an 8-bit data byte

is transferred from the memory location given by either M(SP) or

M(SP+1) via the external data bus to the microprocessor registers,

such as H, L, B, C, D, E, or the program counter.

Halt—This machine cycle can contain any integral number of states

greater than three. The microprocessor remains in a WAIT state for

as long as the READY input to the 8080 chip is at logic 0. The WAIT

output from the 8080 chip is at logic 1 to acknowledge that the CPU

is in a WAIT state.

® Interrupt—This five-state machine cycle resembles the fetch machine
cycle, except that the program counter, which has already been in-
cremented in the fetch cycle, is not incremented. This allows the pre-
interrupt status of the counter to be saved in the stack and permits
an orderly return to the interrupted program after the interrupt re-
quest has been processed.

The following machine cycles occur for the instructions present in
Fig. 6-3.

Fetch: M, in SUB A, OUT <B2>, and CALL <B2> <B3>

Memory read: M. in OUT <B2> and both M, and Mj; in CALL
<B2> <B3>

Output: M3 in OUT <B2>

Stack Write: Both M, and M; in CALL <B2> <B3>

You might wonder why two similar machine cycles are required during
the same instruction cycle, as occurs in the CALL instruction. The an-
swer is that information is being transferred to or from different regis-
ters within the 8080 chip during the memory read and stack write
machine cycles; consequently, two different cycles are required in
each case. It is not hard to imagine that the microprocessors of the
future, which will all be much faster than the 8080, will require more
machine cycles than five to perform still more complicated instructions
such as multiply or divide.

Additional information on machine cycles can be found in References
8 and 9. Both sources were used in writing this section.

MACHINE CYCLE IDENTIFICATION

A question that bothers many people when they first learn about
the 8080 microprocessor is: How can one determine which machine
cycles comprise a microcomputer instruction? The Intel literature de-
scribes typical machine cycles for instructions such as INP, OUT,
ADD, CALL, HALT, and others, but such descriptions are far from

242

being a complete inventory of the entire 78-instruction set. We may
believe that we can decipher most of the instructions given sufficient
time and patience, but is there any way to do this while the microcom-
puter is in operation?

The answer to the preceding question is that it is indeed possible to
determine which machine cycles comprise a microcomputer instruc-
tion; it can be done while the microcomputer is in operation. The de-
tails will be provided in the subsections that follow. Much of the in-
formation is contained in References 8 and 9.

Latching the Status Bits

How does the microcomputer identify the machine cycle in progress?
It does so by transmitting an 8-bit status signal during the first state,
T, of every machine cycle. These status signals appear on the external
8-bit bidirectional data bus, and are latched by the 8212 status latch
circuit shown in Fig. 6-4. There are eight status bits, and we shall dis-
cuss them shortly. The important point is that the status bits are the
first information applied to the external data bus during a new instruc-
tion cycle. Thus, the status bits precede an instruction or data byte
from memory or an input or output data byte on the external data bus.
Such information comes after the status bits, not before it.

How are the status bits latched? This is shown in both Fig. 6-4 and
6-5. Observe in Fig. 6-4 that the SYNC output from the 8080 chip is
connected to the DS, input on the 8212 chip. When DS: is at logic 1

DATA BUS

CLOCK GEN.
& DRIVER

Courtesy intel Corp.
Fig. 6-4. Diagram of circuit for latching the eight status bits that appear on the external data
bus during the T, and T3 states.

243

!
LT Jj .

% L L L
i 1
! |
! 1
SYNC F
External
data bus V77777773
status bits
¢ LS U U | = u
DS, DS, M
status bits latched by 8212 chip
Status
lateh]

Fig. 6-5. Timing diagram that illustrates how the status bits on the 8-bit external data bus are
latched by the 8212 chip.

and DS, is at logic 0, the status information available on the external
data bus is latched and appears at the 8212 output pins 4, 6, 8, 10, 15,
17,19, and 21. The input to pin 1 on the 8212 chip is ¢1; when this input
goes to logic 0 with SYNC at logic 1, the latching action occurs (Fig.
6-5). The DS, - DS, pulse has a pulse width of 500 ns. A typical 8080
microcomputer has such a latch, as shown in Fig, 6-6.

The Eight Status Bits

The eight status bits that appear on the external data bus during the
Ty and T states of a machine cycle have the following symbols and
definitions:

Data
Symbol Bus Bit Description
INTA DO Acknowledge signal for INTERRUPT request, at which time it

is a logic 1. This signal should be used to gate a restart in-
struction, RST, onto the data bus when DBIN (pin 17 on the
8080 chip) is at logic 1.

WO D1 If the operation in the current machine cycle is a WRITE
memory or OUTPUT function, this status bit will be at logic
0. If the operation is a READ memory or INPUT, this status
bit will be at logic 1.

STACK D2 A logic 1 indicates that the 16-bit memory address bus holds
the stack address from the stack pointer, SP.

HLTA D3 Acknowledge signal for a HALT instruction. ‘When the machine
cycle is a HALT instruction, this status bit will be at logic 1.
ouT D4 A logic 1 for this status bit indicates that the 16-bit memory
address bus contains the 8-bit device code of the output de-
vice and that the external data bus will contain the output

data when WR (pin 18 on the 8080 chip) is at logic 0.

M: D5 This status bit provides a logic 1 signal to indicate that the
CPU is in the fetch cycle for the first byte of an instruction.
INP D6 A logic 1 for this status bit indicates that the 16-bit memory

address bus contains the 8-bit device code of the input device
and that the input data should be placed on the external data
bus when DBIN (pin 17 on the 8080 chip) is at logic L.

MEMR D7 A logic 1 indicates that the external data bus will have data
coming from memory during this machine cycle.

To quote from Reference 8:

“The machine cycles that actually do occur in a particular instruction
cycle depend upon the kind of instruction, with the overriding stipula-
tion that the first machine cycle in any instruction cycle is always a
FETCH.

“The processor identifies the machine cycle in progress by transmit-
ting an 8-bit status signal during the first state of every machine cycle.
Updated status information appears on the 8080’ data lines (DO
through D7) during the SYNC interval. This data may be saved in
latches, decoded, and used to develop control signals for external cir-
cuitry. Table 6-1 shows how the status information is distributed on the
microprocessor’s data bus.

Courtesy Tychon, inc.
Fig. 6-6. The location of the 8-bit status latch on the CPIC-80/B printed-circuit board. This

board is part of an 8080 micr system fi d by E&L Inc.

245

“Status signals are provided principally for the control of external
circuitry. Simplicity of interface, rather than machine identification,
dictates the logical definition of individual status bits. You will there-
fore observe that certain processor machine cycles are uniquely iden-
tified by a single status bit, but that others are not. The M, status bit,
D5, for example, unambiguously identifies a FETCH machine cycle.
A STACK READ, on the other hand, is indicated by the coincidence
of STACK and MEMR signals. Machine cycle identification data can
also be valuable in the test and debugging phases of system develop-
ment.”

As indicated in the preceding quote, to identify a specific machine
cycle, we employ the truth table shown as Table 6-1.

8080 Control Inputs and Outputs

In Chapter 1 we discussed the control inputs and outputs to and from
the 8080 microprocessor chip. The control inputs include (Fig. 6-7):

RESET (pin 12)
INT (pin 14)
READY (pin23)
HOLD (pin 13)

and the control outputs are:
WAIT (pin 24)
WR (pin 18)
HLDA (pin 21)
INTE (pin 18)
SYNC (pin 19)
DBIN (pin 17)

The above control inputs and outputs can be combined logically
with the eight status outputs:

INTA

WO

STACK

HLTA

ouT

M,

INP

MEMR
latched by the 8212 buffer/latch chip to coordinate and control data
transfer into and out of the microprocessor. This is a very important
point. You are not limited to the four control input pins and six control
output pins on the 8080 chip (Fig. 6-7); the latched status bits can be

used as well. The IN and OUT strobe outputs are not located on the

246

Table 6-1. Truth Table Relating Type of Machine Cycle to
Individual Status Bits in 8-Bit Status Word Appearing
on the External Data Bus During State T,

Data Bus Bit and Status Information

Type of MEMR INP M, OUT HLTA STACK WO INTA
Machine Cycle 07 D6 D5 D4 D3 D2 D1 DO
Instruction Fetch 1] 1 0 [}) 1 o
Memory Read 1 0 0 [} o] V] 1 /]
Memory Write o 0 0 o 0 0 0 0
Stack Read 1 [0 0 0 1 1 0
Stack Write) 0 0 [} 0 1 0 0
Input [} 1 0o [} [} [} 1 0
OQutput 0 0 [} 1 [} [} (] 0
Interrupt 0 0 1 0 o 0 1 1
Halt 1 0 o 0 1 0 1 [
Interrupt While Halt 0 0 1 0 1 0 1 1

8080 chip; you derive them from the status bits after they are latched.
The latching of status bits is a very clever piece of digital electronic
design, one that maximizes the use of the data bus and eliminates the
need for extra output pins on the microprocessor chip. Although it may
appear that the price you pay for this capability is one state per ma-
chine cycle to latch the status bits, keep in mind that during the same

+5V GND
+i2v -3V

28420 |2 I

|

13 As
o e Memory and 1/0
ReSET Ao address bus

=1 READY

B

l

ro
4

|a

WwR
INTE
HLDA

Two-phase = WAIT 'f;——
clock —22- g, oBiN [-—
syne —

Dgte Dy

8080A

8-bit bidirectional
data bus

Fig. 6-7. Block diagram of the 8080 microprocessor chip showing the control inputs and out-
puts as well as the memory address bus and the 8bit bidirectional data bus (the external
data bus).

247

SUB A OUT <B2> CALL <B2> <B3>

M, ™, M, | M, ™, M | My [M| M
¢ UL AR RN AR UL AR R AU
KA 8 0 0 8 . 0 0
swe L JL LM m i mn rnrn._
INTA
o L [
STACK S
HTA™ 1
out I
wm___ 1 | I
INP
MEMR L |
oen___ 1 1T 1 mnri s
W LI L
READY :
WAIT "o
“_H_H B B B = B E AN
Coudi B B B BN W S
szpgmueer , |
Tomgmgeer brte N
daee [re] [reva] [rori Tomeo[re-s] [eere[reoi Jor Jore]
osgiee [Comiee |

1

Fig. 6-8. Timing diagrams for signals present on the data bus, address bus, and control bus.
Note changes in the status bit outputs.

state the 16-bit memory address is being loaded into the program
counter.
Timing Diagrams for Typical 8080 Instructions

We shall now discuss the preceding points with the aid of Fig. 6-8,
which shows timing diagrams for the following digital signals:

® the 8080 two-phase clock and several control inputs and outputs
(Fig. 6-9),

248

SuUB A ouT <B2> CALL <B2> <B3>

", , M, | My " M| My M| M

nnnnunnnnnnnnnnnnnnnnnnunnnﬁnnnnﬂjULﬂJL

-

DBIN

UL AU UL UL LU AL AL AL UL UUUR UL UL
_n.n . n nrn It
U [

WR

o
READY

WAIT ‘0"

Fig. 6-9. The two-phase clock inputs and several control input and output signals found en
the 8080 microprocessor chip.

o the latched status bits (Fig. 6-10),

o the different types of data that appear on the external data bus
(Fig. 6-11),

 the memory address and /O device code information that appears
on the memory address bus (Fig. 6-12).

The letters PC and SP stand for program counter and stack pointer,
respectively, which are 16-bit registers within the 8080 microprocessor
chip. By “PC — 1” is meant that the information on the 16-bit external
address bus is one less than the contents of the program counter. The
program counter contains the address of the next instruction to be
executed, not the address of the current instruction being executed.

The three instructions that will be discussed include: SUB A a
single-byte instruction that clears the accumulator; OUT <B2>, a two-
byte instruction that provides an OUT strobe pulse that allows an ex-
ternal device to latch the contents of the accumulator, which appears

INTA

wo LI | SR
STACK I
HLTA™ 1

out S |

M. 1) 1 I
INP
MEMR - L

Fig. 6-10. The eight latched status bits.

249

for a fleeting instant on the external data bus; and CALL <B2> <B3>,
a three-byte instruction that unconditionally calls a subroutine at the
memory address given by bytes B2 and B3. A simple program that in-
corporates these instructions in sequence is as follows:

LO Memory Octal

Address Instruction Comments
000 227 Subtract contents of accumulator from accumulator,
i.e., clear the accumulator
001 323 Generate a device select pulse to output eight bits of

accumulator data to the device with the device code
given in the following byte

002 000 Device code for output device

003 315 Unconditional call of subroutine located at memory lo-
cation given in the following two bytes

004 040 LO memory address byte

005 000 HI memory address byte

008 168 Halt

040 311 Unconditional return to main program from this sub-
routine

We should note that the stack pointer, SP, has been previously located
at LO = 2005 and HI = 0003 and that the preceding program can be
run repeatedly simply by resetting the program counter to HI = 000g
and LO = 0005 with the aid of the manual ReseT control switch on the
front panel of an 8080 microcomputer. The execution of this program
can be summarized as follows:

Status Bits
~ N
<
LO Memory Bidirectional E AL S S % o E
Address Bus Daia Bus S 2 S35 B =
377 377 Mnemonic 1 0 0 0 1 0 1 O
NOTE: At the t, the mi D is in the HALT state. The eight status

bits are latched in the states shown. To start the computer program, we
use the RESET control switch to reset the program counter to HI = 000
and LO = 000s. The reason that we have supplied the above information
will become apparent below.

000 227 SUB A 1 0 1.0 0 0 1 O
001 323 ouT 1 ¢ 1 0 0 O 1 O
002 000 <B2> 1 0 1.0 0 0 1 O
000* 000 Dataoutputonbus 0 ¢ 0 1 0 0 0 O
003 315 CALL 1 0 1 0 0 0 1 O
004 200 <B2> 1 0 1 0 0 0 1 O
005 000 <B3> 1 0 1.0 0 O 1 O
177 000 Stack write 0 0 0 0 0 1 0 O
176 006 Stack write 0o 0 0 0o 0 1 0 O
040 311 RET 1 6 1. 0 0 0 1 O
177 006 Stack read 1 0 0 0 0 1 1 o
176 000 Stack read 1 0 0o 0 0 1 1 O
006 166 HLT 10 1 0 0 0 1 O
377 377 - 1 0 0 0 1 0 1 O

250

8bits 8bits 8 bits. 8 bits.
Stratue
Memory
byt
Accumuiator
- ,

Fig. 6-11. Representation of the types of data that appear on the external bidirectional data
bus. Observe that no two different types of data are present on the data bus simultaneously.

After execution of the above program, the microcomputer is in the
HALT state. The asterisked (*) instruction shows the data output ma-
chine cycle. The device code for the output device selected at LO =
0023 is 000s.

Fig. 6-8 provides the timing diagrams for the first nine machine
cycles in the above program listing. The entire program requires thir-
teen machine cycles; no further execution occurs in the HALT state at
the end of the program. If you study the figure well, you will develop
a good understanding of most of the important concepts of microproc-
essor operation. Focus upon the following:

@ The time before the first machine cycle, My, in the SUB A instruc-
tion.
Here we assume that the microcomputer is in the HALT state, in
which the eight status bits are latched in the 8212 chip in the follow-
ing states: INTA = STACK =0UT =M, = INP = logic 0 and WO
= HLTA = MEMR = logic 1.

@ The unique time when the OUT status bit is latched by the 8212
chip to a logic 1 state.

Note that at no other time is the OUT status bit at a logic 1. This con-
dition allows you to uniquely determine two important conditions that
occur simultaneously: (1) the I/0O device code is present as two iden-
tical 8-bit bytes on the 16-bit memory address bus, and (2) the con-
tents of the accumulator are present on the 8-bit external bidirectional
data bus. These conditions occur only when the OUT status bit is
latched at logic 1. Clearly, the OUT status bit can be used to generate

16 bits 16bits

pgress [Tpc wc-2] [pe-1 | vevics Jpc-3] Pc-2 [PC-1_[sP-1 |sP-2

Devics
code Devies

2X8bits

Fig. 6-12. Representation of the types of data that appear on the 16-bit address bus.

251

\
I
out |
i

WR [WR — |
out ouT |

Fig. 6-13. Logic circuitry for the generation of the OUT control signal.

device select pulses that can strobe data from the accumulator to a
specified output device. In Fig. 6-8 a vertical arrow is drawn near the |
bottom of the figure to denote the time at which output data from the f
accumulator can be latched by an external device.

An 8080 microcomputer will generate a 500-ns OUT pulse during the
time that the OUT status bit is at logic 1. The logic circuitry employed
to do this is shown in Fig. 6-13, i.e., a simple two-input NAND gate
that is enabled only when WR and OUT are both at logic 1. The 500-
ns pulse width is a consequence of the WR input, which remains at
logic O for only 500 ns, as can be seen in Fig. 6-7.

Although the input instruction is not shown, it functions in a man-
ner similar to the output instruction. The INP status bit is latched by
the 8212, and a device select pulse is generated while it is latched
with the aid of the logic circuit shown in Fig. 8-14. The negative clock
pulse, IN, is generated for 500 ns when both DBIN and INP are at |
logic 1.

® The status bit M, is at a logic 1 state only during the first machine
cycle of an instruction.

® The status bit WO is at logic 0 when data is being written into
memory or an output device. This status bit is at logic 1 while an
instruction byte is being read from memory. During a multibyte

INP

DBIN

INP — - INP —
IN = IN

DBIN DBIN
Fig. 6-14. Logic circuitry for the generation of the 1N control signal. |

252

instruction, WO remains latched at logic 1 until the full multibyte
instruction has been read from memory.

The SYNC output at pin 19 of the 8080 chip is at logic 1 at the
same time that the eight status bits are present on the external data
bus.

The HLTA status bit is latched at logic 1 only when the microcom-
puter is in the halt state.

® The WK output at pin 18 of the 8080 chip is at logic 0 only when
data is being written into memory or an output device. When WR
is at logic 0, the status bit MEMR must be at a logic 0 state (since
no data is being read from memory).

A logic 1 at the MEMR status bit indicates that the external data
bus will have data coming from memory during this machine cycle.
The DBIN output at pin 17 on the 8080 chip is at logic 1 only when
data from memory or an input device is present on the external
data bus. This is the signal that indicates that data is coming from
memory into the 8080 chip.

@ The STACK status bit is usually latched at logic 0. It is latched at
logic 1 only when the 16-bit address bus contains the address of a
memory location on the stack.

At least four types of 8-bit bytes can appear on the external data
bus: the eight status bits, an 8-bit data or instruction byte from
memory, eight bits of data from the accumulator, or an 8-bit ad-
dress byte that is being transferred from memory to the program
counter. Only one 8-bit byte appears on the external data bus at a
time. There are no circumstances under which two different 8-bit
bytes are simultaneously present on the external data bus.

The program counter always contains the 16-bit memory address
of the next instruction byte to be executed. The memory address
of the existing instruction byte is therefore always one less than
the current value of the program counter.

@ The device code appears on the memory address bus as two iden-
tical 8-bit bytes, one occupying the LO address byte and the other
occupying the HI address byte.

The number of executed instructions in a program can be counted
simply by applying the DBIN output at pin 17 on the 8080 chip
and the latched M; status bit to a two-input 7408 AND gate. Each
pulse from the gate output corresponds to a single instruction.

A schematic diagram that shows a status latch connected to an 8080
microprocessor chip is shown in Fig. 6-15. Some status signals are not
often used. Among the most important signals derived from the status
latch and the 8080 control signals are MEMR, MEMW, INTA, I/OR,
and T/JO W. In this book, we have used the letters IN for I/O R and
OUT for TTO W, The MEMR and MEMW control signals indicate a

253

wnLa
00 22 3 0BG
i e R L o061
o - XTI 0 o
P (E
o IS <
UDIEN €S 083
RS S L —
24 3
va o T osa
v oas
o 1‘ wig] e [o
o D= I oo
| DIEN_E§
| 5 i
[Do 7
\ Lo N
L] e =
w080 [—— 5 STack
| sz (12
I N -
S
0]
7 7 MERR
C[Op—— wews
e —1 B,
wit fe——of> o— i

e WiERT

Courtesy Intel Corp. —
Fig. 6-15. Diagram of a typical 8080 control circuit that employs an 8212 chip. 1/O R in the
diagram is equivalent to IN, and ilowis equivalent to OUT.

memory read or memory write operation. The IN, OUT, and INTA
control signals have been mentioned previously.

The 8216 and 8212 chips in Fig. 6-15 have been eliminated through
the introduction by Intel Corporation of the 8228 system controller and
bus driver chip, which contains a status latch and the necessary gating
inside the chip to generate the control signals INTA, MEMR, MEMW,
T/O'R, and T/O W, as shown in Fig. 6-16. The 8228 chip also acts as a
bidirectional bus driver, which allows the bidirectional data bus to be
connected to more TTL loads than is possible with a bare 8080 chip.
While the 8228 chip replaces several TTL chips, it is still relatively
expensive. This discussion is only to call your attention to this chip and
other new chips that help to simplify your microcomputer design task.
Most individuals will be microcomputer users rather than microcom-
puter designers, and will not be involved with designs that start with
the CPU chip and work up. This chapter gives you some idea of the
design considerations required to convert an 8080 microprocessor chip
into a full microcomputer. If you are interested in designing microcom-
puters using microprocessor chips, take a careful look at manufacturers’
literature and periodicals. Others may have already encountered and
solved your problems.

State Timing

Each different machine cycle is subdivided into from three to five
500-ns states labeled T, Tz, Ta, T4, and Ts. Three additional states—

254

soson
ceu ADDRESS BUS

1
SYSTEM DMA AEQ, —————| HOLD

"
SYSTEM INT. ReQ. a

"
INT. ENABLE =————] INTE

a2 n 2|
osc 12 0).
- «

o (TTLY 2w

sz o £

3
rovin —2| 28,
o | cenERaTOR
AT i ORVER
5|

s
5| eusoriver |5 oaTaBUS

12
e meser

—svne o,

-

7
STATUS STROBE svsTem
— = contRoL
2 > TiGR
g i
6w

WENT [CONTROL BUS

BUSER —

Fig. 6-16. Diagram of a typical 8080 control circuit that is based on the 8228 chip.

WAIT, HOLD, and HALT—last from three to an indefinite number of
500-ns clock periods, as controlled by external signals that determine
the termination time of such states. The total number of states per in-
struction is determined by the number of machine cycles and by the
number of states in each machine cycle. The simplest 8080 instructions
have four states; the most complicated one has eighteen. The 8080
chip does not indicate its internal state directly, by broadcasting a
“state control” output during each state; instead, the 8080 supplies
direct control outputs (INTE, HLDA, DBIN, WK, and WAIT) for use
by external circuitry.®

The 8080 passes through at least three states in every machine cycle,
with each state defined by successive positive leading edge transitions
of the ¢, clock. Each state contains two clock pulses: a ¢, pulse and
a ¢, pulse. Events that occur in each state are referred to transitions
in the ¢; and ¢ clock pulses; such events usually occur at the leading
edge or within 50 ns of the leading edge.

The activities, or actions, that occur during each state, as explained
in References 8 and 9, can be summarized in the following manner:

State Associated Activities

T, The memory address from the program counter, the H and L
register pair, or the stack pointer, or an I/O device number, is

255

T

256

placed on the 16-bit memory address bus near the positive lead-
ing edge of the ¢ clock pulse.

The SYNC output pin on the 8080 microprocessor chip goes to
logic 1 slightly after the positive leading edge of the ¢, clock
pulse.

The eight status bits (INTA, WO, STACK, HLTA, OUT, M,
INP, and MEMR) are placed on the external 8-bit bidirectional
data bus slightly after the positive leading edge of the ¢ clock
pulse.

The logic states of the HOLD and READY input pins to the
8080 chip and the presence of a HALT instruction are tested.
If the READY input is at logic 1, state T; can be entered; if the
READY input is at logic 0, the CPU goes into a wait state, Ty.

The SYNC output pin on the 8080 chip goes to logic 0 slightly
after the positive leading edge of the ¢, clock pulse.

Slightly after the positive leading edge of the ¢, clock pulse,
the 8-bit status word on the external data bus is replaced either
by an 8-bit instruction or data byte from memory, or by a data
byte from the accumulator or an input device.

The contents of the 16-bit memory address bus do not change
during this state. DBIN on the 8080 chip goes to logic 1 at ¢,
leading edge.

An optional wait state. The CPU enters this state if the READY
input to the 8080 chip is at logic 0 or if a HALT instruction has
been executed. If a HALT instruction is encountered, the CPU
will remain in this state until an interrupt is received or the
program counter is reset. The CPU acknowledges the wait state
by placing the WAIT output pin on the 8080 chip at a logic 1
state at the positive leading edge of the ¢, clock pulse.

The HOLD state is a bit more complex and will not be dis-
cussed here.

A wait period may be of indefinite duration. The processor re-
mains in the waiting condition until its READY input line
again goes to logic 1. The instruction cycle may then proceed,
beginning with the positive leading edge of the next ¢, clock
pulse. A WAIT interval will therefore consist of an integral
number of Ty, states and will always be a multiple of the clock
period.®

The contents of the 16-bit memory address bus do not change
during this state unless the CPU is in the HOLD state.

T, Data coming from memory and present on the 8-bit external
data bus can be transferred to the instruction register, the ac-
cumulator, or to one of the general-purpose registers.

Data coming from an input device and present on the external
data bus can be transferred to the accumulator.

Data coming from the accumulator and present on the external
data bus can be transferred to memory or to an output device.

Data coming from one of the general-purpose registers and
present on the external data bus can be transferred to memory.

The DBIN output pin on the 8080 chip returns to logic 0 at the
positive leading edge of the ¢, clock pulse.

The WR output pin on the 8080 chip goes to logic 0 at the pos-
itive leading edge of the first ¢, clock pulse following state To.
Note that this could occur either in state T\ or state Ta, usually
the latter.

A variety of activities can occur during state Ts, depending
upon the type of machine cycle. To summarize, an instruction
byte (fetch machine cycle), data byte (memory read, stack
read, or input machine cycle), or interrupt instruction (inter-
rupt cycle) is input to the CPU from the 8-bit external data
bus; or a data byte (memory write, stack write, or output ma-
chine cycle) is output onto the external data bus.®

T,, T Two optional states available for the execution of a particular
instruction if required. If not, the CPU may skip one or both of
them. These states are only used for internal processor opera-
tions.® The contents of the memory address bus change slightly
after the positive leading edge of the ¢ clock pulse in these
states.

T, The WE output pin on the 8080 chip returns to a logic 1 at the
positive leading edge of the ¢, clock pulse during this state.
This is the first state of a new instruction cycle.

The above descriptions are summarized in Figs. 6-17 and 6-18. Fig. 6-17
is a five-state machine cycle, the fetch cycle, in which a memory byte
is transferred to the instruction register. As long as the READY output
pin is at logic 1 during state T, state T3 can be entered. We have not
specified what occurs during states T, and Ts. Fig. 6-18 is a three-state
machine cycle in which a data byte is written into memory or an output
device. Note that the WR output pin on the 8080 chip is at logic 0
during state Ts. DBIN remains at logic 0 during a write or output
machine cycle.

257

‘ T ‘ T I Ty l Te ‘ Ts I
¢ 1N In! m m M ml
¢ L | - - - 4 L
swwe ___ I L
DBIN 1
WR
READY I
WAIT _“o"
16 bits
Address
bus l PCc-1 I
8 bits
Status
ohe I

8 bits
Memory
byte
Fig. 6-17. A five-state machine cycle, the fetch cycle, in which a memory byte is transferred
to the instruction register.

This concludes our discussion of “state timing” in the 8080 micro-
processor chip. It would be worth your time to study Figs. 6-11 and
6-12 and also to obtain copies of References 8 and 9, which go into
state timing in considerably greater detail.

SINGLE STEPPING AN 8080 MICROCOMPUTER

Fig. 6-19 shows a circuit used with an 8080 microcomputer to single
step through the execution of a computer program. It is described here
because it will give a bit more insight into the WAIT state of the 8080
microprocessor.

The basic function of the circuit in Fig. 6-19 is to generate, via a
debounced pulser on the front panel of the microcomputer, a 550-ns
monostable pulse at the D input to the 7474 positive-edge-triggered
flip-flop. As shown in Fig. 6-20, the ¢; TTL clock input to the 7474
flip-flop allows a logic 1 state to exist at pin 23, the READY input, of

258

i

LT
WAIT "o"
16 bits
Address
bus [Th L or 1/0 device code_or SPaP |
8bits
Status ~
o —
8bits

Data
byte
Fig. 6-18. A three-state machine cycle in which a data byte is written into memory or an
output device. Note that WR is at logic 0 during state Ts.

the 8080 microprocessor chip. A logic 1 exists for only 500 ns, but this
period is sufficient to allow the machine cycle to continue into state
T, from the series of wait states T. Beyond state Tj are either states
T, and perhaps Ts, or else a new machine cycle, which starts with state
T,. In other words, the single-step pulser on the front panel allows the
machine cycle to enter state T from a wait state. Note that the WAIT
output on the 8080 chip goes to logic 0 at the beginning of state Ts.

The debounced logic switch allows you to disable the single-step
pulser circuit. In its quiescent state, the debounced logic switch ap-
plies a logic 0 at pin 2 of the 7400 nanp gate. This forces the output
from the gate to be at logic 1, a logic state that is clocked through the
7474 flip-flop to pin 23 of the 8080 chip. As long as the READY input
of the 8080 chip is at logic 1, it is not possible to single step through
the program.

Note that the single-step pulser has a quiescent state of logic 1. This
allows you to employ an external clock to clock the 74123 monostable

259

0808

— LIV
AQVYIY

‘904 yooe jo bHuwwuibeq o

peIabbiiy 96pS - SALISOd V

blbl

Worf—111'p

€2

/] a

i 4

aN9 AS+

el

00bL

IVNYON /d3Ls 319NIS

HOLIMS
21907
a3oNNoa3a
AS+
A
d31S 3TONIS
o 435nd
g I n ! !
$UOGS
e2civL
3 o1 %0 A0
g L
oy 1S oh._ _
b <l >
A
4d ozz' wY Ol

AS+

Fig. 6-19. The circuit employed in an 8080-based microcomputer to permit single-step

y is 2 MHz.

The clock f

of a

L pa N pa I e Y s S pman WS ey

D{7474) 360 ne
READY | Durea— |
WAIT 1

Fig. 6-20. Timing diagrams for the single-step circuit shown in Fig. 6-19.

at pin 2. The authors have found an external clock, consisting of a 555
timer chip with a clock frequency of about 1 Hz, to be quite useful.

There is one final question about the single-step circuit: How fast
does the 8080 microcomputer execute a single instruction when in the
single-step mode? The answer is: At the full internal clock frequency
of 2 MHz, With the single-step capability, you simply force the micro-
computer to remain in a wait state. When you bring the READY input
to logic 1 for 500 ns, you allow the microcomputer to execute states Ts,
T4, and T; and T of the next machine cycle at a clock rate of 500 ns
per state. You are not able to control the speed with which a single
state is executed. As long as the internal clock frequency is 2 MHz,
such a speed will always be 500 ns per state.

A second and superior single-step circuit, one based on the use of a
7474 flip-flop in 8080 systems that contain an 8224 clock generator/
driver chip, is shown in Fig. 6-21. The behavior of this circuit can be

0= Full speed
1= Single step

RDYIN 8080A
8224
cLock reapy 2 peany
or 24
PULSER waIT

Fig. 6-21. A simple single-step circuit for an 8080-based microcomputer that employs an 8224
chip. This circuit can operate at any system clock frequency.

261

B
¢ I n M mn m mn ‘j
4 L L L L ‘
READY |
S et
L2V S — l—— §
E

Fig. 6-22. Timing diagrams for the circuit given in Fig. 6-21. The step pulse is the pulse
applied at pin 3 on the 7474 chip; it may be generated by a manval pulser.

understood with the aid of the timing diagrams shown in Fig. 6-22.
The key to the operation of the circuit is, as it was in the preceding
circuit, the fact that a logic 0 at the READY input to the 8080 chip will
force the chip into a wait state. As can be seen from the block diagram = |
for the 8224 chip, the ¢, clock signal clocks a D-type latch within the
8224 that latches the RDYIN input and outputs it to the READY input
of the 8080. The sequence of actions that occurs in the single-step cir-
cuit is as follows:

® A clock pulse, “step pulse,” applied at pin 3 of the 7474 flip-flop,
produces a logic 1 at the output Q, which is connected to the
RDYIN input of the 8224 chip.

® At the positive edge of ¢», the READY output from the 8224 chip
goes to logic 1.

® The 8080 chip samples the READY input line during ¢.; with the
READY input now at logic 1, the 8080 finishes the execution of the
current machine cycle.

® At the end of the second wait state in the timing diagram, the
WAIT output line of the 8080 chip returns to logic 0, which clears
the 7474 flip-flop.

® RDYIN returns to logic 0, which is clocked within the 8224 chip to
the READY output at pin 4.

® After state T, of the next machine cycle, the 8080 microprocessor
again enters a wait state since the READY input is again at logic 0.

262

If RDYIN is maintained at logic 1, which it can be if the preset input
to the 7474 flip-flop is maintained at logic 0, READY will always be at
logic 1 and the 8080 chip will be prevented from entering a wait state.

The authors are indebted to Mr. William Dalton, a computer science
student at VPI&SU, for pointing out the utility of this circuit, including
the fact that it does not require an RC timing circuit and thus can oper-
ate any system clock frequency.

The specifications for the 8224 clock generator and driver chip are
provided on the following two pages.

THE 8212 EIGHT-BIT INPUT/OUTPUT PORT CHIP

The 8212 eight-bit input/output port integrated-circuit chip is des-
tined to be a very popular buffer/latch, so it is worthwhile to under-
stand how it operates. Basically, the chip is a group of eight 7475-type
latches each of which has a three-state output buffer (Fig. 6-23).

You may recall that the output from the latch in Fig. 6-23 follows the
data input as long as the clock input is at logic 1. A logic 0 at the CLR
input clears the latch. The enable input, EN, to the three-state buffer
must be at logic 1 for data to appear at the output of the buffer.

An important section of the 8212 is devoted to control logic. The
logic diagram shown in Fig. 6-24 will make the circuitry easier to un-
derstand. The five control inputs can be summarized as follows:

DSI, DS2 Device select. These two inputs are used for device selec-
tion. When DS is at logic 0 and DS2 is at logic 1, the de-
vice is selected. In the selected state, the output buffer is
enabled and the service request flipflop (SR) is set to
logic 1. When the MD input is at logic 1, the source of
clock pulses to the eight latches is from the device select
inputs. When the MD input is at logic 0, the output buffer
state is determined by the device select inputs.

MD Mode. This input is used to control the state of the output
buffer and to determine the source of clock input to the
eight latches. When MD s at logic 1, the output buffers are
enabled and the source of clock pulses is from the device
select inputs. When MD is at logic 0, the output buffer
state is determined by the device select inputs and the
source of clock pulses to the eight latches is from the STB
input.

STB Strobe. This input clocks the eight latches when the
MD input is at logic 0. This input also synchronously
clears the service request flip-flop to Q =0.

263

intel Schottky Bipolar 8224

CLOCK GENERATOR AND DRIVER
FOR 8080A CPU

® Single Chip Clock Generator/Driver ® Oscillator Output for External
PU

for 8080A C System Timing
® Power-Up Reset for CPU m Crystal Controlled for Stable System
= Ready Synchronizing Flip-Flop Operation
® Advanced Status Strobe ® Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by
the designer, to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing
for 8080A.

PIN CONFIGURATION BLOCK DIAGRAM

ReseT] w6 vee B> rank —-

RESIN[{2] xvaly
RoviN [} T xrALz
aeaoy [TANK
svwe [[Joese
i T &
O S—
B o
- > wesw

B movin——

PIN NAMES
| e] Aeserwer || ATACY { conmecrions \
Faovin | Reapy o TANK USED Witk oveRTonE XTAL]
[aesoy | aeaovournur | | o csciiatorovtror 1
swwe | svicmour @1 | s oLk imL even
N [srarussre Ve | v 4
| enve tom N BC-R -
o Jfeoso o | o]
5 letoexs = e

264

SCHOTTKY BIPOLAR 8224

FUNCTIONAL DESCRIPTION

General

The 8224 is a single chip Clock Generator/Driver for the
8080A CPU. It contains a crystal-controlled oscillator, a
“divide by nine” counter, two high-level drivers and several
auxiliary logic functions.

Oscillator

The oscillator circuit derives its basic operating frequency
from an external, series resonant, fundamental mode crystal.
Two inputs are provided for thecrystal connections (XTAL1,
XTAL2).

The selection of the external crystal frequency depends
mainly on the speed at which the 8080A is to be run at.
Basically, the oscillator operates at 8 times the desired pro-
cessor speed.

A simple formula to guide the crystal sefection is:
Crystal Frequency = —— times 9
ey

Example 11 {500s tey)

2mHz times 9 = 18mHz*
Example2: (800ns tcy)

1.25mHz times 9 = 11.25mHz

Another input to the oscillator is TANK. This input allows
the use overtone mode crystals. This type of crystal gen-
erally has much lower “gain” than the fundamental type so
an external LC network is necessary to provide the additional
“gain” for proper oscillator operation. The external LC net-
work is connected to the TANK input and is AC coupled to
ground. See Figure 4.

The formula for the LC network is:

1

£ _
27 /T

The output of the oscillator is buffered and brought out
on OSC (pin 12) 5o that other system timing signals can be
derived from this stable, crystal-controlled source.

*When using crystals above 10mHz a small amount of frequency
“trimming" may be necessary. The addition of a small capacitance
(3pF - 10pF) in series with the crystal will accomplish this function.

Clock Generator

The Clock Generator consists of a synchronous “divide by
nine" counter and the associated decode gating to create the
waveforms of the two 8080A clocks and auxiliary timing
signals.

The waveforms generated by the decode gating follow a
simple 25-2 digital pattern. See Figure 2. The clocks gen-
erated; phase 1 and phase 2, can best be thought of as con-
sisting of “units” based on the oscillator frequency. Assume
that one “‘unit” equals the period of the oscillator frequency.
By multiplying the number of “units” that are contained in
a pulse width or delay, times the period of the oscillator fre-
quency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two
high level drivers for direct interface to the 8080A CPU. A
TTL level phase 2 is also brought out ¢ {TTL) for external
timing purposes. It is especially useful in DMA dependant
activities. This signal is used to gate the requesting device on-
to the bus once the B0BOA CPU issues the Hold Ack
nowledgement (HLDA).

Several other signals are also generated intemnally so that
optimum timing of the auxiliary flip-flops and status strobe
(STSTB) is achieved.

B> xmau
B> xrac o B>
B>
6 B>
%
>
B> svwe———t s1ave [>
& e — >t
aeser D>
[>

< som1

0SC + 1BmHasgBos
11008 21 55m3)

2= 275m 15 » SBos)

3= Tiom 12 55na1

265

Enable
Data——D ——i Z—
ate a Fig. 623. A typical latch/buffer cell in the
7475 three state 8212 integrated-circuit chip. There are eight
output buffer of these cells on the chip.

Clock ——]Clock
Cleor
CLR

CLR Clear. A logic 0 at this input asynchronously clears the

eight latches and asynchronously sets the service request
flip-flop to Q = 1. When the service request flip-flop is set,
it is in the noninterrupting state.

The three outputs resulting from the above five control inputs can be
described as follows:

INT A logic 0 at this output may be used to interrupt the micro-
computer. The output must be inverted and then connected to
pin 14 of the 8080 chip. Appears as an external output pin.

Clock A logic 1 enables the eight D-type latches, which follow the
data input. Latching occurs when this output returns to a
logic 0 state. Occurs internally within the chip.

Enable A logic 1 enables the eight three-state output buffers, one on
each latch. A logic 0 forces the buffers into their high-imped-
ance state. Occurs internally within the chip.

Table 6-2 summarizes the behavior of the circuitry in Figs. 6-23 and
6-24.

Table 6-2. Inputs and Outputs of the 8212 Chip.

Control Inputs
CIR Ds2 DsT MD sTB Enable Clock QI(SR) iNt
1 1 ar 1 1 1 I 1 u
1 o 0 1 1 1 1 r
1 1 r [1 I 1 0 r
1 I 0 0 1 N 1 0 r
1 1 0 0 o 1 n 0 0

The Intel Corporation literature on the 8212 eight-bit input/output
port provides a variety of application notes for the use of this chip as a
gated buffer, bidirectional bus driver, interrupting input port, interrupt
instruction port, output port, and 8080 status latch. Four pages from

266

Service Request
ftip-fiop (SR)

sTB

MD
Clock

i)————————— Enable

Fig. 6-24. Details of the control and device select logic for the 8212 integrated-circuit chip.
The clock and enable outputs are connected directly to the 7475-type D latches within the
chip itself, as shown in Fig. 6-23. They do not exist as outputs from the 8212 chip.

the Intel literature are provided on the following pages. The chip is
fast, with most actions occurring in no more than 40 ns.

TEST

This test probes your understanding of the advanced concepts dis-
cussed in this chapter. Please write your answers on a separate piece
of paper.

6-1. What is the difference between a clock cycle, machine cycle, and in-
struction cycle?
6-2. What types of 8-bit information can appear on the external data bus?
Give as much detail as you can.
6-3. Which of the data storage elements listed below are connected to the
external data bus, and which are connected to the internal data bus?
accumulator
B register

267

intal’ Schottky Bipolar 8212
EIGHT-BIT INPUT/OUTPUT PORT

= Fully Parallel 8-Bit Data = 3.65V Output High Voltage
Register and Buffer for Direct Interface to 8080 |
= Service Request Flip-Flop CPU or 8008 CPU
for Interrupt Generation = Asynchronous Register
» Low Input Load Current — Clear
.25 mA Max. = Replaces Butfers, Latches
= Three State Outputs and Multiplexers in Micro-

computer Systems

» Reduces System Package
Count

Outputs Sink 15 mA

The 8212 input/output port consists of an 8-bit fatch with 3-state output buffers along with control and device selection
logic. Also included is a service request flip-flop for the generation and controt of interrupts to the microprocessor.

The device is multimade in nature. It can be used to implement latches, gated butfers or multiplexers. Thus, at! of the princi-
pal peripheral and i functions of a mi system can be il with this device.

PIN CONFIGURATION LOGIC DIAGRAM
SERVICE REQUEST FF

DEVICE SELECTION 080
= |
55 | e— —
g ns‘:D B>
> osz (ACTIVE LOW]
e
B> we WR
ste. —— {7~
[r 1 oureur

| eurren

Bt
:B‘j‘”’"?@
Bl

|

>0ty e
oataaton |

—
I

D01y ————]
I

[P—
PIN NAMES |

| 1

onde | DATAW @ o1y —————————— ‘ms@
00,000 | DATA oUT i I

05, | DEVICE SELECT |
Mo ! mooe &
s >0] 00g iT>
T INVERRUPT (ACTIVE LOWH |
TTR__ | CLEAR(ACTIVE Low b

B> 01y 1

!

4~41444444~§34%44x44+— =
2
®

SCHOTTKY BIPOLAR 8212

Applications Of The 8212 -- For Microcomputer Systems

| Basic Schematic Symbol
" Gated Buffer
Il Bi-Directional Bus Driver

IV Interrupting Input Port
A Interrupt Instruction Port
VI Output Port :

I. Basic Schematic Symbols

Two examples of ways to draw the 8212 on system
schematics—(1) the top being the detailed view
showing pin numbers, and (2) the bottom being the
symbolic view showing the system input or output

VIl 8080 Status Latch
VHI 8008 System
IX 8080 System:

8 Input Ports
8 Output Ports
8 Level Priority Interrupt

as a system bus (bus containing 8 paralie! lines).
The output to the data bus is symbolic in referenc-
ing 8 parallel lines.

BASIC SCHEMATIC SYMBOLS

INPUT DEVICE OUTPUT DEVICE
——n n
a[s e 3
S =
2} e e
23 {10 -2
36 16 6
=] " b (DETAILED) i
2 whr 0]
TR T [21 22| i
]2“0/ vo N[z
05, | os,
T Tz s
NPUT o ouTPUT
L — FLAG
SYSTEM sYSTEM
svste E> 212 (SYMBOLIC) a2 :> sysrem
——qCtR INT p— —| INT CLR o~
aND DATA BUS DATA BUS Vee
GATED BUFFER
Il. Gated Buffer {3- STATE) 3STATE
The simplest use of the 8212 is that of a gated v
N - ———
buffer. By tying the mode signal low and the strobe e
input high, the data latch is acting as a straight ste
through gate. The output buffers are then enabled
from the device selection logic DS1 and DS2. INPUT g:;:\n
When the device selection logic is false, the outputs sl E> a2 :> (15mal
are 3-state. {365V MINI
When the device selection logic is true, the input

data from the system is directly transferred to the
output. The input data load is 250 micro amps. The
output data can sink 15 milli amps. The minimum
high output is 3.65 volts.

GATING

TR
—_—T]
CONTROL GND.
(DSTeDS2)

269

SCHOTTKY BIPOLAR 8212 .

Ili. Bi-Directional Bus Driver 8I-DIRECTIONAL BUS DRIVER P
A pair of 8212’s wired (back-to-back) can be used Vee i
as a symmetrical drive, bi-directional bus driver.
The devices are controlled by the data bus input ST8
control which is connected to DS1 on the first 8212
and to DS2 on the second. One device is active, and
acting as a straight through buffer the other is in DATA 8212 DATA
3-state mode. This is a very useful circuit in small sus ous
system design.
&R
DaTA BUS
CONTROL
{ox L =~ A} Gno
W=R=L} T
S8
8212
CtR
GND
V. Interrupting Input Port INTERRUPTING INPUT PORT
This use of an 8212 is that of a system input port DpATA
that accepts a strobe from the system input source, INPUT BUS
STROBE

which in turn clears the service request flip-flop
and interrupts the processor. The processor then
goes through a service routine, identifies the port,
and causes the device selection logic to go true —

enabling the system input data onto the data bus. e

SYSTEM
RESET

ront
selécrion |

SELE TO PRIORITY CKT
1BS1Ds2!

(ACTIVE LOW)
oRr

0 CPY
INTERRUPT INPUT

V. Interrupt Instruction Port INTERRUPT INSTRUCTION PORT
The 8212 can be used to gate the interrupt instruc- Vee DATA
tion, normally RESTART instructions, onto the data 8Us

bus. The device is enabled from the interrupt
acknowledge signal from the microprocessor and
from a port selection signal. This signal is normally

tied to ground. (DS1 could be used to multiplex a RESTART

: P i - INSTRUCTION 8212
variety of interrupt instruclion ports onto a com har o Sher
mon bus).

SUR
& vort setecT !
() 108 oo
INTERRUPT ACKNOWLEDGE

SCHOTTKY BIPOLAR 8212

V1. Output Port (With Hand-Shaking)

The 8212 can be used to transmit data from the data
bus to a system output. The output strobe could be
a hand-shaking signal such as “reception of data”
from the device that the system is outputting to. It
in turn, can interrupt the system signifying the re-
ception of data. The selection of the port comes
from the device selection logic. (D81 DS2)

OUTPUT PORT (WITH HAND-SHAKING)

DATA
BUS
OUTPUT STROBE

8212

> SYSTEM OUTPUT

p——— svsTem RESET

I

R

g —

Vee

iNT

PORT SELECTION
(LATCH CONTROL)

SvsTEM
{DS0s2)

INTERRUPT

VI. 8080 Status Latch

Here the 8212 is used as the status latch for an 8080
microcomputer system. The input to the 8212 latch
is directly from the 8080 data bus. Timing shows
that when the SYNC signal is true, which is con-
nected to the DS2 input and the phase 1 signal is
true, which is a TTL level coming from the clock
generator; then, the status data will be latched into
the 8212.

Note: The mode signal is tied high so that the output
on the lalch is active and enabled all the time.

It is shown that the two areas of concern are the
bidirectional data bus of the microprocessor and the
control bus.

8080 STATUS LATCH

DATA BUS

STATUS
LATCH

crock gen, fo1TTu|

& DRIVER

TR
Ds,
13

n

o212
Py
S
aus t
121~ mem svne __/__‘T"—‘__
mD DS, R S S,
7 oata| 7 _Z
oBIN I
status
I

amn

a R/W memory byte
an input device

an output device
instruction register
flags

PROM memory byte

6-4. Describe five of the eight status bits and explain what type of informa-
tion they provide.

6-5. Describe five of the nine machine cycles.

6-6. Both the status bits and output pins from the 8080 microprocessor chip
can be used to provide output signals to interface circuits. Explain how
this is done.

6-7. Describe the different types of states that can comprise a machine cycle.

Your performance on this test will be acceptable if you can answer all
of the above questions correctly in a 90-minute closed-book examina-
tion. The above concepts are advanced concepts that you may not im-
mediately need to know. With time, however, you will find them to be
quite important as you develop more complex interface circuits.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you will
be able to do the following:

® Explain the differences between the internal and external busses
in an 8080-based microcomputer system.
This was done in the section on the bidirectional data bus. The single
8080 microprocessor sheet from the Intel literature gives an excellent
view of the internal data bus.
® List the sources and destinations of information that appears on
the external data bus.
This was also done in the section on the bidirectional data bus.
® Explain the differences between a state, clock cycle, instruction
cycle, and machine cycle.
A state and a clock cycle are the same. A machine cycle consists of
three or more states. An instruction cycle consists of one to five ma-
chine cycles. All of these concepts have been discussed in some detail.
® Explain what a status bit and a status byte are.
A status byte consists of eight different status bits, which are discussed
in the section on machine cycle identification.
® Describe the nine different types of machine cycles.
They are fetch, memory read, memory write, output, input, stack
write, stack read, halt, and interrupt. These nine types of cycles are
discussed in considerable detail in the section on machine cycles.
@ Describe the function of each of the eight different status bits.
The eight status bits are given in the section on machine cycle identi-

272

Fig. 6-21 provides the circuit that may be used with an 8080-based
microcomputer.
® Discuss the characteristics of the 8212 eight-bit input/output port
integrated-circuit chip.
We did this at the end of the chapter. Manufacturer’s literature was
provided.
fication. They are used to identify the type of machine cycle that is
being executed.
® Explain how the control outputs on the 8080 chip can be com-
bined logically with one or more of the status bits, and provide at
least one example of such a logical combination.
In the text we have logically combined the following signals:
OUT and WR
INP and DBIN
M, and DBIN
The first pair generated a 500-ns OUT pulse, the second pair gener-
ated a 500-ns IN pulse, and the third pair generated a single clock
pulse at the beginning of each instruction cycle.
® Draw timing diagrams that depict the behavior of typical micro-
computer instructions. Such diagrams should clearly demonstrate
the logic states of the more important control inputs, control out-
puts, and status bits.
This was done in considerable detail in this chapter. See Fig. 6-7.
@ Explain the different types of data that can appear on the external
data bus.
Data are emphasized here, not instruction bytes. Data can come from
the accumulator, from memory, from an input device, from the second
and third bytes of an instruction, and from a register.

® Explain state timing for typical machine cycles.
This has been done in the subsection on state timing. Six different
states were discussed. Figs. 6-17 and 6-18 provide examples.
® Explain how single stepping of an 8080 microcomputer occurs,
complete with timing diagrams and circuit diagrams.
Fig. 6-21 provides the circuit that may be used with an 8080-based
microcomputer.
® Discuss the characteristics of the 8212 eight-bit input/output port
integrated-circuit chip.
We did this at the end of the chapter. Manufacturer’s literature was
provided.

273

CHAPTER 7

Microcomputer
Input/Output

In this chapter, you will learn how to use device select pulses to latch
output data from the accumulator and to input data into the accumu-
lator. Circuits will be provided for six different latch chips and two
different input buffer chips. You will also learn how to test a variety
of accumulator instructions, including the decimal adjust accumulator
instruction, which allows you to perform binary-coded-decimal opera-
tions.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

® Latch the output from the accumulator of an 8080-based micro-
computer with the aid of any one of six different integrated-circuit
chips: 7475, 74100, 74175, 75193, 74198, and 8212.

o Input TTL data into the accumulator with the aid of either the
8095 or 8212 buffer chips.

® Explain what a data logger is.

® Calculate the timing delays required to data-log digital informa-
tion appearing at different rates.

DEFINITIONS

accumulator—The register and associated digital electronic circuitry in
the arithmetic unit of a computer in which arithmetic and logical
operations are performed.

autoranging instrument—A digital instrument that changes scales auto-
matically.

buffer—A digital device that isolates one digital circuit from another.
(Note: There exist a variety of other meanings for the term buffer).

bus monitor—A device for checking digital signals that appear on a bus.

data point—All of the bits required to characterize the sign and magni-
tude of a measured digital quantity. A data point typically consists
of many bits.

decimal adjust accumulator—An 8080 microprocessor instruction that
permits binary-coded-decimal operations.

data logger—An instrument that automatically scans data produced by
another instrument or process and records readings of the data for
future use.

input/output—General term for the equipment used to communicate
with a computer and the data involved in the communication.*

I/O—Abbreviation for input/output.*

latch—A simple logic storage element.

log—To automatically scan data produced by an instrument or process
and record readings of the data for future use.

monitor—A device used for checking signals.*

rotate—A computer instruction that causes the contents of the accumu-
lator to move, bit by bit, to the left or right by one position.

INPUT/OUTPUT

When the term, input/output, or 1/0, is employed, what is usually
meant is that one or more data bytes are transferred between an
input/output device and the microcomputer. A pair of schematic dia-
grams that depict how this is done are shown in Figs. 7-1 and 7-2. The
important points provided by these two figures can be summarized as
follows:

® Input-output of a data byte occurs between an external I/O device
and the accumulator within the 8080 chip.

® The function pulses, IN and OUT, are produced by the 8080
microprocessor (along with additional circuitry, as described in
Chapter 6) to allow an I/O device to know whether it is trans-
ferring a data byte to the microcomputer or receiving a data byte
from it.

® An 8-bit device code available at the time that an IN or OUT
pulse is generated permits the generation of 256 different input
device select pulses and 256 different output device select pulses.

In other words, quite a bit of digital information is transferred from
one point to another within an interfaced microcomputer system dur-
ing either an IN or OUT microcomputer instruction cycle.

276

interrupt signal
from input or
output devices

INPUT MICRO- ' ouTPUT
DEVICE 8 bits data PUTER 8 bits data DEVICE
256 different 539':' "’_?i"_' 256 different
device select g 3, device select

pulses fo - pulses to
input devices output devices

Fig. 7-1. The important inputs and outputs of a typical 8080-based microcomputer system.

MICROCOMPUTER OUTPUT CIRCUITS

The basic “gimmick” that you employ to acquire data output from
the accumulator is quite simple: You use a single output device select
pulse to enable a latch that “Igtches” a data byte from the bidirectional
data bus. The data goes in and out over the same signal lines on the
8080 chip: DO through D7. Depending upon the type of latch chip,

MEMORY UP TO 65,536
8 BIT WORDS

<
g o
8 BITS DATA - ﬂg
EXTERNAL INPUT 4 58
DEVICE I/0 | g giTs DATA 3 ©3 8-BIT ADDRESS
P FOR EXTERNAL
INPUT/OUTPUT
DEVICES
INT ————>] 8080 CPU l——=1N 7 runcTion
__ ___ { PULSES
NTA +——] f——— 00T

MICROCOMPUTER

Fig. 7-2. Typical inputs and outputs from an 8080 microprocessor chip. The N and OUT
function pulses are generated with the aid of additional circvitry, i.e., an 8212 status latch.

277

+
2
o
£
]

H

o7 22 W
o6 —224 g uis H
05— F et G LAWP
04—t Fz F ¥
o4 H H £ wowiTors
02—Li¢C o2
D 3 L] o '
Elarpe: = S © c LAMP
13 8 8 MoNITORS
-3 +
s ans ¥ T A

T o
s g

uiee 000,

(A) Pin configuration of the 8212 chip. (B) A circuit in which an 8212 chip serves
as an output latch,

Fig. 7-3. Microcomputer output circuit based on an 8212 chip.

either a positive or a negative device select pulse is used to strobe,
pulse, or latch data. Device select pulses are produced with the aid of
a decoder chip, such as the 7442 or 74154, in which the address bus
and IN or OUT control signals are gated together. Based upon the
information provided in Chapter 4, you should be able to sketch various
decoder and gating schemes to derive input and output device select
pulses.

Typical microcomputer output circuits include those based upon the
8212 chip (Figs. 7-3A and 7-3B), the 74100 eight-bit D-type latch
(Figs. 7-4A and 7-4B), a pair of 7475 D-type latches (Figs. 7-5A and
7-5B), the 74198 eight-bit shift register chip and a pair of 74175
positive-edge triggered latches (Figs. 7-6A, 7-6B, and 7-6C), and even
a pair of 74193 up/down counters (Figs. 7-7A and 7-7B).

When using the 8212 chip as an output latch, you should make cer-
tain that the clear input, CLR, at pin 14 is tied to logic 1. This input
should normally “float” to logic 1 when unconnected, but experience
has shown that this is not always the case.

MICROCOMPUTER INPUT CIRCUITS

The basic “gimmick” that you employ to input data into the accumu-
lator from an input device is equally simple: You use a single input
device select pulse to enable a three-state buffer chip, which transfers
a data byte to the bidirectional data bus. You can employ a three-state
buffer/latch chip such as the 8212 (Fig. 7-8), or a pair of 8095 (74365)
three-state buffer chips, which are relatively inexpensive (Figs. 7-9A
and 7-9B).

In this case, the enabled buffers permit data to be transferred to
the bidirectional data bus, DO through D7, i.e. pins 3 through 10 on the

278

8080 chip. The accumulator acquires the data during the 500-ns input
device select pulse. In the preceding illustrations, the device select
pulse is a negative clock pulse, as indicated by the bars over the words
“Device select pulse.”

The inputs of the 8095 three-state buffers are connected to logic
switches, but they can be connected to any source of eight bits of
TTL binary or encoded data. This data is transferred through the 8095
buffers, placed on the data bus, and copied into the accumulator during
an IN microcomputer instruction. Data is input each time that the IN
instruction is executed.

INPUT/OUTPUT INSTRUCTIONS

We will repeat the two 8080 microprocessor input/output instruc-
tions given in Chapter 4:

104 tas 103 200 704 204 203 N NC

% Gov Gor a7 a7 WG Gwp a1 07 07 701 ENABLE
P

(A) Pin configuration of the 74100 eight-bit latch chip.

+8V GND 0o
|24 7
16 0
o7 Ex [. G 7-SEGMENT
10 m DISPLAY
o8 [4 6 LOS—
g: —E 2 Fl2 s |-) NT
b1 —{8 Ej&——8 nDISPLAY
00 21 Py A
74100 o—{p
Device select 23 2 C
7-SEGMENT
sune 0004 JLor N sl B ' pDiSPLAY
A A i
logic |

(B) Circuit in which a 74100 chip serves as an output latch. The output is provided as a
three-digit octal word.

Fig. 7-4. Microcomputer output civcuit based on the 74100 latch.

ENABLE
12 GND 38 3Q 40

1 2 3 4 5] 7]
0 10 20 ENABLE Vcc 30 40 40
34

(A} Pin configuration of the 7475 four-bit latch chip.

+5V GND
5 llz
o7 —Lfy A2
pe —4g g2 : LAMP
05 —F FH2 F MONITORS
04 —HE E E
7476
13
4
Device select _~I1-
pulse 000
8
13|
4
7475
7 9
o2 10 ofe e Lamp
e che ¢
ol 218 8he B MONITORS
Do A A A
5 12
486V 6ND

(B) Circuit in which a pair of 7475 D-type latches serve as an output port for
the microcomputer.

Fig. 7-5. Microcomputer output circuit based on a 7475 latch.

333 <B2> IN Generate an input device select pulse to allow an
8-bit data byte to be read from an input device
and replace the contents of the accumulator.

323 <B2> OUT Generate an output device select pulse to allow
an 8-bit data byte present in the accumulator to
be sent to an output device. The contents of the
accumulator remain unchanged.

M A

et
¢

o cuean

Ty sy NBOT O3
RiGnT A

SeRIAL

weyT

74198

(A) Pin configurations of the 74198 eight-bit shift register and the 74175 four-bit latch chips.
Both chips contain positive-edge~triggered flip-flops of the 7474 type.

vee s a8 4 3 3o ciock
wljnsijupujjefjnfjoljs
5 3
R R
o
g
*eupl

~

w
-
o
-

citaR 1@ @ 1 D™ B

74175

+8V GND
24 12
Il H A
LAMP
:;——]E MONITORS
10 -
] Lawp
5 P 8 WONITORs

[
2:

3 | ra198

(B) Circuit in which a 74198 shift register chip latches the accumulator data.

+5V 8ND
16 8
is
H
: o2 g LAMP
I F MONITORS
E E 3
478
2 Lawp
B MONITORS
A

(C) Circuit in which a pair of 74175 latch chips latch the 8-bit accumulator data.
Fig. 7-6. Microcomputer output circuits based on the 74198 and 74175 chips.

281

oS weyrs

ouTTS A

TR IR A (ORG ATA BATR
Yoo T L w <

wlsjupujjuriniinile

T T LI 1]

A CLEAR GORROW CARRY LOAD

COUNT COUNT H
oy 0, oW @ o o
T T I I Y (A) The 74192 or 74193 up/down counter
213 fjafls]Is]]? chip. This chip contains a built-in four-bit
& O O, CouwrcouNt O Ty latch of the 7475 type. I
W oumns oumuts |

weUTS

logic: Low input to load sets QA =A
QB=B.QC=C,andQD=D

+5V GND
18 8
9
o7 H
pe —%6 2 g Lawmp
05 —dF F lr moniTORS
D4 € E E
74193
Ud 10ad
14y clear
pulse 000u o
L P
Ud 1004
74193 |
D3 240 o}l
oz —c cf2 ¢ LAMP
DI s 8 s B MONITORS
o —2Ja & A
is Is
45V GND

(B) Output latch circuit that employs a pair of 74193 up/down counter chips. The
microcomputer is used to preset a count in these counters,

Fig. 7-7. Microcomputer output circuit based on a 74193 chip.

The second byte in each of the above instructions, <B2>, is an 8-bit
device code that permits you to select any of 256 different input devices
or 256 different output devices.

282

+BV GND
24 12
oata-7 —2&lw upl— o7
DATA-6 —=21 6 62— os
DATA-8 — F ¢ Hi— D05
DATA—4 —2{ E €[Ht— oe
DATA-3 — D o H&— b3
DATA~2 —H cf— 02
DATA-| —={ B 8 j&— 01
DATA-0 — 2o A Apt— po
] & s212
Bevice 2 '] g:.
Tk e o =24 v
| = 518

Fig. 7-8. Circuit in which an 8212 chip is used as an input buffer to an
8080-based microcomputer.
INPUT/OUTPUT PROGRAMS

A simple program to input the logic switch data in Fig. 7-9B into the
accumulator and then immediately output it to one of the microcom-
puter output circuits shown previously is as follows:

LO Memory Octal

Address Instruction Mnemonic Comments
000 333 IN Input data from input device 004
001 004 004 Device code 004
002 323 ouT Output data to output device 000
003 000 000 Device code 000
004 166 HLT Halt

This program will input the logic switch data, output it to an output
latch, and then halt. To input and output the data continuously, you
would change the above program to the following:

LO Memory Octal

Address Instruction Mnemonic Comments

000 333 IN Input data from input device 004

001 004 004 Device code 004

002 323 ouT Output data to output device 000

003 000 000 Device code 000

004 303 MP Unconditional jump to the memory loca-

tion given by the following two bytes

005 000 LO address byte

006 000 HI address byte

To store the input data into a memory location and update the mem-
ory contents each time new data is input, you would use the following
program:

283

LO Memory Octal

Address Instruction Mnemonic Comments

000 333 IN Input data from input device 004

001 004 004 Device code 004

002 323 ouT Output data to output device 000

003 000 000 Device code 000

004 062 STA Store the accumulator contents in the
memory location given by the following
two bytes

005 200 LO address byte

006 003 HI address byte

007 303 JMP Unconditional jump to the memory loca-
tion given by the following two bytes

010 000 LO address byte

011 000 HI address byte

The program is similar to that shown previously in this section, but this
time a STA <B2> <B3> instruction has been added to permit you to
store the accumulator contents into a specific memory location, the
contents of which are updated during each program loop. You may
ask: “How can data be stored when it has previously been sent out
to display, which in the above program example is output device 000?
Is not the data ‘used up’ when it is output to a device? The answer
is no. When a data byte is transferred from one location to another, it
copied to the new location. It is not used up; the original data is still
present in its initial location, be it the accumulator, a register, or a
memory location. Data present in a given location, such as the accumu-
lator, can be copied indefinitely.

While the concept of using input device select pulses to input eight
bits of logic switch data is straightforward, once you have input the
data you can perform interesting programming tricks to take advantage
of the power of the 8080 chip. For example, assume that the eight
bits of data from the logic switches are really the 8-bit ASCII code
from a standard ASCII keyboard that has TTL output. Each time eight
new bits of data are input, they are tested to determine whether or not
they are the ASCII equivalent to the letter E, which has an ASCII
code of 305. If so, the input data will be output and also stored in
memory. If not, the program will immediately loop back to the IN
instruction and input new data. The applicable flowchart for this pro-
gram is provided in Fig. 7-10 and the program is:

LO Memory Octal

Address Instruction Mnemonic Comments
000 333 IN Input data from input device 004
001 004 004 Device code 004
002 378 CPI Compare the accumulator contents with

the following data byte. If they are
identical, set the zero flag

003 305 305 Data byte that is the ASCII code for the
letter E

284

004 302 INZ Jump to the memory location given by the
following two bytes if the zero flag is
reset, i.e., at logic 0

005 000 LO address byte

006 000 HI address byte

007 323 ouT Output data to output device 000

010 000 000 Device code 000

011 062 STA Store the accumulator contents in the
memory location given by the following
two bytes

012 200 LO address byte

013 003 HI address byte

014 166 HLT Halt

The compare immediate instruction at LO memory addresses 002 and
003 permits you to compare the ASCII byte 305 with the contents of
the accumulator without altering the contents of the accumulator.
Only the flag contents are changed. If the ASCII byte for the letter E
and the accumulator contents are identical, the zero flag is set to logic
1; otherwise, it is reset to logic 0. The flag state is then used in the
following conditional jump instruction, JNZ, to decide whether to con-
tinue looping or to continue to the OUT instruction at LO memory
address 007.

MICROCOMPUTER OUTPUT TO A MULTIPLEXED DISPLAY

One important characteristic of microcomputers is their ability to
replace hardware, i.e., integrated-circuit chips, wires, capacitors, etc.,
with software. The preceding example, in which a microcomputer
program tested the input for the ASCII code equivalent of the letter E,
is a good illustration. Simple modifications of earlier input/output pro-
grams changed the entire nature of what the microcomputer system
did. These same changes would take much more time to develop and
test if they were performed with hardware only.

A multiplexed display is a good example of a hardware-software
tradeoff. Assume that you wish to display up to five decimal digits on
an indicator display. The classical hardware approach would be to use
a latch, a decoder-driver, and a seven-segment display for each numeral.
This can be an expensive approach that also consumes a great deal of
power.

An alternative approach, one that requires both hardware and soft-
ware, is shown in Fig. 7-11. You use the microcomputer to multiplex,
or scan, the digits very quickly. By doing so at a sufficiently fast rate,
it appears to the human eye that each digit is on continuously, as would
be expected for a normal display. The main features of the circuit are
a 74175 latch to temporarily store the data to be displayed, a 7448
decoder/driver to decode this data into an output for each of the
seven light-emitting diode (LED) segments in the display, and a

285

Vee Of%, M OUT, m, DUT, M, OUT,

II 7 3 0 5 II i [

oIS, N, OUT, N, OUT, N, OUT, GND

(A) The 8095 three-state buffer chip. All six three-state buffers are gated simultaneously, and
there is a two-input NOR gate at the enable inputs.

+8V GND
16 8
0 2lh w o7
LoeIC 8 £le ¢ 06
SWITCHES F F F D5
E E E 04
8098
0 —
15
Device sefact - |
pulie 004,
18
0 =ty
8098
) 10 9
] D D 03
osic ¢ sle ck D2
SWITCHES 8 e Bp: ol
A A A Do
16 [}
+5V GND

(B) Input circuit that employs two 8095 three-state buffer chips. The logic switches can be
replaced by any 8-bit source of TTL data.

Fig. 7-9. Microcomputer input circuit based on 8095 chips.

74154 decoder to select the individual digits in the five-digit display.
The 7448 encodes the proper segments to be displayed at the same
time that the 74154 decoder chooses a single digit. In practice, a high-
current decoder such as the 74145 would be used in place of the 74154.
The program for the multiplexed display is straightforward. No
decision-making is necessary, so there are no conditional jumps.

286

INPUT DATA

Fig. 7-10. Program flowchart that tests an input YES

h to d i hether or not it is the

ASCIl character E. When an E is finally de-
tected, the program outputs it, stores it, and

then comes to a halt.

STORE IT
HALT
LO Memory Octal
Address Instruction Comments
000 227 Clear the accumulator
001 323 Generate a device select pulse that can be used for

some other operation, such as clearing the 74175
latch (wiring not shown in the schematic diagram)

002 005 Device code for other operation

003 041 Load the following two bytes into the L and H regis-
ters, respectively

004 200 L register byte

005 001 H register byte

006 176 Move the contents of memory location addressed by
the register pair H and L to the accumulator

007 323 Generate device select pulse that applies a logic 0 to
pin 7 of the Hewlett-Packard five-digit display.

010 000 Device code for pin 7 of the display

011 043 Increment the contents of the register pair H and L
by one

012 176 Move contents of memory location addressed by regis-

ter pair H and L to accumulator (Note: The regis-
ter pair has been incremented by 1 from its value at
memory address 006)

013 323 Generate device select pulse that applies a logic 0 to
pin 4 of the Hewlett-Packard five-digit display

014 002 Device code for pin 4 of the display

015 043 Increment the contents of the register pair H and L
by one

016 176 Move contents of memory location addressed by regis-
ter pair H and L to accumulator

017 323 Generate device select pulse that applies a logic 0 to

pin 13 of the Hewlett-Packard five-digit display

287

LO Memory Octal

Address Instruction Comments

020 003 Device code for pin 13 of the display

021 043 Increment the contents of the register pair H and L
by one

022 176 Move contents of memory location addressed by regis-
ter pair H and L to accumulator

023 323 Generate device select pulse that applies a logic 0 to
pin 1 of the Hewlett-Packard five-digit display

024 044 Device code for pin 1 of the display

025 076 Move the following byte to the accumulator

026 017 This byte, which is input to the 7448 chip, blanks the

seven segments of the display at pin 9 and allows
only the decimal point to appear

027 323 Generate device select pulse that applies a logic 0 at
pin 9 and a logic 1 at pin 5 of the Hewlett-Packard
five-digit display

030 001 Device code for pin 9 and pin 5 of the display

031 303 Unconditional jump to memory location given by fol-
lowing two bytes

032 000 LO address byte

033 000 HI address byte

The numbers to be displayed must be present within the microcom-
puter memory before this program is executed. For example, the digits
7, 3, 0, and 5 are stored in memory locations HI = 001 and LO = 200
to 203. The decimal-point position is hardwired; the blank position is
generated in software. The numbers are output from right to left in
the circuit, so the data is stored in memory as follows:

LO Memory
Address Data Byte
200 007
201 003
202 000
203 005

A previously executed program or program segment could have
placed such data in the indicated memory locations. Such data could
be input data from some other device, or it could be the result of
arithmetic operations. Today, multiplexed displays are the rule rather
than the exception. Almost every hand calculator display is multiplexed.

The flowchart for the preceding program is shown in Figure 7-12.
Note that there is a single loop, one that is executed at the full micro-
computer speed.

DATA LOGGING WITH AN 8080 MICROCOMPUTER
A data logger can be defined as follows.

288

+5v

+8V GND +3v ap 33333393 1k
te |8 (] 8 1
03 2o ol® : PR H
02 2{c . c R —_
I i B B : ; 8 o ! / /
Do A A 7 .y
; O A A
| LofcLear] I
cLock ;i r_Lw
74175 7448 t [E] 4 9 k3
12 E
7404 45V OND 740421
13 3
24 12
20
A-3 0
a-2—LEHc
a1 e
a0 2a
74154
3
: 4
2 3
0—24a2 P
a1 o}
out

Fig. 7-11. A multiplexed Hewlett-Packard five-digit seven-segment LED display.

data logger—An instrument that automatically scans data produced by
another instrument or process and records readings of the data for
future use.

It should be clear that a microcomputer can be a data logger. Data from
an instrument can be put into the accumulator and then stored in mem-
ory. At a later time, this stored information can be read out in any one
of a variety of ways. Data logging will become a common application
for microcomputers in the future.

Perhaps the most important questions to consider when you plan to
log data from an instrument are the following: (1) How many data
points do you wish to log? (2) How much time will it take to log all
of these points? (3) How much digital information is contained in a
single data point? (4) What do you wish to do with the logged data
once it has been acquired? (5) Do you need short-term or long-term
data storage? We shall now discuss each of these questions.

How Many Data Points?

The number of data points that you wish to log and the time that
you will need to store them will dictate the type of storage device re-
quired. If you need to log 1,000,000 four-digit binary-coded-decimal
words, you will require a memory capacity of sixteen million bits. You
will therefore require some form of magnetic tape or magnetic disk.

289

CLEAR A

GENERATE OUT
005 PULSE

|

SET UP H=00I
L= 200

l

GET CHARACTER
FROM MEMORY

'

- OTHER MEMORY AND
OUTPUT STEPS

OUTPUT BLANKING

CHARACTER TO
DEVICE 00!

|

JUMP BACK AND
DO IT AGAIN

Fig. 7-12. Fl hart for the operation of the multiplexed Hewlett-Packard five-digit
seven-segment display shown in Fig. 7-11.

On the other hand, if you need to log 100 points, each containing four
bed digits, and store the data only for several hours, only 1600 bits of
memory are required. A simple R/W memory would do quite nicely
for such an application.

Short-Term or Long-Term Storage?

Read/write memory is not, in general, suitable for long-term stor-
age of data. For one reason, such memory is volatile; if a power fail-
ure occurs, all of the data will be lost. Core memory is not volatile,
but on the other hand it is quite expensive and generally not suited
for long-term storage of data unless the amount of data stored is limited
in amount. The best data storage devices at present appear to be
magnetic tape, such as a cassette, and magnetic disk, such as the in-
creasingly popular “floppy disks.” A high-quality tape cassette can
store as many as 500,000 bits of information on a single cassette that

290

costs no more than $10. If you are willing to gamble, you can put your
own clock track on a high-quality audio cassette and reduce tape costs
to about $4 per cassette. The authors have done so with considerable
success.

An inexpensive and long-term storage technique is the use of per-
forated paper tape. However, it should be pointed out that it takes
considerable time to punch such tape as well as to read it back into
a computer.

How Much Information in a Single Data Point?

A typical data point is usually a several-digit binary-coded-decimal
or binary number that contains both a decimal point or range as well
as a sign. Usually, the decimal point or range is fixed and the sign is
positive, but this is not always the case. New digital devices are in-
creasingly incorporating an autoranging capability, which simply means
that the device decides where to place the decimal point. In general,
you can plan on a data point containing at least sixteen bits of digital
information. With 100 data points, you must multiply 100 by the num-
ber of bits per data point, 16, to obtain the total memory capacity
required, i.e., 1600 bits. Frequency meters typically have many more
bits per data point. A seven-digital frequency meter has at least 28
bits per data point.

What Will You Do With the Logged Data?

Some logged data can be considered only to be “raw” data that
must be manipulated and interpreted to produce a useful final result.
For example, it might be necessary to convert a digital voltage into a
force. With such cases, the logged data will require mathematical
computations that are best performed soon after the data is acquired.
Clearly, with data that requires additional treatment, it is best to keep
the data in digital electronic form until it can be treated. Read/write
memory and magnetic tape are both quite suitable for such a purpose.
Once the data is in a final form, it can be printed out. Keep in mind
that the printing of data is a type of long-term data storage. It is cer-
tainly the least expensive type of long-term storage around, but you
pay a penalty in that you must consume time to convert it back to an
electronic or magnetic type of storage if you wish to perform addi-
tional mathematical manipulations on the data.

How Many Data Points per Second?

This is a question that is of fundamental importance in all data
logging operations. The data can, for example:

® appear quite slowly and take considerable periods, such as a day,
for its acquisition, or

291

® appear extremely rapidly, and take only milliseconds for the acqui-
sition of hundreds of data points.

Both extremes in data acquisition rates point to the need for automated
data acquisition techniques, such as the use of a microcomputer-based
data logger. There is no question that data in the laboratory, as well
as elsewhere, will increasingly be logged automatically by built-in
microcomputers. Chart recorders may still be used, but they will no
longer need to be of the quality required in previous years. In the
future, a major use for chart recorders may simply be to allow the
eye to visually “integrate” a block of data to detect curvature, lin-
earity, etc.

As a demonstration of data logging, we would like to provide a
computer program that enables us to log 256 eight-bit data points
as fast as the microcomputer can input and store them. For example,
let us assume that we are logging data from a pair of 7490 decade
counters, as shown in Fig. 7-13. The question that we seek to answer
is: What is the minimum amount of time required to log 256 data
points from the two counters, where each data point contains two
bed digitsP

LO Memory Octal Clock

Address Instruction Cycles Comments

000 061 10 Load the following two bytes into the stack
pointer register

001 100 LO stack pointer byte

002 003 HI stack pointer byte

003 006 7 Load the following data byte into the B reg-
ister

004 000 Number of points that will be logged by the
microcomputer

005 041 10 Load the following two bytes in the register
pair L and H

006 000 L register byte

007 001 H register byte

010 323 10 Generate device select pulse to set the 7476
flip-flop

011 000 Device code for preset input

012 333 10 Generate device select pulse that allows eight

bits of data from a pair of 7490 counters to
be input into the accumulator

013 000 Device code for input buffer chips

014 167 7 Move the contents of the accumulator to the
memory location given by the register pair
Hand L

015 043 5 Increment the register pair H and L by one

016 005 5 Decrement the contents of register B by one

017 302 10 If register B is 000s, ignore this instruction.

Otherwise, jump to the memory address
given by the following two bytes
020 012 LO address byte

292

021 000 HI address byte

022 323 10 Generate device select pulse that clears the
7476 flip-flop

023 001 Device code for clear input

024 166 Halt

In the program, we have provided a pair of OUT instructions to allow
us to employ the techniques described in Chapter 5 to count clock
pulses, such as the 7476 flip-flop circuit shown in Fig. 7-14. Device
select pulse 000 sets the flip-flop, and device select pulse 001 clears it.
While it is set, the five-decade counter counts clock cycles from the
microcomputer clock.

Thirty-seven clock cycles are required for each 8-bit data point
acquired by the microcomputer program. For 256 data points and a
microcomputer operating at 2 MHz, a total of 256 x 37 = 9472 clock
cycles, or 4.741 ms, are required in all. At 18.5 s per 8-bit data point,
approsimately 54,000 data points per second can be logged by the
microcomputer. And this is not even the limit.

If you desire to log data at a slower rate, you will need to insert
a time delay subroutine in the above program. The 0.2-second sub-
routine described in Chapter 5 should be quite convenient for slow
data rates. The modifications necessary to the above program are rather
simple:

+3V GND
s o
o—=L
° 2
7490
ot H
cle e H o7
B F 6 j———— 106
7 Ap2 [Fp— 08
' weor S
l—— 03
BUFFER z 02
o—L o D
2 cle c Bp— DI
i 8 Al—— o0
A A enasLE
! I
cLOCK 7490 _ al
or L] Tnput device
PULSER Telect puise
5 [0
453V GND
Fig. 7-13. Simple data logging circuit that employs a pair of ded 7490

293

¢Z(TTL) clock To five - decade

counter

Device

selec

pulse,

001‘
Taleet Device
pulse, pulse,
ﬂUOe DOlB

U U
? L
Qrze [re

)>— adjustoble pulse width ———_f

Fig. 7-14. The 7476 latch circuit permits you to determine experimentally how long it takes
to log and store 256 data points. The behavior of the circuit is shown in the timing diagram.

016 016 7 Load the following byte into the C register
*

017 Timing byte for time delay subroutine

020 315 17 Call subroutine at memory address given by following two
bytes

021 000 LO address byte

022 060 HI address byte

023 005 5 Decrement contents of register B by one

024 302 10 If register B is 000s, ignore this instruction. Otherwise, jump
to the memory address given by the following two bytes

025 012 LO address byte

026 000 HI address byte

027 323 10 Generate device select pulse that clear the 7476 flip-flop

030 003 Device code

031 166 Halt

If the data byte at memory address 017 is set at 001, corresponding to

a 0.20-second time delay per data point, it will now require about 51.3

seconds to log all 256 points. Simply by changing the data byte at

memory address 017, you can change the time per data point from 0.20

second per point to 51.2 seconds per point. This capability points up

the advantages of microcomputers as data loggers.

Ta output the file of 256 data points, you employ a circuit which
resembles that shown in Fig. 7-15. The program that you use to se-
quentially output the stored data points is similar to the program that
you initially used to log them. Thus, in the preceding program in this
section, make the following program changes:

294

¥387nd
40
%9071

vobL
e
[} Vi
¥30033a ano ASH
ss38aav o n_
200 SO inding 321A30 000 §0 #nduy] o
e J T
_ i 111 11 _ o6¥L
318VN3 OV IV 2V €v Nt 1No ERLTLE] bt
v M —1v
0a oa v 8 =
] 1a 10 [3 o
Avidsia O
50 20 N3IINdWOD zq s e m O 0
o = o E— e
HOLVY 3 «a 0808 wa 3 Lig-s
lie-8 4 <a Ga El 3 3
9 9a Sa] 4 4 S3IHOLIMS
" 10 10 " ° 8 21001

t that outputs ASCH coded numeric data. Logic switches HGFE

should be set at 1011, respectively.

ircui

7-15, Data logging ci

F

295

012 176 MOV, M\A 7 Move the contents of the memory location given
by the register pair H and L to the accumula-

tor !
013 323 ouT 10 Output the accumulator data to the 8-bit latch i
and octal display
014 002 002 Device code for the latch/display

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you
will be able to do the following:

|

|

® Latch the output from the accumulator with the aid of any one |
of six different integrated-circuit chips: 7475, 74100, 74175, 74193, |
74198, and 8212. i
This was done in the section “Microcomputer Output Circuits.” |

® Input TTL data into the accumulator with the aid of either the
8095 or 8212 buffer chips.

This was done in the section “Microcomputer Input Circuits.”

® Explain what a data logger is.
A discussion concerning data loggers was provided in the text. A cir-
cuit and a program were provided to create a simple microcomputer
based data logger.

® Calculate the timing delays required to data log digital informa-
tion appearing at different rates.
This was discussed in the text,

296

CHAPTER 8

Subroutines, Interrupts,
External Flags, and Stacks

In this chapter you will focus your attention primarily upon the
fourth and final fundamental task of computer interfacing: the servic-
ing of interrupts. We have already discussed some of the details of
interrupt servicing in Chapter 1. Here, you will learn how to construct
an external flag and how to interface such a flag to the microcomputer.
Microcomputers are typically operated in the interrupt mode, so the
concepts described in this chapter are quite important. Study them
carefully and review the examples.

OBJECTIVES
At the end of this chapter, you will be able to do the following:

@ Define the terms: subroutine, SSI, MSI, LSI, allocate, stack, inter-
rupt, polling, software driver, vectored interrupt, disabled inter-
rupt, external flag, deferred interrupt, and sense register.

® Explain how you would mask an 8-bit word to obtain the logic
state of bit 5, or the logic state of any of the other seven bits.

® Explain how digital information is loaded and removed from the
8080 microcomputer stack.

@ Perform an approximate calculation that will tell you when to use
a subroutine.

@ Describe how you would interface an ASCII keyboard.

297

DEFINITIONS

allocate—In a computer, to assign storage locations to main routines
and subroutines, thus fixing the absolute values of symbolic ad-
dresses.*

breakpoint—A place in a routine specified by an instruction, instruction
digit, or other condition, where the routine may be interrupted by
external intervention or by a monitor routine.*

breakpoint instruction—In the programming of a digital computer, an
instruction, which, together with a manual control, causes the com-
puter to stop.*

breakpoint switch—A manually operated switch that controls condi-
tional operation at breakpoints; it is used primarily in debugging.*

deferred interrupt—A computer interrupt that occurs at some time after
an external flag is set.

disable interrupt—To disable the interrupt flag within a microprocessor
chip.

enable interrupt—To enable the interrupt flag within a microprocessor
chip. .

external flag—A digital circuit, usually containing a single flip-flop,
which indicates a condition that exists with an input/output device.

flag—In a computer, an indication that a particular operation has been
completed.t Also, a flag is a flip-flop that can be either set or
cleared in response to operations that are occurring within a
microcomputer.

immediate interrupt—A computer interrupt that occurs as soon as an
external flag is set.

internal flag—A digital circuit, usually containing a single flip-flop,
which indicates a condition that exists internally within the micro-
processor chip.

interrupt—In a computer, a break in the normal flow of a system or
routine such that the flow can be resumed from that point at a later
time. The source of the interrupt may be internal or external.*

interrupt flag—A flip-flop within the microprocessor chip that can be
enabled or disabled by microprocessor software and which can de-
tect an interrupt pulse and remember the fact that an interrupt oc-
curred.

large-scale integration—Monolithic digital integrated-circuit chips with
a typical complexity of 100 or more gates or gate-equivalent circuits.
The number of gates per chip used to define LSI depends upon the
manufacturer. Abbreviated LSL4

large-scale programs—Programs that contain from 1000 to 10,000 in-
struction bytes. Abbreviated LSP.

mask—A logical technique in which certain bits of a word are blanked
out or inhibited.*

298

medium-scale integration—Integrated-circuit chips that function as sim-
ple, self-contained logic systems, such as decade counters, small
read/write memories, decoders, multiplexers, and shift registers.
Such chips usually contain from 20 to 100 gates. Medium-scale inte-
gration is abbreviated MSL

medium-scale programs—Programs that contain from 100 to 1000 in-
struction bytes. Abbreviated MSP.

multilevel interrupt—An interrupt system in which there exist many
interrupt lines to the microcomputer, each line being tied to a sepa-
rate 1/O device. The microcomputer does not need to scan the de-
vices to determine which one caused the interrupt.

nesting—In a computer, the inclusion of a routine or block of data
within a larger routine or block of data.

polling—Periodic interrogation of each of the devices that share a com-
munication line to determine whether it requires servicing. The mul-
tiplexer or control station sends a poll that has the effect of asking
the selected device, “Do you have anything to transmit?™

priority—The condition in which input/output devices are ordered in
importance so that some devices take precedence over others.

response time—The time between the interrupt request by a device and
the first instruction byte of the software driver that services it.

sense—To examine or determine the status of some system component.*

service routine—In digital computer programming, a routine designed
to assist in the actual operation of the computer.* This term may also
mean a subroutine that services an interrupt signal from an external
device.

single-line interrupt—An interrupt system in which there is a single in-
terrupt line. Multiple devices must be ored to this line. Each input
to the or gate is from an 1/O device. Once it receives an interrupt,
the microcomputer must scan all of the devices to determine which
one generated the interrupt.

~ small-scale integration—TIntegrated circuits that provide only simple

gates, buffers, or flip-flops. Such chips usually contain no more than
ten to twenty gates. Abbreviated SSL

small-scale programs—Programs that contain up to 100 instruction bytes.
Abbreviated SSP.

stack—A region of memory that stores temporary information, typically
the contents of the internal registers within a microprocessor chip.

software driver—A subroutine or part of a computer program that trans-
fers information between the computer and a specified input/output
device.

status—The contents of the internal registers, including the flag bits,
in a microprocessor during program execution, at a given instant.

subroutine—A small subprogram not stored in the main path of the
routine. Such a subroutine is entered by a jump operation known as

299

a call; provision is made to return control to the main program at
the end of the subroutine.

vectored interrupt—An interrupt system in which the interrupt causes a
direct branch to that part of the program that services the interrupt.
This is the fastest mode of interrupt operation.

vector bits—The individual bits that designate the branch location in
a vector interrupt instruction.

very large-scale integration—Monolithic digital integrated-circuit chips
with a typical complexity of 2000 or more gates or gate-equivalent
circuits. Abbreviated VLSIL

very large-scale programs—Programs that contain more than 10,000 in-
struction bytes. Abbreviated VLSP.

WHAT IS A SUBROUTINE?

A subroutine can be defined as follows:

subroutine—A small subprogram not stored in the main path of the
routine. Such a subroutine is entered by a jump operation known as
a call; provision is made to return control to the main program at the
end of a subroutine.

The call instruction causes the microcomputer to transfer program con-
trol to the selected subroutine. Subroutines are generally dedicated to
specific repeated tasks, so when a task is finished we would like the
microcomputer to return to the main program that issued the call and
resume operation there. Whenever a call instruction is used, whether
it is conditional or unconditional, the microcomputer stores a return
address on its stack so that we have a way of knowing at which point
to return when the subroutine execution is finished. A stack is a region
of read/write memory that you allocate for the storage of temporary
information, such as return addresses from subroutines and the con-
tents of the internal registers within a microprocessor chip.

What return address is stored on a stack? Is it always the same 16-bit
address? Fig. 8-1 provides answers to these two questions:

Once we execute a three-byte call instruction and the associated sub-
routine, we would like to return to the instruction byte that immedi-
ately follows the three-byte call instruction. Thus, the 16-bit address of
instruction byte A, shown in Fig. 8-1, is the one that is stored on the
stack. If “x” is the 16-bit address of the call instruction, then “x+3” is
the 16-bit address that is stored on the stack. Since only eight bits at
a time can be stored in the read/write memory of an 8080 microcom-
puter, two consecutive memory locations in the stack are required to
store the full 16-bit return address. The 8080 microprocessor chip auto-
matically stores these two return address bytes on the stack whenever

300

SUBROUTINE

x CALL
x+l <lo> b—
X+2 <HI>
x+3 instruction byte A
etc. \ RET

Fig. 8-1. The return address that is stored on the stack is x+3, the address of the instruction
byte that immediately follows the three-byte call instruction.

we execute a call instruction. The process is called pushing an address
on the stack.

All subroutines must end, in one way or another, with a return in-
struction. The return instruction may be conditional or unconditional.
In either case, a return causes the 8080 microprocessor chip to retrieve
the 16-bit return address from the stack. This address is placed in the
chip’s program counter, and program execution resumes again at the
correct point, such as “x+3” in our example.

We do not have to be concerned with the methods that the 8080 chip
uses to store or retrieve information from the stack. However, we must
be certain that we do have a stack area available in read/write memory
before we attempt to call any subroutine. We can locate the stack any-
where within the available 65,536 bytes of memory by using the LXI
SP instruction, a three-byte instruction in which the second and third
bytes contain the 16-bit stack address, which is stored in a 16-bit reg-
ister within the 8080 chip that is called a stack pointer register. If you
wish, for example, to set the starting address of the stack at HI = 003
and LO = 300, you would use the instruction byte sequence:

Octal
LO Memory Instruction
Address Byte Byte Mnemonic Comments
000 061 LXI SP Load the stack pointer register
with the following two ad-
dress bytes
001 300 300 LO address byte
002 003 003 HI address byte

Upon execution of this instruction, the stack pointer will contain the
16-bit address given by HI =003 and LO = 300. The setting of the
stack pointer is one of the most important initialization conditions that
you must execute at the very beginning of an 8080 microcomputer
program.

In the preceding program, we have assumed that we have only 1K
of read/write memory. We have located the stack near the “top” of
this memory, i.e., near the highest (or largest) memory locations. The
reason for doing so is that the stack, as information is added to it, grows

301

down toward lower memory addresses. In fact, the address HI = 003
and LO = 300 is only a temporary address for the stack. If we were to
call a subroutine, we would observe that the return address (also called
the linking address) is stored as an 8-bit HI address byte at HI =003
and LO =277, and an 8-bit LO address byte at HI =003 and LO =
276. The stack pointer would then be decremented by two. Most 8080
users are not concerned about the order with which the address is
pushed on the stack. For your information, the HI address (or data)
byte is always pushed first on the stack and the LO address (or data)
byte second. The first byte to be removed, or popped from a stack is
always the LO address (or data) byte. This is entirely consistent with
the way that the 8080 chip handles three-byte instructions: The LO
address (or data) byte is always loaded first into the LO byte of a
16-bit register, such as the program counter, stack pointer, or the reg-
ister pairs DE, BC, or HL.

The stack pointer is always decremented (to a lower address) be-
fore data or address information is pushed onto the stack. The stack
pointer is always incremented (to a higher address) after data or ad-
dress information is popped from the stack. If we would examine the
stack area in memory after a number of subroutines had used it, we
would find that some information was still there. Is this important?
Not really, since the appropriate information has long ago been copied
back into the 8080 microprocessor chip where it was needed. The old
information is meaningless to the microcomputer; the information will
be written over whenever the stack is used again.

USE OF THE STACK FOR DATA AND STATUS STORAGE

Most subroutines employ the general-purpose registers or the inter-
nal flags within an 8080 chip. Problems occur when we have data in
registers that the subroutine will also use. Imagine that the microcom-
puter is in the middle of a lengthy numerical calculation when a sub-
routine call is caused by an interrupt. What happens to the temporary
data in the registers? Are they destroyed? Must the calculation be re-
peated? Can we overcome this serious limitation?

Clearly, we must have the ability to store the program status, which
can be defined as the contents of the internal registers, including the
flag bits, that exist inside a microprocessor chip during the execution
of a program at a given instant. For an 8080 chip, the status is con-
tained within the following registers:

program counier
accumulator
register B
register C

register D
register E
register H
register L
five flag bits

1f we know this information, program execution can be interrupted.

We store the program status in the stack using a group of four in-
structions, called push instructions and a single call subroutine instruc-
tion. At the end of a subroutine, we retrieve the program status using
four pop instructions and a subroutine return instruction. The eight
push and pop instructions can be listed as follows:

305 PUSH B Store contents of register pair B,C on the stack

325 PUSH D Store contents of register pair D,E on the stack

345 PUSH H Store contents of register pair H,L on the stack

365 PUSH PSW Store program status word (PSW), ie., the con-
tents of the accumulator and the five flags,
on the stack

301 POP B Return the top two stack bytes to the register
pair B,C

321 POP D Return the top two stack bytes to the register
pair D.E

341 POP H Return the top two stack bytes to the register
pair H,L

361 POP PSW Return the top two stack bytes to the accumu-
lator and flag flip-flops

All stack push and pop operations involve either the program counter
or a register pair; they are 16-bit operations that are performed upon
two 8-bit bytes, a LO address or data byte and a HI address or data
byte. The program status word (PSW) is the accumulator register, A,
‘and the five 8080 chip flags—carry, zero, parity, sign, and auxiliary
carry—along with three dummy bits. Fig. 8-2 illustrates the push and
pop instructions. SP is the 16-bit address contained in the stack pointer
register within the 8080 chip.

The stack is a last-in first-out (LIFO) stack. The last data that is
pushed onto the stack must be the first data to be popped from the
stack. This is easy to see with the aid of Fig. 8-3. Note that the push
and pop orders are the reverse of each other. In this example, the sub-
routine did not affect registers D or E, so there was no need to place
them on the stack.

The push and pop instructions permit great programming flexibility,
since we can store our temporary data before a subroutine is executed
and retrieve it after we have finished the subroutine. This brings up
one interesting question: Would the push and pop instructions be lo-

303

(A) PUSH operations.

(I

(G D
)

4

L3

S,

%

(B) POP operations.

Fig. 8-2. The PUSH and POP operations, each of which involves a register pair and two
memory locations.

cated before and after the call instruction, or would they be included
in the subroutine? Fig. 8-4 presents the two alternatives.

The answer to this question is that you would include them in the
subroutine. It makes more sense to place them in the subroutine rather
than repeat them every time there is a call instruction. The stack thus
stores both the return address (the linking address) as well as the
original data in all register pairs affected in the subroutine itself. When
we assign a location for the stack in read/write memory, we must make

304

K

PUSH H
PUSH PSW
PUSH B

Fig. 8-3. Proper procedure for pushing and

popping information on the stack. Subroutine

POP 8
POP PSW |
POP H i

|

certain that there exists sufficient memory for the status information
associated with several nested subroutine calls. Since the stack grows
down toward lower memory addresses, we usually place the initial
stack location at the highest available read/write memory address.
Finally, subroutines must contain the same number of push and pop |
instructions, in reverse order, as well as a conditional or unconditional
return instruction. If these conditions are not met, your stack could
“run away” in read/write memory and destroy any program or data
that exists in read/write memory. For an 8080 microcomputer oper-

i

PUSH H
PUSH B PUSH H
CALL CALL PUSH B
<Lo> } Subroutine <Lo> Subroutine
<HI> <HI>
POP B2 POP B
\ POP H
POP H
(A) In this program the PUSH and POP (B) In this program the PUSH and POP
instructions are provided in the main instructions are incorporated only in
program as needed. the subroutine.

Fig. 8-4. Two alternatives for locating the PUSH and POP instructions associated with a
subroutine call.

ated at 2 MHz, it takes only several seconds to wipe out 65,536 mem- {
ory bytes. :

Let us finish our discussion with the aid of Fig. 8-5, which shows |
the contents of the stack after a call and four successive push instruc-
tions, Please note the following:

® Before we called the subroutine, the original location of the stack
pointer was HI = 0033 and LO = 303;.

® After we pushed PSW on the stack, the new location of the stack
pointer was HI = 003; and LO = 2715. We can therefore conclude

SP-1 003 270

SP 003 271 Flags Top of stack
SP +1i 003 272 Accumulator
003 273 Register L

003 274 Register H

003 275 Register E

003 276 Register D

003 277 Register C

003 300 | Register B
003 301 P'°?[§'“,m°.‘j“""'

003 302 P’"(‘;:mh,:runm

003 303 Original SP location
003 304

003 305

003 306

Fig. 8-5. The stack.

306

that the stack pointer “points” to the top filled memory location in
the stack, not the first empty stack location.

® The stack is a first-in, last-out stack. The first bytes in were the
program counter bytes from the call instruction. They are the last
to be popped from the stack. The last bytes in were the flags and
accumulator contents; they are the first to be popped out.

® The HI byte of the program counter or HI byte of a register pair
is the first to be placed on the stack and the last of the two bytes
to be removed. When a register pair is popped, the LO byte of the
pair always is popped first.

® In a push instruction, the HI byte or register is stored in stack loca-
tion SP — 1 and the LO byte or register is stored in stack location
SP — 2. The stack pointer, SP, is decremented by two to produce
a new value of the stack pointer.

® In a pop instruction, the LO byte or register is popped from stack
location SP and the HI byte or register is popped from stack loca-
tion SP + 1. The stack pointer, SP, is incremented by two to pro-
duce a new value of the stack pointer.

WHEN IS A SUBROUTINE USED?

When do you use a subroutine? This depends upon two factors: the
number of steps in the subroutine, and the number of times you call
the subroutine from the main program. Some general rules are as
follows:

o If the proposed subroutine will contain only three or four instruc-
tion bytes, there is little incentive for you to write the subroutine
1o matter how many times you call it in the main program.

@ If the proposed subroutine will be used only once in a program
or group of programs, you might as well incorporate it into the
main program and not use it as a subroutine.

e If the proposed subroutine will be used by other people as a
component of their programs, then you should definitely write it
as a subroutine and pay particular attention to where it is located
in memory.

e If you wish to minimize the time it takes to perform a group of
instructions, you should minimize the number of subroutines
present.

@ You should minimize the length of your main program and maxi-
mize the length of your subroutines.

Basically, your long-term goal should be to acquire a repertoire of
subroutines that make microcomputer programming easy.

Your decision on when to use a subroutine can perhaps be facilitated
by the use of Fig. 8-6, in which we plot C, the number of times a sub-

307

X

Number of instruction bytes used in subroutine
(less call and return)

I 2 345 67 8 91011 121314151617 18 1920

/
c: v wse
P SUBROUT/
o </ 7

Fig. 8-6. Di; indicating when a sub ine should be used.

routine is used in a main program, versus X, the number of instruction
bytes (less call and return instructions) used in the subroutine. We
have used the equation
X
“X+4C
to determine when a subroutine should be employed. When F > 1, a
subroutine should be used; when F <1, a subroutine is not needed.
A toss-up situation occurs when F =1 (black squares). In the equa-
tion, the quantity CX is the total number of instruction bytes used in
the entire main program (less the call and return instructions). The
quantity X + 4C is related to the number of instruction bytes in the
entire main program required to repeatedly call and return from the
subroutine. The ratio of these two terms, F, is a measure of their rela-
tive importance. You should use your own judgment concerning when
to use a subroutine.

The authors believe that subroutines will become increasingly im-
portant as microcomputers proliferate. In the following sections, a
point of view is presented concerning subroutines.

F

308

HARDWARE INTEGRATION: SSI, MSI, LSI, AND VLSi

Let us briefly summarize the incredible progress that has occurred
in digital electronics within the last ten to fifteen years. This progress
is basically reflected in the acronyms SSI, MSI, LSI, and VSLI, which
we shall now define:

small-scale integration (SSI)—Integrated-circuit chips that provide only
simple gates or flip-flops. Such chips usually contain no more than
ten to twenty gates. Abbreviated SSL.

medium-scale integration (MSI)—Integrated-circuit chips that function
as simple, self-contained logic systems, such as decade counters, small
read/write memories, decoders, multiplexers, and shift registers.
Such chips usually contain from 20 to 100 gates. Abbreviated MSL.

large-scale integration (LSI) — Monolithic digital integrated-circuit
chips with a typical complexity of 100 or more gates or gate-equiv-
alent circuits. The number of gates per chip used to define LSI de-
pends on the manufacturer. Abbreviated LSI.

very large-scale integration (VLSI)—Monolithic digital integrated-cir-
cuit chips with a typical complexity of 2000 or more gates or gate-
equivalent circuits. Abbreviated VLSL.

The scale subdivisions are a bit arbitrary. Nevertheless, progress in the
area of digital electronics is closely reflected in the scale of integration
that has been achieved at any given time. In the mid-1960s, small-scale
integration emerged as an important force in electronics. The chips
were expensive, and many of them were required to build a useful in-
strument or computer. By the late 1960’s, medium-scale integration
began to cut the cost of digital instruments by reducing the chip count
and labor required. The early 1970's saw large-scale integration emerge:
large memories and UART integrated-circuit chips. The electronics in-
dustry barely caught its breath when very-large-scale integration ap-
peared and gave a hint as to the incredible impact that electronics will
have still in the future. The 4K random access memories and 8-bit
microprocessors provide individuals with an opportunity to construct
powerful computers for only several hundred dollars. Yet to come are
full computers-on-a-chip, with 4K of RAM, 16K of ROM, and fast
multiply/diivde capabilities. They are only a few years away.

SOFTWARE INTEGRATION: SSP, MSP, LSP, AND VISP

You can also observe progress in the area of digital electronics by
watching what happens to memory chips. The trends are:

@ New memory chips will contain more memory per chip.
The 4K RAMs and 16K ROMs were common in 1975. Not far off are
the 16K RAMs and 64K ROMs. Yet to come will be the 64K RAMs

309

and 256K ROMs. You should note that it takes only an 18-bit mem-
ory address word to address any location among 262,144 different
locations.

® The fast memory chips will become faster.
A tradeoff exists between the size of memory and the basic speed of a
memory cell, but improvements in technology are paving the way to
large memories that are faster than today’s chips.

Memory speed and memory size are the important variables for the
future. The speed of memory basically determines the execution time
of an instruction in a computer. The faster the memory, the more in-
structions that can be executed in a given period, and the more power-
ful programs that can be used. The authors believe that a good measure
of the progress yet to be made by microcomputers is the length of
microcomputer programs employed. Parallel to the abbreviations, SSI,
MSI, LSI, and VLSI, they would like to suggest the following indi-
cators of program complexity:

small-scale programs (SSP)—Programs that contain up to 100 instruc-
tion bytes. Abbreviated SSP.

medium-scale programs (MSP)—Programs that contain from 100 to
1000 instruction bytes. Abbreviated MSP.

large-scale programs (LSP)—Programs that contain from 1000 to 10,000
instruction bytes. Abbreviated LSP.

very-large-scale programs (VLSP)—Programs that contain more than
1,000 instruction bytes. Abbreviated VLSP.

In order to execute a 10,000 instruction-byte programs, your computer
must have both a very large memory and also a very fast one. With an
8-bit computer, 10,000 instruction bytes corresponds to 80,000 memory
bits, or 80 kilobits of memory.

Have you tried to write a 1000-instruction-byte program? It takes
quite a bit of time, especially if the program is carefully written and
performs some interesting function.

What this discussion is leading up to is the importance of subroutines.
A subroutine can be of any length. If a variety of subroutines are read-
ily available, they will save you time since you do not have to rewrite
them. Thus, a 1000-instruction-byte program might be very easy to
write, provided that it consists of 200 bytes of main program and 800
bytes of subroutines that others have worked out for you.

You ought to think about subroutines with every MSP program that
you write, What program functions are required? Time delays? Multi-
bit addition, subtraction, multiplication, or division? Put them in sub-
routines. Do you need to log data from a four-bed-digit instrument?
Write a data logging subroutine in which you can set in the main pro-
gram the number of points desired and the time between individual

310

points. Do you need to output information to a teletype via a UART
chip and 20-mA current loop? Write a software driver, a computer
subroutine that handles the data transfer requirements.

THE 8080 SUBROUTINE INSTRUCTIONS

We consider there to be 26 subroutine instructions in the 8080 micro-
processor instruction set:

® A three-byte unconditional call instruction, CALL

315 CALL <B2> <B3> Unconditional call of subroutines at
memory location addressed by bytes

B2 and B3
® A one-byte unconditional return instruction, RET
311 RET Unconditional return from subroutine
® Eight different one-byte restart instructions, RST
307 RST 0 Call subroutine at HI = 0005 and LO
= 0005
317 RST 1 Call subroutine at HI = 0005 and LO
= 0104
327 RST 2 Call subroutine at HI = 0005 and LO
= 0205
337 RST 3 Call subroutine at HI = 000s and LO
= 0304
347 RST 4 Call subroutine at HI = 000; and LO
= 0404
357 RST 5 Call subroutine at HI =000 and LO
=050
367 RST 6 Call subroutine at HI = 0003 and LO
= 0604
377 RST 7 Call subroutine at HI = 000; and LO
= 070s
® Eight different one-byte conditional return instructions
300 RNZ Return from subroutine if zero flag is
at logic 0
310 RZ Return from subroutine if zero flag is
at logic 1
320 RNC Return from subroutine if carry flag is
at logic 0
330 RC Return from subroutine if carry flag is
at logic 1
340 RPO Return from subroutine if parity flag

is at logic 0

mn

350 RPE Return from subroutine if parity flag
is at logic 1

360 RP Return from subroutine if sign flag is
at logic 0

370 RM Return from subroutine if sign flag is
at logic 1

® Eight different three-byte conditional call instructions
304 CNZ <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
zero flag is at logic 0
314 CZ <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
zero flag is at logic 1
324 CNC <B2> <B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
carry flag is at logic 0
334 CC <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
carry flag is at logic 1
344 CPO <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
parity flag is at logic 0
354 CPE <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
parity flag is at logic 1
364 CP <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
sign flag is at logic 0
374 CM <B2><B3> Call subroutine at memory location
addressed by bytes B2 and B3 if
sign flag is at logic 1

You may refer to Chapter 3 or the appendix for a more detailed dis-
cussion of the above instructions. We need not repeat it here.

THE 8080 STACK INSTRUCTIONS

There exist fourteen stack operations in addition to the subroutine
instructions given in the above section. We consider a stack instruction
to be one in which the location of the stack pointer or the contents of
the stack, or both, are altered. Rather than discuss the stack operations
in detail, we shall simply list them here and you may refer to Chapter 3
or the appendix for a more extensive discussion.

312

® A three-byte load immediate instruction, LXI SP
061 LXI <B2><B3> Load immediate two bytes B2 and B3
into the stack pointer register

® A data transfer instruction, SPHL
371 SPHL Move the contents of registers H and
L to the stack pointer register

® Two increment and decrement instructions, INX SP and DCX SP

063 INX SP Increment contents of stack pointer
register by one
073 DCX SP Decrement contents of stack pointer

register by one

@ An arithmetic instruction, DAD SP
071 DAD SP Add contents of stack pointer register
to contents of register pair H and L
and store in register pair H and L

® A stack contents exchange instruction, XTHL
343 XTHL Exchange the top of the stack with the
contents of the H and L register pair

@ Four single-byte stack pop instructions, POP

301 POP B Pop stack and move contents to reg-
ister pair B and C. Increment stack
pointer register by two

321 POP D Pop stack and move contents to reg-
ister pair D and E. Increment stack
pointer register by two

341 POP H Pop stack and move contents to reg-
ister pair H and L. Increment stack
pointer register by two

361 POP PSW Pop stack and move contents to ac-
cumulator and restore the condition
flags. Increment stack pointer regis-
ter by two

® Four single-byte stack push instructions, PUSH

305 PUSH B Push contents of register pair B and C
on stack. Decrement stack pointer
register by two

325 PUSH D Push contents of register pair D and E
on stack. Decrement stack pointer
register by two

345 PUSH H Push contents of register pair H and L
on stack. Decrement stack pointer
register by two

313

365 PUSH PSW Push contents of accumulator and the
condition flags on stack. Decrement
stack pointer register by two

MEMORY ALLOCATION

We are about ready to discuss the question “What is a stack?” in
greater detail. Before we do so, however, we should briefly consider
the allocation of memory in a microcomputer. The term allocate means:

allocate—In a computer, to assign storage locations to main routines
and subroutines, thus fixing the absolute values of symbolic ad-
dresses.

Basically, allocation means how we subdivide a memory section or
block into smaller groups of locations, each of which contains one of
the following:

® A main program, at which the microcomputer starts execution.
The main program need not be long. In fact, it can mainly con-
sist of calls of subroutines and wait loops.

® One or more subroutines, where most of the computing work is
performed. The subroutines can be time delays, arithmetic calcu-
lation routines, software drivers, and service routines, to mention
a few types.

® Up to eight small interrupt service routines, which respond to dif-
ferent interrupt conditions and restart instructions, RST, jammed
into the microcomputer.

® A single stack, where temporary information is stored while sub-
routines are being executed. You can consider the stack to be the
computer’s bookkeeper. It keeps track of all the subroutines that
have been called.

Several hypothetical locations for the above groups are illustrated in
Fig. 8-7, which fits all of them into the first 1K memory section of the
microcomputer. Note that it is not necessary to crowd the different
types of memory regions together. The stack, if at all possible, should
be separated from the other program regions. This is because it grows
from the end of memory toward the beginning.

MODES OF MICROCOMPUTER OPERATION

In this book, we have written only simple microcomputer programs
and have constructed quite simple microcomputer interfaces that em-
ploy only a few 7400-series integrated-circuit chips (plus the 8212
buffer/latch and the 8095 buffer chips). Although you will continue
in the same vein in this chapter as well, the real world of microcom-

314

|
|

|

Memory oddress

H L

000 000
Interrupt
service
routines
000 100
Main
program
Fig. 87. A hypothetical memory allocation
scheme for the first 1K memory section. Here
the stack is located at the top of the memory ool 300 -
section, somewhat removed from all other Subroutines
memory regions.
003 300
Stack

puter interfacing will demand from you at least an order-of-magnitude
increase in programming and interfacing sophistication. In the real
world, you will be required to interface instruments and machines and
to communicate between the microcomputer and a teletype, cathode-
ray tube (crt) display, another microcomputer, a minicomputer, a
cassette tape unit, a magnetic disk, and the like. In short, a single 8080
microcomputer may be required to communicate with a number of
input/output devices, all of which seek the attention of the micro-
computer,

How does a single microcomputer handle many 1/O devices? It han-
dles only one device at a time! However, the way it handles “only one
device” can be quite clever and interesting. There are two main modes
of microcomputer operation: polled and interrupt. These modes will
now be discussed in turn.

Polled Operation
Graf has defined polling as:

polling—Periodic interrogation of each of the devices that share a com-
munications line to determine whether it requires servicing. The mul-

tiplexer or control station sends a poll that has the effect of asking
the selected device: “Do you have anything to transmit?™*

315

When a microcomputer services a device, it simply exchanges digital
information with the device in a manner that is prescribed by some
segment of the microcomputer program. The particular program seg-
ment is frequently called a software driver, which can be defined as:

software driver—A subroutine or part of a computer program that trans-
fers information between the computer and a specified input/output
device.

In polled operation, the microcomputer simply sequences through de-
vices tied to the microcomputer looking for individual devices that
need servicing. When it finds a device that needs servicing, it stops
sequencing, calls up a software driver, and services the device. Once it
has finished, it continues sequencing through the devices.

Polled operation is most useful with relatively slow devices that
do not require frequent servicing, or at least can wait to be serviced.
Advantage is taken of the differences in speed between the microcom-
puter and the polled devices, each of which might be serviced in only
a fraction of a second. In 100 ms, the 8080 microcomputer can execute
approximately 20,000 instructions.

Interrupt Operation
Graf has defined an interrupt as:

interrupt—In a computer, a break in the normal flow of a system or
routine such that the flow can be resumed from that point at a later
time. The source of the interrupt may be internal or external.*

Interrupt operation is a much more sophisticated mode of microcom-
puter operation, one that can circumvent most of the inherent dis-
advantages of polled operation. Thus, in polled operation:

® The microcomputer spends much of its time sequencing through
the devices tied to it.

® Once a device is serviced, it must wait its turn until all other de-
vices are sequenced and, if necessary, also serviced. In other words,
there is no priority in polled operation. All devices are treated
equally.

® The response time between when a device wants servicing and
when it is serviced can be substantial, at least by microcomputer
standards.

In contrast, in interrupt operation:

® The microcomputer may spend much of its time in a wait loop,
waiting for a device to ask for servicing.

® There can exist priority in interrupt operation. The most impor-
tant devices can be serviced more often than the less important
devices.

316

® The response time between when an important device wants servic-
ing and when it is serviced can be very short, even by microcom-
puter standards. With the 8080 microcomputer, this time is usually
no more than 10 us.

® Software becomes much more complex.

The terms priority and response time are defined in the following
ways:

priority~The condition in which input/output devices are ordered in
importance so that some devices take precedence over others.

response time—The time between the interrupt request by a device and
the first instruction byte of the software driver that services it.

Interrupt operation is depicted schematically in Fig. 8-8. In 8080
microcomputers, an 1/O device that interrupts the microcomputer
sends both an interrupt clock pulse—a single pulse—as well as an 8-bit
instruction byte that tells the microcomputer what to do after it has
been interrupted. With the 8080 microcomputer this 8-bit instruction
is one of the eight different restart instructions (RST), which are sin-
gle-byte instructions that call a subroutine at one of eight different loca-
tions: HI = 0005 and LO = 000, 010, 020, 030, 040, 050, 060, or 070,. The
8080A microprocessor chip permits multibyte interrupt instructions.
We will not discuss this possibility in this book, but be aware that it
exists.

Clearly, in interrupt operation, the 8080 microcomputer services its
devices on demand, perhaps with the aid of priority considerations.
If no device needs servicing, the microcomputer simply idles in a wait

MEMORY

8-bit

instruction s
5
)
£
a
©
insfruction I
|_reqister
Interrupt ————9-1 8080 CPU

Fig. 8-8. During an interrupt an 8-bit instruction is “jammed"” into the instruction register
within the 8080 chip.

317

loop or performs other software tasks. It must be clear that interrupts
are complex, require additional software, and are difficult to debug.
Many individuals keep their interrupt use to a minimum.

BASIC TYPES OF INTERRUPTS

There exist three types of interrupts: single-line, multilevel, and
vectored. They can be defined as follows:

single-line interrupt—An interrupt system in which there is a single
interrupt line. Multiple devices must be ored to this line. Each in-
put to the or gate is from an I/O device. Once it receives an inter-
rupt, the microcomputer must scan all of the devices to determine
which one generated the interrupt.

multilevel interrupt—An interrupt system in which there exist many in-
terrupt lines to the microcomputer, each line being tied to a separate
1/0O device. The microcomputer does not need to scan the devices
to determine which one caused the interrupt.

vectored interrupt—An interrupt system in which the interrupt causes
a direct branch to that part of the program that services the inter-
rupt. This is the fastest mode of interrupt operation.

These three types of interrupts are shown schematically in Fig. 8-9.
The single-line interrupt is a popular type of interrupt with micro-
computers and one that is easy to implement. There exists no limit to
the number of devices that can be ored together to a single interrupt
line. Three devices are shown in Fig. 8-9A. However, the more devices,
the longer the time required to scan them. Priority is determined by
the order in which the devices are scanned under software control.

The multilevel interrupt, shown in Fig. 8-9B, is an effective tech-
nique if a sufficient number of interrupt pins exist on the microproces-
sor chip. This is rarely the case: Existing microprocessor chips have no
more than four interrupt pins.

The vectored interrupt technique (Fig. 8-9C) permits direct branch-
ing to the part of a program, most likely a subroutine called a service
subroutine, that immediately services the interrupt. The interrupt pulse
is first sent to the microprocessor chip, followed by an 8-bit single-byte
instruction that is jammed into the microprocessor immediately after
the interrupt pulse. The Intel 8080 provides eight different restart in-
structions, as mentioned in a previous section:

307 RST 0 Call subroutine at HI = 0005 and LO = 000
317 RST1 Call subroutine at HI = 0003 and LO = 010,
327 RST 2 Call subroutine at HI = 0005 and LO = 020,
337 RST 3 Call subroutine at HI = 0005 and L.O = 0304
347 RST 4 Call subroutine at HI = 0005 and LO = 0405

318

Device No. | ————j_\ terrent
Device No. 2 interrupt _,4 MICRO-
Device No. 3 ———L/ COMPUTER

(A) Single-line interrupt.

. interrupt no. |
Device No. | ?

. interrupt no. 2 MICRO -
Device No, 2 === COMPUTER

interrupt no. 3

Device No. 3
(B) Multilevel interrupt.
X vccfov_
instruction —
bits —
MICRO-
COMPUTER
. interrupt
Device No. | P

(C) Vectored interrupt.

Fig. 8-9. Three different types of interrupt techniques.

357 RST 5 Call subroutine at HI = 0005 and LO = 0505
367 RST 6 Call subroutine at HI = 0003 and LO = 060s
377 RST 7 Call subroutine at HI = 0003 and LO = 0705

You should observe that only three of the eight bits are changed in the
above restart (RST) instructions. Intel Corporation has taken advan-
tage of this fact and has provided a special chip, called the 8214 pri-
ority interrupt control unit, that contains all the logic needed to:

® Cause an interrupt to the 8080 microprocessor chip.
® Jam three vector bits, in combination with five other vector bits,
into the 8080 microprocessor chip immediately after the interrupt.

319

® Provide eight levels of priority, e.g., the eight RST instructions.

® Provide open-collector outputs for both the interrupt and vector
outputs, thus permitting interrupt capability by more than eight
devices.

The manufacturer’s specifications for the chip are shown in Chapter 1.

One would expect the interrupt hardware within microprocessor
chips to improve with time. The 8080A and 8228 chips permit multibyte
instructions to be entered immediately after an interrupt. However,
special digital circuitry external to the chip is required to take advan-
tage of this feature, A new interface chip, the Intel 8259 programmable
interrupt controller, performs some of these functions.

ENABLE AND DISABLE INTERRUPT INSTRUCTIONS

It is not uncommon for a computer to have a variety of I/O devices
connected to it, each demanding attention constantly. The use of pri-
ority levels helps with the problem of servicing such devices, but occa-
sionally the computer may want to know that an interrupt has arrived
without the necessity of servicing the interrupt. This is particularly
true during a complex or time-dependent piece of software. For this
purpose, there is a piece of internal circuitry within the microprocessor
and software to allow it to turn a “deaf ear” to all interrupts. The cir-
cuitry is an interrupt flip-flop or flag (the terms mean the same thing)
that can be enabled or disabled by single-byte microcomputer instruc-
tions. Some definitions are in order:

interrupt flag, interrupt flip-flop—A flip-flop within the microprocessor
chip that can be enabled or disabled by microprocessor software and
can detect an interrupt pulse and remember the fact that an inter-
rupt occurred.

disable interrupt—To disable the interrupt flag within a microprocessor
chip.

enable interrupt—To enable the interrupt flag within a microprocessor
chip. :
The enable interrupt and disable interrupt instructions in the 8080

microprocessor instruction set are:

373 EI Enable the interrupt system within the microprocessor chip
following the execution of the next instruction.

363 DI Disable the interrupt system within the microprocessor
chip immediately following the execution of this instruc-
tion.

If the interrupt flag is enabled, then an interrupt will be serviced im-
mediately. However, even if the interrupt flag is disabled, the com-

puter can still detect whether or not an interrupt has occurred. If an
interrupt did occur while the interrupt flag was disabled, then an in-
terrupt would occur as soon as the flag is enabled. Only one interrupt
event is remembered.

EXTERNAL FLAGS
The term flag has been defined in Chapter 1 as:

flag—In a computer, an indication that a particular operation has been
completed.* Also, a flip-flop that can be either set or cleared in re-
sponse to operations occurring in the microcomputer.

Such a flag can more correctly be called an internal flag, since it is lo-
cated within the circuitry internal to the 8080 microprocessor chip.
An extremely important, but quite simple, interface circuit is an ex-
ternal flag, which can be defined as follows:

external flag—A digital circuit, usually containing a single flip-flop,
which indicates a condition that exists with an input/output device.

“Internal flag” can be defined in a similar manner. Thus:

internal flag—A digital circuit, usually containing a single flip-flop,
which indicates a condition that exists internally within the micro-
processor chip.

The really important word in the preceding definitions is condition.
A flag is able to detect a change in condition almost instantaneously;
it is then able to remember this condition until it is cleared by a clock
pulse from the microprocessor or, if the flag is internal, until the exe-
cuted program changes the logic state of the flag. It might be more ap-
propriate to call an external flag an external condition flag. This term is
redundant, however.

External flags indicate the conditions that exist with an input/output
device; thus, they are able to synchronize the operation of the device
with that of the microcomputer. They are no less important in a prop-
erly functioning interfaced microcomputer system than the device se-
lect pulses that we discussed previously. The different types of condi-
tions that the flag can indicate include, but are not limited to, the
following:

® Data is available to be input into the microcomputer from the
device.

® The device is ready to accept output data from the microcomputer.

@ The device has finished one operation, and is ready to start a new
operation.

3

@ The device is busy and does not wish to be disturbed.

® A power failure has occurred; the microcomputer must react im-
mediately to save valuable data and programs.

® The device is not in operation at the moment.

® A controlled quantity has exceeded the danger zone.

® The value of a controlled quantity is too high.

® The value of a controlled quantity is too low.

A schematic diagram of a typical external flag circuit is shown in
Fig. 8-10. The authors prefer this circuit to one that can be constructed
from a 7476 J-K flip-flop. The 7474 flip-flop is positive-edge-triggered,
whereas the 7476 flip-flop is level-triggered, but both flip-flops are
effective.

A positive edge clocks the Q output of the flip-flop to logic 1. This
logic state is input into a 7400 two-input NAND gate, which inverts the
signal and applies logic O to the interrupt terminal of the 8080. While
the 8080 chip itself requires a logic 1 to generate an interrupt at pin 14
on the chip, the figure shows a logic 0 generating the interrupt. This
means that the interrupt input is inverted before it enters the 8080. The
active low (logic 0) condition is the authors” design condition in the
8080-based microcomputer that they used.

The second input on the 7400 NaND gate can be used to gate the
interrupt into the microcomputer. If the arm flag within the micro-
processor has been previously enabled by an EI instruction, the micro-
computer is interrupted and the program branches to a subroutine
indicated by an 8-bit instruction that is “jammed” into the computer
via external circuitry. The “jammed” instruction is usually a restart
instruction, RST n, but may be any other single-byte instruction. You
should be aware of the fact that the new 8080A microprocessor chip,
available from Intel and others, permits the jamming of a multibyte

Praset
R Flag
status
Condition pulse
2
from device B 3 U0 interrupt
7400

Acknowledge signal

from microcomputer

Fig. 8-10. An external flag circuit.

322

instruction, such as a subroutine call, during an interrupt. Extra hard-
ware, including the 8228 chip, is required to do so, however.

It is poor design procedure to drive long lines, wires, etc., directly
from flip-flop or latch outputs. The 7400 two-input NanND gate has been
added to provide the drive capability and to buffer the flip-flop output.

A more useful representation of the external flag circuit is shown
in Fig. 8-11. This circuit is called “external flag 0,” and the following
inputs and outputs of the flag are identified:

® The condition pulse, which is usually from some instrument or
device.

® The clear input, CLR-0. A negative clock pulse will clear the flag.

® The preset input, PR-0. A negative clock pulse will set the flag.

® The flag output, STAT-0. This output is typically sent as input
into the microcomputer through a three-state input port.

@ The interrupt output from the flag, INT-0. A negative clock pulse
from this output will interrupt the microcomputer.

“External flag 1” would have input CLR-T and PR-1 and outputs STAT-
1 and INT-L. Similar considerations apply for other flags.

Clearing an External Flag

The obvious way to clear an interrupt flag is through the use of the
INTA status bit, which goes to logic 1 early in a machine cycle when
there is an interrupt condition. This logic 1 state can be inverted and
applied to the CLR-0 input of external flag 0 or any other flag, as
shown schematically in Fig. 8-12.

The clearing operation can sometimes occur very quickly, in as
little as 2 ps. A more typical value is 7 us. We will not consider all
of the subtleties associated with this type of clearing operation, but

PR-0
4
Proset
1o opf— STAT-0
Condition ' pulse T O clock
from device 3 2 s
7474 , L INT-0
Clear 7400
! 1
ar
CLR-0

Fig. 8-11. Circuit for external flag 0.

323

CLR- o’__z_,QI_ INTA Fig. 8-12. External flags, such as flag 0, can be
7404 cleared via the use of the INTA status signal.

the key variables are the instruction being executed and the machine
cycle within the instruction cycle at the time that the interrupt occurs.

It is usually quite desirable to provide a manual clear capability
from the front panel of an interfaced instrument. One example of how
this can be done is shown in Fig. 8-13. Note that either the INTA
signal or the pulser can apply a clear pulse to the flag. Naturally, a
7408 anp gate can be substituted for the combination of a NaND gate
and 7404 inverter.

An equally interesting type of flag clearing circuit is one in which the
clear pulse is generated by software, i.e., via an output device select
pulse from the microcomputer. A negative device select pulse is re-
quired, and this is noted by the symbol DS, where there is a bar indi-
cating inversion over the letters DS. Circuits employing such a clear
signal are shown in Fig. 8-14.

Deferred and Immediate Interrupts
The terms deferred interrupt and immediate interrupt can be de-

fined as follows:

deferred interrupt—A computer interrupt that occurs at some time after
an external flag goes to logic 1.

immediate interrupt—A computer interrupt that occurs as soon as an
external flag goes to logic 1.

An example of an immediate interrupt is where the interrupting
signal is applied directly to the 8080’s interrupt input (pin 14).

For external flag 0, as soon as STAT-0 goes to logic 1, INT-0 goes
to logic 0 and the microcomputer is interrupted. A simple deferred
interrupt circuit is shown in Fig. 8-15. The reason why the circuit is
deferred is that you can control when INT goes to logic 0 by the gating
signal DS 002s. Naturally, this signal is generated by the microcom-
puter software, so a considerable period can elapse between the time
that Q goes to logic 1 and the time that the output from the 7400

SAN| 2 5
INTA
s PN oy ~yr-{
7404 P CLR-0

7400

DUAL
PULSER

MANUAL CLEAR

Fig. 8:13. A circuit that permits both a manual and an interrupt acknowledge input to the
clear input of external flag 0.

324

(A) 0024 signal. bs 002, ——= CLR-0

(From decoder} (To flag)

55008, ——>
.
T404

7400

DUAL
PULSER

MANUAL CLEAR
(B) 003, and manual clear.

Fig. 8-14. Use of device select pulses to clear external flag

4 CR-0

(To flag)

NAND gate goes to logic 0. You will see this in another example in this
chapter. This circuit is an example of how software can replace hard-
ware. With the DS 0025 device select pulse, you can control the time
delay. This circuit is especially useful in polled interrupt systems; the

device select pulse serves as the polling signal.

External Flag Output

Not too many tricks are performed with output STAT-0 from an
external flag such as external flag 0. Usually, you input this bit into the
microcomputer. Thus, for the STAT-4 output from external flag 4, you
can use either of the three-state circuits shown in Fig. 8-16. These cir-
cuits employ three-state buffers such as the 74125 or 74126. You may
recall that we talked about these buffers in Chapter 7 in Bugbook I1.
A device select pulse, generated by an IN instruction, is used to input
the two chips

data into the accumulator. The pin configurations for
are provided in Fig. 8-17.

If you wish to input the STAT outputs from several external flags,
e-state buffer/
latch chip (Fig. 8-18). Such a circuit is very useful in polled interrupt
operation. Once you have input the logic states of the external flags

the authors would recommend the use of an 8212 thre

LAMP
Q 5 A MONITORS
DUAL s
PULSER ;——OW“ 2 s
7474 1 T
CONDITION PULSER I
7400

b8 002,

Fig. 8-15. A deferred interrupt circuit. INT does not become logic 0 until both Q is logic 1
and a device select pulse is applied to the 7400 NAND gate.

325

D4 STAT - 4

74125 (15 ga1q (From flag)
8093 4y

STAT-4
(From tlag)

DS 004, DS 004,

Fig. 8-16. The use of three-state buffers 1o input status bits into the 8080.

into the microcomputer, you can perform logical manipulations and
rotations to determine which flags are at a logic 1 state, which are at
logic 0, which have changed from logic 0 to logic 1, and which have
changed from logic 1 to logic 0. You can use any of these conditions
or logic state changes to call subroutines that service the devices tied
to the external flags.

As a final point, the sequence of events that occurs in conjunction
with an interrupt can be listed as follows:

® The external flag output, STAT, goes to logic 1.

® Essentially immediately (if an immediate interrupt) or after some
time delay (if a deferred interrupt), a logic 0 is applied to the
interrupt terminal, INT.

® A pulse is generated by the microprocessor chip to acknowledge
the interrupt (INTA). This pulse can be uses to “jam” a single-
byte instruction into the microprocessor chip and, if desired, to
also clear the flag.

® The external flag is cleared as soon as it receives the clear pulse.
STAT returns to logic 0 and INT returns to logic 1.

The vector restart instruction, RST n, is applied to the data bus only
during the interrupt acknowledge (INTA) time. Unlike all other input
bytes, the 8-bit restart instruction byte goes directly to the instruction
register within the 8080 microprocessor chip, where it is executed. We
shall discuss vector restart instructions in a later example.

74125 74126

Fig. 8-17. Pin configurations of the 74125 and 74126 three-state buffer chips. For the 74125
chip 2 logic 0 enables the buffer; in the 74126 a logic 1 enable signal is required.

326

+ 5V GND

4 12

sTaT-7 —2&{ 1 H

b sTaT-6 —22{ 6 [
STAT-6 — = F F

Fig. 8-18. An 8212 chip used as an input STAT-4 ~—HE €
buffer for the status outputs from eight :?:I_::] g g
different external flags. This type of circuit STAT-1 —— 8 8
is called a status register. STAT-0 31a A

bs [R—, -}
DS OUI. 7} DI

Single-Line Interrupt (Polled Interrupt)

If you have only a single interrupt terminal and are not able to em-
ploy the vector interrupt feature of the 8080 microcomputer, you can
still wire the circuit shown in Fig. 8-19. You can poll the four external
flags with the aid of four different device select pulses, each gated with
an external flag in the manner shown in Fig. 8-20.

INTERRUPT MASK

In polled interrupt operation, you typically sense the logic states of
the external flags with the aid of a status register (Fig. 8-18), which
inputs the bits into the accumulator of the microcomputer. Once the
bits are in the accumulator, the question arises: What do you do next?
You have several possibilities:

® Rotate each bit, in turn, into the carry flag and employ a condi-
tional call instruction that is dependent upon whether the carry
flag is at logic 0 or logic 1. In this way, you poll the status of each
external flag and are able to call the subroutine required if a given
flag is set.

® Mask each 8-bit sense word with a mask word that basically makes
it easy to determine whether a given external flag is set or cleared.

. Once the mask operation has been completed, different arithmetic
or logical operations can be employed to immediately determine
whether the external flag is set or cleared. Once this is done, a
conditional call instruction can be employed. Typically an axp
operation does the masking.

The term mask can be defined in the following manner:

mask—A logical technique in which certain bits of a word are blanked
out or inhibited.* ;

327

a

v

INT-3
T—
INT=-1
T-0

Z|
ol

To interrupt input INT

]

T4H21

Fig. 8-19. If any of the interrupt inputs, INT-n, to the 72H21 AND gate become logic 0,
an interrupt signal is output from the gate.

It is useful to give an example of a mask operation. Assume that
there exist eight different external flags that are attached to the follow-
ing devices:

Flag Number Device
0 Teletype
1 Paper tape reader
2 Cathode-ray-tube display
3 Minicomputer
4 Temperature recorder
5 Digital voltmeter
6 Pressure indicator
7 Unassigned

Each device has its own external flag, and all eight flags are connected
to a 8212 status register.

If we wish to determine whether or not the microcomputer flag is set,
i.e., at logic 1, we can employ the following program:

LO Memory Octal
Address Instruction ~ Mnemonic Comments

150 333 IN Generate input device select pulse
that inputs the flag bits at the
status register into the accumu-

lator

151 001 001 Device code for status register

152 346 ANI Anp the contents of the accumula-
tor with the following mask word

153 010 010 Mask word that masks all flag bits
except flag bit 3

154 302 INZ If the contents of the accumulator

are not zero, jump to the memory
location given by the following
address bytes. Otherwise, ignore
this instruction

aT=-n —o] —
STAT=~n T
Fig. 8-20. The INT-n is not generated until
7400 both STAT-n and DS-n are at fogic 1. This
permits you to “poll” each external flag
0S-n using software.

328

155 000 LO address byte
156 002 HI address byte

Presumably a service routine is present at memory location H = 002
and L = 000 to handle the situation when the external flag for the mini-
computer is set.

INTERFACING A KEYBOARD

In this section we shall discuss how to interface an ASCII keyboard.
Some of the schematics shown will be simplified for clarity.

Recall the keyboard example in Chapter 7 where you input a key-
board code and compared it with the ASCII code for the letter E.
The flowchart was as shown in Fig. 8-21. The program remains in a
very tight input loop, even when no key is pressed and no ASCIL code
is present at input port 004. Such a program is inefficient in that it
wastes the valuable time of the microcomputer, which could be per-
forming more meaningful tasks.

Flag Bit Testing

Most ASCII keyboards generate a short output pulse, which is called
READY or VALID, each time a key is pressed on the keyboard. In the
case of one keyboard, this pulse has a duration of 1 ps, a pulse width
that is much too short to be entered directly into the microcomputer.

INPUT DATA

YES
Fig. 8-21. Flowchart that fests an input charac-
ter to determine whether or not it is AsCll
character E. When an E is finally detected, the OUTPUT IT

program outputs it, stores it, and then comes
to a halr.

STORE IT

|

HALT

329

—

The reason is that most timing loops that test for a single input bit
consume at least 12 us for a 2-MHz microcomputer. For a 1-us input
pulse, the odds are that 92 percent of the time it will not be detected.

The solution to this problem is to connect the VALID output signal
from the keyboard to an external flag, the output of which is input and
tested by the microcomputer. A simplified circuit is shown in Fig. 8-22.

The 7474 flip-flop is the flag, which is clocked to a logic 1 output
state by the 1-us signal pulse from the keyboard. The microcomputer
program tests for the logic state of the flag output, clears the flag with
device select pulse OUT 065, and inputs the keyboard data into the
accumulator. The actual program is as follows:

LO Memory Octal

Address Instruction Mnemonic Comments
000 333 IN Input flag data from 8212 status register
001 017 017 Device code for 8212 status register
002 346 ANI Mask the accumulator contents with the
following data byte
003 010 010 Mask data byte for input bit D3
004 312 JZ If the result of the masking operation is

zero, jump to HI = 000 and LO = 000
and test flag again

005 009 LO address byte

006 000 HI address byte

007 323 ouT Clear the flag by sending a device select
pulse to the CLR input

010 065 065 Device code for CLR input of flag

011 333 IN Input keyboard data into the accumulator

012 005 005 Device code for 8212 input port

013 . . .

014

The flowchart for this program is provided in Fig. 8-23.

Flag bit D3 can be tested in other ways, such as by rotating it into
the carry bit and testing the carry bit with a JC or JNC instruction.
There are many different ways to test status or flag bits.

When the keyboard/microcomputer system is first turned on, it is
important to initialize the system by clearing all flags. Traditionally,
this has been done through the use of one or more manual RESET
switches, which are gated with device select pulses such as OUT 065.
An alternative to the use of manual switches is a short initialization pro-
gram that generates all necessary clear flag pulses, including OUT 065.

Vectored Interrupts

Even though the VALID flag testing program is more efficient than
the program in Chapter 7 that simply input keyboard data, most micro-
computers have more important things to do than monitor a single flag
bit. In some cases, hundreds of flags need to be tested. In other cases,
the microcomputer is performing a complex mathematical calculation

330

s
l——— IN 005
8212
> Input 4> To data bus

Port

KEYBOARD

JL l-us pulse
IN 017

) Q 03

e A m—
To data bus
Clock Status

CLR Register

T 5ot oes

Fig. 8-22. Simplified circuit that demonstrates how the VALID flag from the keyboard is
tested by the 8080 microcomputer.

that requires considerable computation time. The point is that most
microcomputers should be interfaced in such a way that they respond
only when a key is pressed on the keyboard; at all other times, the key-
board is ignored. A good typist will type five to ten characters per sec-
ond, or 100 to 200 ms per ASCII character. This is very slow by micro-
computer standards, and the microcomputer can be doing many other
things between keystrokes. However, once a key is pressed, it would be
useful for the microcomputer to respond immediately. With an 8080-
based microcomputer, “immediate” response can be accomplished
through the use of vectored interrupts.

A vectored interrupt has been previously defined in this chapter as
an interrupt system in which the interrupt causes a direct branch to
that part of the program that services the interrupt. The necessary
circuitry for our keyboard example is shown in Fig. 8-24. Observe that
the 8212 input port remains the same, but that the VALID pulse is
now input to the INTERRUPT input of our 8080-based microcomputer.
In this case, the interrupt input requires a negative interrupt pulse; if
you input directly into the 8080 microprocessor chip, you will require a
positive interrupt pulse, INT.

Once the 8080 chip receives an interrupt pulse, and if the interrupt
flag within the chip has been previously enabled by an enable interrupt
instruction, EI, the 8080 finishes the execution of its current instruction
and then sends out an interrupt acknowledge signal, INTA, that is used
to gate a single-byte restart instruction, RST n, directly into the instruc-

33

INPUT VALID
FLAG

NO & FLaG =17

YES

Fig. 8-23. Flowchart for the program that tests
CLEAR FLAG for the VALID flag. When VALID = 1, a single
l h is entered from the keyboard.

INPUT KEYBOARD

DATA
etc.
Ju
I_— IN 008
8212
KEYBOARD > Input >To data bus
Port
VALID
To 8080
= INTERRUPT
| psec input
+5V 3
@ND 5 |
7 = T dota b
— Interrupt
=

instructi
5 instruction
l z
INTA from 8080

Fig. 8-24. Simplified vector interrupt for the ASCII character keyboard. If thers are other
interrupting devices in the system, a NAND gate must be used prior to the INTERRUPT input
on the 8080 chip.

332

tion register within the 8080 chip. This is the only time in which you
can, using an external three-state buffer chip, input directly into the
instruction register rather than the accumulator or other general-
purpose register. In effect, you “jam” an instruction byte into the
instruction register. The hardware used to jam an instruction byte is
shown in Fig. 8-24. Tt consists of an 8-bit gated driver chip that is called
the interrupt instruction port. In Fig. 8-24 the jammed instruction
is a RST 5, or 357, instruction, which causes the microcomputer to
immediately go to the subroutine located at HI = 000 and LO = 050.

Let us examine the software required for a vectored interrupt system.
Since the RST n is a call subroutine instruction, you must first set up
a stack pointer within read/write memory. You then write an enable
interrupt instruction, EI, to permit the 8080 microprocessor chip to be
interrupted by an external signal applied at the INT input pin. Next,
you jump to an area of memory that we shall call MAIN TASK. This
is the main program, most likely located in ROM or EPROM, that will
be periodically interrupted. MAIN TASK can be located anywhere in
memory, but the authors recommend that it be located away from the
interrupt service routines area of memory, which starts at HI = 000 and
LO =000 and continues to approximately HI =000 and LO =077.
Note, however, that the final interrupt subroutine location, at LO =
070, can accommodate a subroutine of any length.

We can summarize the preceding comments by listing the program
that we have developed so far. Thus:

LO Octal
Memory Instruc-
Address tion Mnemonic Comments
000 061 LXI SP Locate the stack within read/write mem-
ory by inputing the following two ad-
dress bytes into the stack pointer within
the 8080 chip
001 300 300 LO address byte
002 003 003 HI address byte
003 373 EI Enable the interrupt flag within the 8080
chip
004 303 JMP Jump to MAIN TASK
005 * LO address byte of MAIN TASK
006 * HI address byte of MAIN TASK
050 333 IN Input keyboard data into the accumulator
051 005 005 Device code for 8212 input port

This section of memory contains other software associated with the key-
board service routine. Most likely, there is a jump instruction to some
other memory address away from the interrupt service subroutine area.

057 311 RET Return from subroutine, the last instruc-
tion in the keyboard service routine

333

It should be clear that an interrupt from the keyboard will force the
microcomputer to jam a RST 5 instruction into the instruction register.
Upon execution, this instruction byte will call the keyboard service
routine that starts at HI =000 and LO = 050. This subroutine ends
with a RET statement, which permits the microcomputer to return to
MAIN TASK, which could be a simple control loop or a complicated
mathematical program. They keyboard service routine will usually be
short and not consume much time.

The preceding program will work, but if you try to execute it, you
will observe a number of operating difficulties. First, you will not be
able to execute the keyboard service routine more than once. Why not?
You have failed to re-enable the interrupt flag within the 8080 chip.
Remember the following rule:

During an interrupt machine cycle, the internal interrupt flag
within the 8080 chip is first disabled, then an interrupt ac-
knowledge signal, INTA, is generated to permit a RST n in-
struction to be jammed into the instruction register.

The key point here is that the interrupt flag is disabled to prevent
further interrupts while the microcomputer is servicing the current in-
terrupt. If you wish to re-enable the interrupt flag, you must do so by
providing an EI instruction in the interrupt service routine. The inter-
rupt flag is not automatically enabled.

It is common practice to provide an enable interrupt instruction, EI,
immediately before the RET instruction of the interrupt service sub-
routine. Since the interrupt flag does not become active until after the
next instruction has been executed, you can return to MAIN TASK be-
fore another interrupt is accepted by the 8080 chip. If this capability
were not provided, there would be the danger that you would £ill much
of read/write memory with linking return addresses waiting to be used,
because interrupt service routines were interrupted again, before they
had a chance to return.

In all other respects, you treat your vector subroutines as normal
subroutines. If the contents of the registers are important, you use the
PUSH and POP instructions to save and restore registers. A typical in-
terrupt subroutine would appear as shown in Fig. 8-25.

Since there exist only seven memory locations between our vector
address at LO = 050 and the next vector address at LO = 060, you will
not be able to fit in four PUSH instructions, four POP instructions, one
EI instruction, one RET instruction, and the keyboard service instruc-
tions without encroaching on the next one or two vector subroutine lo-
cations. Instead, you place a jump instruction at LO = 050, 051, and 052
that transfers control to an area of memory where you will have more
room for software. At the end of the service routine, the RET instruc-
tion will still return program control to the point where the MAIN

334

PUSH
Instructions
interrupt
Fig. 8-25. A typical interrupt subroutine. The Service
first instructions, the PUSH instructions, save Software
the microcomputer status. Near the end of the
L i the i F status is POP
popped back into the internal registers. Instructions
RET

TASK was interrupted. The relationship between the MAIN TASK,
vector jump instruction at HI =000 and LO =050, and keyboard
service software is shown in Fig. 8-26. The interfacing of the keyboard
could have been made more complex. For example, deferred interrupts
or priority interrupts could have been used. In the preceding example,
there was little incentive to do so.

PRIORITY INTERRUPTS
Priority interrupts are interrupts that are ordered in importance so
that some interrupting devices take precedence over others. They are

interrupt causes vector subroutine call

051 <L0>

MAIN |.—2—— 000 050 JmP }
TASK — 052 <HI>

Return to

MAIN TASK Keyboard
where Service
interrupted
Software
20+ steps

\\ El
RET

Fig. 8-26. Relationship between MAIN TASK, the vector subroutine jump, and the keyboard
suryito software, which is located elsewhere in memory.

335

used whenever a number of interrupts can occur at the same time, or
whenever there is a need to determine which interrupting devices are
the most important.

Of various ways to establish priority, the easiest way is to set pri-
ority in software and then to poll the interrupting devices and deter-
mine which devices should be serviced in which order. For example,
consider the interface circuit in Fig. 8-27. Three interrupts are shown,
but many more could be included in a practical system. An interrupt
occurs whenever one of the flag flip-flops becomes set by a pulse at
its clock input. We show this as a positive interrupt pulse, which is
what is required for most 8080-based microcomputers. If the interrupt
pulse is applied directly to the 8080 chip, a 7410 chip should be used,
as shown in Fig. 8-27. When the 8080 accepts the interrupt, it generates
an INTA pulse that gates the RST instruction code 357, which is pre-

+5V
3

GND 5

7 > To data bus

Interrupt

—
'.a osi Instruction
Port
8212
INTA from 8080

1—o a
7474
N
| HR CLOCK I { N\ n INTERRUPT
— input
SR —
T 7410
o0t o —
S os7
1—{0 Qe I
7474 b2
KEYBOARD — L) oI
To
] 0o
CLR > data
8212 b
— I us
ouT 012 = Input
= Port
1—o a
7474
casSETTE —=Jciock T
TLR

00T on LT

Fig. 8-27. Polled interrupt circuit that consists of three interrupting devices. The positive
interrupt pulse is connected directly to the INT input pin on the 8080 microprocessor chip.

336

wired at the interrupt instruction port, directly into the instruction reg-
ister. Upon execution of the RST 5 instruction, a subroutine at HI = 000
and LO =030 is called. The RST 5 instruction causes a vector, or
branch, to the indicated subroutine, where the software polling of the
interrupting devices takes place.

Each flag bit for the one-hour clock, keyboard, and cassette shown
in Fig. 8-27 is input at logic 1 to the 7410 three-input NAND gate if serv-
ice is not needed, and as logic 0 if service is needed. The normal logic
state of the output from the 7410 gate is logic 0; a positive clock pulse
at this output is required to interrupt most 8080-based microcomputers.
In the program, which is given below, the priority is set so that the tape
cassette has the highest priority (high-speed device), the keyboard is
next in priority (low-speed device), and the one-hour clock is last in
priority (unbelievably slow device). The software is as follows:

LO Octal
Memory Instruc-
Address tion Mnemonic Comments

050 333 IN Input status bits of three flags

051 057 057 Device code for 8212 input port

052 057 CMA Complement the status bits (1 > 0 and 0~ 1)

053 346 ANI Mask out all bits except bits DO, D1, and D2

054 007 007 Mask byte

055 037 RAR Rotate accumulator contents right through carry
(bit DO is rotated into the carry bit)

056 332 JC If carry bit is logic 1, jump to the cassette
service routine located at HI = 003 and
LO = 100

057 100 L0 address byte of cassette service routine

060 003 HI address byte of cassette service routine

061 037 RAR Rotate accumulator contents right once again
(bit D1 is now rotated into the carry bit)

062 332 JjC If carry bit is logic 1, jump to the keyboard
service routine located at HI = 003 and
LO = 200

063 200 LO address byte of keyboard service routine

064 003 HI address byte of keyboard service routine

065 037 RAR Rotate accumulator contents right (bit D2 is
now rotated into the carry bit)

066 332 JC If carry bit is logic 1, jump to the one-hour
clock service routine located at HI = 003
and LO = 300

087 300 LO address byte of one-hour clock service rou-
tine

070 003 HI address byte of one-hour clock service rou-
tine

071 166 HLT If you got to this point, something is wrong.

The microcomputer is halted; find out what
the problem is.

Note the use of the CMA instruction at LO = 052. Normally, the flag
would be at logic 1 if service is needed and logic 0 if service is not

337

needed. In the example in Fig. 8-26 the situation is just the opposite.
The use of the CMA instruction illustrates how easy it is to invert eight
bits of accumulator data.

The ANI instruction at LO = 053 masks out bits D3 through D7 as
an illustration of how a masking operation can be used. However, since
RAR instructions are used, and since we keep track of how many times
we rotate the accumulator contents, the ANI instruction is not really
needed here. Other bit-testing methods could be implemented in soft-
ware. These service routines are very similar to those used with regular
vector service routines, as shown in Fig. 8-25. Such routines generally
end with an enable interrupt instruction, EI, and a return instruction,
RET. Even when polling is used, we still must return to the main
program that was interrupted.

The above polling routine runs through vector addresses LO = 060
and LO =070. This is not an error; there exist no other interrupts
which use these vector addresses.

Other variations in the polling program are possible. Since the inter-
rupt flags are input into the accumulator, we may wish to save the
contents of the accumulator and flags at the time that MAIN TASK
was interrupted. To do so, we would provide a PUSH PSW instruction
at LLO = 050. Each service subroutine would require a POP PSW in-
struction immediately before the EI instruction. Other PUSH and POP
instructions would be required to save the register contents. Finally, it
is quite likely that the first instruction in each service routine would
clear the flag associated with the subroutine, Thus, as shown in Fig.
8-27, an OUT 011 pulse would clear the cassette flag, an OUT 012
would clear the keyboard flag, and an OUT 013 would clear the one-
hour clock flag.

The authors have found the above polling program to be very useful
in their own work. Other polling software schemes will work equally
well, but the one given above is simple and effective.

The one-hour clock raises an important question: Why would you
build an external one-hour hardware clock when you already have soft-
ware to do the same thing in under 50 instruction bytes? The answer
to this question depends on how you use your computer. If your com-
puter can sit and do the one-hour software and nothing else, or if you
are using interrupts and can tolerate a small amount of error in the
hour time-delay subroutine (owing to the time that the microcomputer
spends with the interrupts), then use software. If you need to know
the exact time, use hardware. Remember, when you use interrupts and
interrupt service routines, you are essentially interjecting additional
software into the MAIN TASK program flow. This additional software
takes time. You must not only check the interrupting device, but you
must also service it. If you interrupt a one-hour software time delay
routine four times with a two-minute device service routine, the execu-

338

tion of the time delay routine will take one hour and eight minutes
rather than one hour. The one-hour software routine operations are
suspended when there is an interrupt that requires some other task to
be performed. The one-hour external clock can be called a real-time
clock, since it keeps real time, as opposed to microcomputer software
time.

HARDWARE PRIORITY INTERRUPTS

Interrupt priorities may also be generated using hardware. Hard-
ware priority interrupts are very important when a number of inter-
rupting devices are connected to a microcomputer and all require rela-
tively fast service. The “gimmick” employed is simple: Each interrupt-
ing device generates its own restart instruction, RST n, which, when
input into the 8080 microcomputer, causes an immediate vector to lo-
cation HI = 000 and LO = ONO, where N canbe 0,1, 2, 3,4,5,6,0r7.
In addition, priority is automatically assigned by the hardware, so that
device 7 has higher priority than device 6, which has higher priority
than device 5, etc. In other words, if > represents priority, then:

7>6>5>4>3>2>1>0

The circuit that you would use is shown in Fig. 8-28.

The 74148 eight-line-to-three-line priority-encoder integrated-circuit
chip is a sixteen-pin chip that has the pin configuration and truth table
shown in Fig. 8-29. Note that the data inputs and outputs are active
at the low logic level. The 74148 chip will accept up to eight logic 0
inputs from flags, such as those shown in Fig. 8-28 and will output
the binary code for the highest numbered input that is at logic 0. For

o To 80804
INT chip

+35Y 6ND
1r Highest 4
priority 3 o7
2 D6
Status signals — s
from interrupti :° p4 To 80808
P D3 dsta bus
devices 24 b2
i o
owest 1o oo

L
Lowen "o

gated driver

Fig. 8-28. Hard: priority i pt circuit that g eight diffs vector restart
instructions, RST n, that have priority 7 > 6 > 5>4>3>2>1>0.

339

outruTS TS SNBA 148, SNTA148

vee BT T e FUNCTION TABLE

wljsjuijnjinrliniiwls INPUTS OUTPUTS
‘L " l L l A L EL |0 1 2 3 &4 5 & 7|A2 A1 AD|GS €O
HIX X X X X X X X[H H H|H H
€ s 3 2 1 ° LIH H H H H H H HIH H HRIH L
. a0 LiX X X X X X X L|L L L]|L H
LIXx X X X X X L H|IL L H|L H
s 6 1 & a2 ar Llx x x x x L oW oHlL W L[H
T T T T T T LIX X X X L H H HiIL H H|L H
Li{X X X L H H H H[(H L L{L #H
l 1]l 2]} ‘l S[ieflr]]s L|x X L A H H HHIH L HlL W
a 6 7) AT iNT L|X L H H H H H H|H H L|L H
welrs cotburs L e H o HoH W W oH[n W]

74148

Fig. 8-29. Pin configuration and truth table for the 74148 eight-line-to-one-line priority
encoder chip.

example, if you have simultaneous interrupt requests from both device
5 and device 7, device 7 has the higher priority and the 74148 chip and
inverters will supply an octal 7 for the middle octal digit in the restart
instruction, 3N7. This vectors the program to location HI = 000 and
LO = 070. The RST 0 instruction is not often used since its only effect
is to reset the microcomputer and start the MAIN TASK program
again.

Fig, 8-28 has been simplified for clarity. The necessary flags and flag
clearing lines are not shown. Additional hardware refinements could
be added to the circuit to make it more efficient. These would include
an additional 7442 decoder to generate the flag clearing pulses with-
out using OUT instructions, and a mask register so that various devices
could be masked on or off via external hardware. The modified circuit
is shown in Fig. 8-30. It is a very sophisticated priority interrupt scheme
that provides great flexibility in the use of vectored interrupts in con-
junction with an 8080-based microcomputer.

You must first decide which devices will be allowed to interrupt the
microcomputer and which will not. You develop an 8-bit mask pattern
in which interrupting devices are assigned a logic 1 and noninterrupt-
ing devices are assigned a logic 0. These eight bits are output from the
accumulator to the two 7475 latches shown at the left in Fig. 8-30. An
OUT 030 instruction is used for this purpose. Bit position D7 corre-
sponds to interrupting device 7, which has the highest priority and can
generate a vector to the address HI = 000 and LO = 070. Those devices
that are masked will probably use a status register input to request
service, as shown previously in this chapter.

Interrupt requests from flags are gated with the or gates (one is
shown at the left of Fig. 8-30) tied to the 7475 mask register and non-
masked interrupt requests are passed to the 74100 8-bit latch. When-
ever the interrupt flag within the 8080 chip is enabled, INTE is high
and enables the 74100 chip. The actions of the 74148 priority encoder
and interrupt instruction port have been described previously. When

340

snq Diop

vogo8 oL

dys
vosoe oL

|onpIAIpYL

GNO AS +

Mo TN -0
oo oma

a
V]
5]
9]
i
T

il

=1

&

14

o

<]

E

aN9 AS+

og0 1no —4 |

= NI

wo oo

-

Z2tlT Ouw woom 4«
3
] -

[-]
o

>
©
+

snq

Dipp V0808 WOid

citcuit that generates individual flag
be masked on or off vi

ster so that da;i:n can

external hardware.

d priority
gi

of a

clear pulses and has a mask ref

8-30

Fi

the interrupt is received by the 8080 chip, it disables its internal inter-
rupt enable flip-flop and the INTE output returns to logic 0, latching
any interrupts present at the 74100 chip. The INTA signal not only
inputs the RST n instruction byte; it also pulses the 7442 decoder to
produce a clear pulse that clears the flip-flop associated with the vector
interrupt currently being serviced.

Many other interrupt schemes can be used, including those based
upon the Intel 8214 priority interrupt control unit. The Intel 8259 pro-
grammable interrupt controller can generate eight vectored priority in-
terrupts for an 8080 microprocessor chip and is cascadable for up to
64 vectored priority interrupts without additional circuitry. Although
interrupts permit fast response to external events or demands for serv-
ice, their use requires some degree of sophistication in both hardware
and software.

PRIORITY INTERRUPT SOFTWARE

As the final topic in this chapter, let us consider the software required
for a priority interrupt system. Assume that we have only two interrupt-
ing devices: high-priority device 7 and low-priority device 2. Each de-
vice generates its own restart instruction byte, which causes a vector
to either location LO =070 or LO = 020, respectively. Also assume
that the high-priority device interrupts the main program, called MAIN
TASK, on a regular basis and is quickly serviced via software. Device 2,
the low-priority device, is assumed to interrupt on an irregular sched-
ule. It requires considerable time to service. For example, device 2
could be another microcomputer that is dumping blocks of data into
our microcomputer.

The most important software is the MAIN TASK software that is
executed whenever the external devices are not being serviced. If the
software were not important, it would not be the “main task” performed
by our microcomputer. Early in MAIN TASK, we locate the stack
pointer with an LXI SP intruction and also enable the interrupt flip-
flop using an EI instruction.

Since the interrupts can occur at any time, both PUSH and POP in-
structions are required in the interrupt service routines. Such instruc-
tions will save and restore any registers that are altered in the service
routines. The execution of the software can be graphically represented
by a time line, as shown in Fig. 8-31. Notice that the high-priority de-
vice has interrupted MAIN TASK four times, whereas the low-priority
device has only interrupted once. The high-priority device interrupts
on a regular basis, as shown by its spacing on the MAIN TASK time
line. The heavy line indicates when the interrupt is enabled.

Fig. 8-32 shows a more realistic time line. The time line in Fig. 8-31
is somewhat deceptive since only the time spent in MAIN TASK is

342

i sp
El

—| o7o

HIGH-
PRIORITY
DEVICE
SERVICE
ROUTINE

2 ->»=Z

mz -4

I 020

LOW-
PRIORITY
DEVICE
SERVICE
ROUTINE

xw>pd
x
7Y

% HIGH - PRIORITY DEVICE
A LOW - PRIORITY DEVICE

ol

Fig. 8-31. Program execution time line for MAIN TASK. Interrupts by the high- and fow-
priority devices are d d by the symbols * and A, respectively

shown. It is more correct to show the real time spent in both MAIN
TASK and in the subroutines, In Fig. 8-32 the MAIN TASK starts oper-
ating and is interrupted by the high-priority device. After executing the
high-priority device service subroutine, control is returned to MAIN
TASK, which is interrupted by the low-priority device later on the time
line. Control is eventually returned to MAIN TASK, which is then in-
terrupted at repeated intervals by the high-priority device. Clearly, it
takes considerably longer to reach the end of MAIN TASK when it is
repeatedly interrupted by other devices, each requiring service. During
a critical timing period, such interruptions would be disastrous if we
are relying on programmed time-delay loops to generate the time delay.

We have assumed that the high-priority device interrupts on a regu-
lar basis. It probably tried to interrupt the execution of the low-priority

343

* A * * *
[MAIN Inlsnl MAIN] Low | MAIN lnlanr MAIN |mﬁul MAIN [nmn|_

o
®

TIME ————
Fig. 8-32. Program execution time line for MAIN TASK and both the low- and high-priority
device service subroutines.

service subroutine shown in Fig. 8-32. If high had a higher priority than
low, why didn’t an interrupt occur? The answer is that the interrupt
flag within the 8080 chip was not enabled during the execution of the
low-priority device service subroutine. In our first attempt at writing
the interrupt service software, we forgot to take this possibility into
account. As a result, data or signals from the high-priority device were
lost during the low-priority device service software. We can correct
our software easily by placing the enable interrupt instruction, EI, at
the beginning of the low-priority device service subroutine. We can
also design hardware to store data or signals that occur during a missed
interrupt.

By moving the enable interrupt instruction, EI, to the beginning of
the low-priority device service subroutine, we may encounter a new
problem: a chopped-up low-priority device software flow, as shown in
Fig. 8-33. To emphasize the point, we have assumed that the high-
priority device interrupts the low-priority device service software twice,
chopping the low-priority software into three pieces. With the low-
priority device software so split up, we must inquire whether we are
able to complete the low-priority software before the low-priority de-
vice generates a new interrupt. It is entirely possible for the low-priority
device to interrupt the microcomputer while it is still trying to service
the last interrupt request from the low-priority device. While the in-
terrupt response is fast, the actual execution time may be much slower
than the time required for a single pass through the interrupt service
software. This is a consequence of the fact that we can interrupt our
interrupts. Such considerations should give you a good idea of the care
needed when using priority interrupts. It is very easy for a micro-
computer to become interrupt bound, ie., it spends all of its time
checking and servicing interrupts and has no time left for its MAIN
TASK software.

In our MAIN TASK software, we may wish to prevent interrupts
from occurring during sensitive time-delay software or complex time-
dependent tasks or calculations. The disable interrupt instruction, DI,
allows the microcomputer to be immune to external interrupts. Such a

* A * r-y * A
[man Joon] wam ||.ow|men| Low lmq»ﬂi] MAIN

T
o

TIME ———————

Fig. 8-33. Prog ion time line that d the i pting of an i p
service routine. The “low” interrupt software is interrupted twice by the “high’
priority device.

344

Jza—:l Z2—-p>p=Z

ol M «——— Interrupt DISABLED

Z—>

Critical
Task %k < This interrupt is missed

Xnp -

El «—— Interrupt ENABLED

Fig. 8-34. Program execution time line that demonstrates the use of DI and El instructions to
permit a critical task to be performed in MAIN TASK. In this case, however, an interrupt is
missed or delayed while the critical task is being executed.

situation is shown in Fig. 8-34. The interrupt flip-flop is disabled to
permit a critical task to be performed, and then re-enabled. Unfortu-
nately, the time line for the execution of MAIN TASK shows that an
interrupt from the high-priority device was missed. Without additional,
and usually complex, hardware as a back up, it is very easy to loose
signals or data from interrupting devices while the interrupt flag is
disabled. The important point here is that we do not know when an
external device will interrupt MAIN TASK, and we cannot be sure that
it will not do so during the period that the interrupt flip-flop is disabled.
How do we circumvent this problem? It isn’t easy, and this is why we
must use a great deal of caution when using interrupts.

Another type of interrupt which may be of interest is a time-oriented
interrupt. Only one interrupt is used: a clock. The clock interrupts
every 10 milliseconds, or other reasonable period. When interrupted,
the microcomputer uses a look-up table to determine which devices to

345

check to see if they need service. Some devices are always checked,
while other slower devices might be checked once every one thousand
times. This is a useful technique, but it requires considerable amounts
of software to work well.

The newer 8080-type microprocessor chips permit multibyte in-
structions to be input during an interrupt, so that a complete three-
instruction-byte call or jump could be inserted. The ability to “jam”
a three-byte instruction eliminates the need to use the restart instruc-
tions and associated vector locations, and provide you with much
greater flexibility in the use of hardware and software. It appears that
the Intel 8259 programmable interrupt controller will allow you to
perform direct calls to interrupt service subroutines, but it is a com-
plex device, not for the beginner.

We shall finish this chapter with some final notes of caution. Inter-
rupts are difficult to debug. Since interrupts can occur at almost any
time, typical software debugging programs are difficult to apply; most
are ineffective. Special diagnostic software is required to test interrupts
in specific applications. If you can avoid the use of interrupts, do so.
Spend your valuable time on other noninterrupt approaches, if pos-
sible. Your efforts will usually be well rewarded.

TEST

This test probes your understanding of the interrupt techniques dis-
cussed in this chapter. Please write your answers on a separate piece
of paper.

8-1. Describe how the following sequence of stack instructions are loaded on
the stack: PUSH D, PUSH B, PUSH PSW, PUSH H.
8-2. Draw a simple circuit for an external flag and explain all of the inputs
and outputs.
8-3. A small routine requires four instruction bytes and is used ten times in
an 8080 microcomputer program. Explain how you would decide
whether or not the routine should be made into a subroutine, complete
with a return instruction.
Describe the different types of subroutine instructions in the 8080 micro-
processor instruction set.
Describe the different types of stack instructions in the 8080 microproc-
essor instruction set.
8-6. Explain the differences between the following types of interrupts:
deferred
vectored
single-line
immediate
multilevel
polled

84

85

Your performance on this test will be acceptable if you can answer all
of the above questions correctly in a 90-minute closed-book exami-
nation.

WHAT HAVE YOU ACCOMPLISHED IN THIS CHAPTER?

It was stated at the beginning of this chapter that at the end you
would be able to do the following:

® Define the terms: subroutine, SSI, MSI, LSI, allocate, stack, in-
terrupt, polling, software driver, vectored interrupt, disabled inter-
rupt, external flag, deferred interrupt, and sense register.
Definitions for these terms have been provided in the chapter in sev-
eral locations.

® Explain how you would mask an 8-bit word to obtain the logic
state of bit 5.
As an example, we provided a simple program in which bit 3 in an
8-bit word was masked. You should be able to apply similar tech-
niques to bit 5.

@ Explain how digital information is loaded and removed from the
8080 microcomputer stack.

We did this in conjunction with Fig. 8-3, which is a very interesting
diagram of a typical stack.

® Perform an approximate calculation that will tell you when to use
a subroutine.
See Fig. 8-6 and the associated discussion.

® Describe how you would interface an ASCII keyboard.
This subject is discussed in considerable detail near the end of the
chapter.

347

APPENDIX 1

References

The references that are cited by superscripts in this book are as
follows:

1. Charles L. Garfinkel, of Keithley Instruments, Inc., is the originator
of this definition.
9. Donald Eadie, Introduction to the Basic Computer, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1973.
3. Texas Instruments, Inc., Microprocessor Handbook, Dallas, Texas,
1975.
4. Rudolf F. Graf, Modern Dictionary of Electronics, Howard W.
Sams & Company, Inc., Indianapolis, 1977.
5. Microdata Corp., Microprogramming Handbook, Santa Ana, Cali-
fornia, 1971.
6. Abraham Marcus and John D. Lenk, Computers for Technicians,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.
7. Intel Corp., Intel 8080 Assembly Language Programming Manual,
Santa Clara, California, 1974.
8. Intel Corp., Intel Intellec 8/ Mod 80 Microcomputer Development
System Reference Manual, Santa Clara, California, 1975.
9. Intel Corp., Intel 8080 Microcomputer Systems User's Manual,
Santa Clara, California, July, 1975.
10. J. Blukis and M. Baker, Practical Digital Electronics, Hewlett-
Packard Company, Santa Clara, California, 1974.
11. An Introduction to Microcomputers, Adam Osborne and Associates,
Inc., Berkeley, California, 1975.
19. The Intel literature is available from Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051 [telephone: (408) 246-7051],
or from their dealers, representatives, and distributors.

349

13. The cards can be obtained from Tychon, Inc., P. O. Box 242, Blacks-
burg, Virginia 24060.

14. Charles]. Sippl and David A. Kidd, Microcomputer Dictionary and
Guide, Matrix Publishers, Inc., Champaign, Illinois, 1976.

APPENDIX 2

The 8080A
Instruction Set

This appendix summarizes all of the important characteristics of
each instruction in the 8080A instruction set: the number of machine
cycles, the number of states, the type of memory addressing, and the
flags that are influenced upon execution of the instruction. A description
of each instruction is provided and, in some cases, examples of its use
are given.

MICROCOMPUTER PROGRAMMING

Unless you have a background in computer science Or possess a
special knack for computer programming, you will probably find ma-
chine level and assembly level programming somewhat tedious and
difficult initially. There does not appear to be any shortcut to learning
programming. In due time you will become sufficiently familiar with
your instruction set and with programming tricks to be able to write
programs of modest size with little effort. You will be able to apply
skills that you learn with one instruction set to other instruction sets,
whether they are for microcomputers, minicomputers, or even main-
frame computers.

If you are interested in high-level languages, you do not have long
to wait. In addition to the MITS BASIC package, a BASIC 8080 soft-
ware package from the Livermore Laboratory and an 8080 FORTRAN
compiler (Control Logic, Inc.) are available. The Livermore software
is available through the Intel User’s Group, “Insite.”

The point to note, however, is that you probably will need to learn
some assembly language programming. Simple programs and sub-

351

routines can be written as easily and quickly in assembly language as
they can in a higher-level language; such programs are also executed
more quickly, require less memory, and are probably easier to under-
stand. You will need to learn assembly language programming in order
to understand other assembly programs that receive widespread dis-
tribution. Finally, a knowledge of assembly language programming
provides the basis for understanding and comparing instruction sets.
If you have someone else do your programming, it will be expensive;
if you do it yourself, it will also be expensive. However, if you can
adapt other programs to your applications, your programming costs

will be less.

SOURCES OF 8080 PROGRAMMING INFORMATION

Here is a list of some sources for 8080/8080A programming informa-
tion that the authors have found useful:

1. Intel Corporation, Intel 8080 Microcomputer Systems User’s Manual,
Intel Corporation, 3605 Bowers Avenue, Santa Clara, California
95051, $10.

Chapter 4 provides a summary of the 8080/8080A instruction set. For
each type of instruction, the number of machine cycles required to
execute the instruction are listed. If the instruction has two possible
execution times, both times are listed. Significant data addressing
modes are listed, as are the flags that are affected by the execution of
the instruction. Other chapters discuss the functions of a computer,
the 8080 CPU, techniques of interfacing to the 8080, and the 8080
family of hardware components. If you are doing serious work with
8080 microcomputers, you should have this manual.

2. Intel Corporation, Intel 8080 Assembly Language Programming
Manual, Intel Corporation, 3605 Bowers Avenue, Santa Clara, Cali-
fornia 95051.

An excellent manual that discusses such topics as the program
counter, stack pointer, computer program representation in memory,
memory addressing, condition bits, assembly language, and the entire
8080 instruction set. Also discussed is the use of macros, or macroin-
structions, which are extremely important in assembly language pro-
gramming. This manual is the one that you will need if you do pro-
gramming with the 8080 Intel cross-assembler, or if you read
programs that are cross-assembled using the Intel software package.
Many of the programs in the Intel library can be understood with the
aid of this manual.

3. NEC Microcomputers, Inc., The uCOM-8 Software Manual, NEC
Microcomputers, Inc., 5 Militia Drive, Lexington, Massachusetts
02173, $10.

352

A superb manual that provides the following sample programming
problems:
A simple sensing device
A gated counter
A programmed real-time motor controller
An N-way program branch
An interrupt subroutine program
A 10-Hz Teletype 1/O subroutine
A 16-digit bed add or subtract subroutine
A data-move operation in memory
@ Macroprogramming and conditional assembly

Excellent descriptions are provided for individual 8080 instructions.
Flowcharts are provided for each programming problem.

For the student who has some experience with 8080 assembly lan-
guage programming, this manual will demonstrate a number of very
useful programming techniques.

4. Intel Corporation, Intel 8-bit User’s Program Library, Intel Corpora-
tion, User’s Library, Microcomputer Systems, 3065 Bowers Avenue,
Santa Clara, California 95051, Membership is available on a 12-
month basis to those contributing an acceptable program to the
applicable library or by paying a $100 membership fee.

Programs submitted to the User’s Library must be accompanied by
the Microcomputer User’s Library Submittal Form. Full-size copies
may be ordered from the Software Marketing Group at Intel. This
form is used by the User’s Library Manager in preparing the catalog
and updates, and the description of the “Function” is used in prepara-
tion of the catalog index which is sent to prospective subscribers. This
form is also used as the prefix to each program contained in the
library, and therefore should be carefully prepared. On the back of
the Library Submittal Form are detailed instructions for program sub-
mittal which should be closely adhered to. These documentation
standards are maintained to ensure the usability of each library pro-
gram by every interested member.

Read carefully items 2, 3, and 4 in the instructions for program
submittal to the User’s Library. The program cannot be a duplication
of a program that already is in the library. The program should be
error-free and must be in standard Intel language (4004, 4040, 8008,
8080, or PL,/M). Submit a typed source listing and a paper tape.

The original User’s Library package had an update on December 8,
1975, a second update in September, 1976, followed by updates
every two months. As of September, 1976, there were 200 programs
in the library. It is the most extensive library of programs for any
microcomputer. Source tapes are available for a small handling fee.
The Administrator of the User’s Library is Ms. Marianne Vilas. The
User’s library saves time in the development of 8080 programs. All
of the programs can be modified or tailored to meet specific applica-
tions. During 1975, the Intel Corporation sponsored a 22-week
User’s Library Contest which substantially expanded the User’s

353

354

Library. Some of the programs that you will find in the library in-

clude the following,

Data Array Move (8080). A contiguous array of data may be re-
located in memory, regardless of the magnitude and direction of
the move. The source and destination array locations may overlap.
The maximum array size is 216 bytes.

PAPER-TAPE LABELER (8080). Accepts ASCII character from tele-
type keyboard and punches corresponding alphanumeric character
on tape.

TexT STORAGE PrOGRAM (8080). Allows text to be stored in memory
using a letter of the alphabet as a pointer. After the message is
stored, it can be retrieved by depressing a single key on the tele-
type. Up to 32 messages may be stored and retrieved indepen-
dently.

Crock SuBrouTINE (8080). Maintains a current time of day, decimal
adjusted in bed, of hours, minutes, and seconds. Must be invoked
by external hardware once each 1.00000 second, usually by an ex-
ternal interrupt. Time is stored in three bytes of memory, in the
24-hour system, or, optionally, in the 12-hour system.

TmmMesHARING CoMMUNICATIONS (8080). To communicate with a
medium- to large-scale computer system as an external timesharer
user.

IBM SerLEcTrRic OuTtPur ProGRaM (8080). Allows IBM Selectric
Model 731 to be used as an output device.

8080 IpLE ANALYZER FOR APPROXIMATING CPU UTiLIzATION (8080).
Displays amount of time 8080 would have spent in an idle loop.
When RUN time is compared with idle time, the percent of CPU
utilization can be calculated, Time display is in memory in ASCH.

INTERRUPT SERVICE RouTINE (8080). Handles multiple-level inter-
rupts, saving all registers and flags and outputing the status of the
current interrupt to an external status latch.

8080 Dis-AsseMBLER (8080 PL/M). This program inputs a hexa-
decimal tape and generates a symbolic assembly language program
suitable for modifications and/or assembling,

Memory DiacNosTIC PROGRAM (8080). Writes test bytes in any
range of memory and compares the written bit combination with
what is read. Upon detection of a defective memory location, an
error message is printed specifying the address, reference, and
actual values.

Matr (8080). Routines for fixed- and floating-point arithmetic to-
gether with a demonstration program that performs algebraic eval-
uation (from left to right with no operator precedence) and allows
unlimited parentheses nesting.

ELEMENTARY FUNCTION PackaGe (8080). Calculates the following
floating-point values with five-decimal-digit precision: square root,
logarithm, exponential function, sine, cosine, arc tangent, hyper-
bolic sine, and hyperbolic cosine. Adds, subtracts, multiplies, and

divides with seven-decimal-digit floating-point precision. (NoTE:
The authors have used this program and like it very much. The
entire program requires approximately 2500 bytes of memory.)

8080 FroaTmg-PoINT PackacE WrtH BCD ConversioN ROUTINE
(8080). Performs floating-point addition, subtraction, multiplica-
tion, division, fixing, floating, negation, and conversion from float-
ing point bed with exponent.

8080 LEasT-SQUARES QUADRATIC FITTING ROUTINE (8080). Performs
summations and matrix manipulation for fitting up to 256 floating-
point X, Y pairs to a function of the form: aX2+bX+c=Y.

N-ByTE BiNaRY MULTIPLICATION AND LEADING ZeEro BLANKING
(8080). The program performs binary multiplication on two num-
bers and returns a result that may be up to 255 bytes in length.

8080 Cross-CoMmpILER oN THE PDP-11 (8080). Accepts input in a
format familiar to PDP-11 users and produces 2 fully coded listing,
symbol table, and punched tape for use with the standard loader.

Pack Listine Procram (8080). Provides facility for listing informa-
tion in a paginated, numbered format. This is accomplished
through the system software with the console printer.

SourcE PaPER TAPE To MAGNETIC CASSETTE (8080). Will copy a
source paper tape onto a magnetic cassette. End statement must be
followed by a carriage return. Program will ignore leading blanks.

NarturarL LocarrraM (8080), Computes the natural logarithm of
numbers between 1 and 65,535.

BCD MurtipLicaTION (8080). Multiplies up to a six-digit BCD
number by a four-digit bed number providing a ten-digit bed re-
sult. All numbers are unsigned.

DousLe-Precision MuLtipLE (8080 PL/M). Multiplies two 16-bit
numbers, returning the most significant sixteen bits (in address
form) through the appropriate registers to the calling program. The
intrinsic PL,/M multiply capability is employed for the byte-by-byte
multiplications.

SusrouTINE Log. This subroutine takes the log to any integer base of
any positive floating-point number.

5. Scelbi Computer Consulting, Inc., 1322 Rear Post Road, Milford,
Connecticut 06460.

The following software is available:

Machine Language Programming for the 8008 (and similar microcom-
puters), $19.95

An 8080 Assembler Program, $17.95

An 8080 Editor Program, $14.95

8080 Monitor Routines, $11.95

SCELBAL. SCientific ELementary BAsic Language for 8008/8080
Systems, $49.00

SCELBI'’s First Book of Computer Games for the 8008/8080, $14.95

SCELBI’'s GALAXY GAME for the 8008/8080, $14.95

355

Nat Wadsworth writes well. You can pick up many microcomputer
programming techniques from the above. Unfortunately, tapes are
not available.

6. Zilog Corporation, Z80-CPU Technical Manual, Zilog, Inc., 170 State
Street, Los Altos, California 94022, $7.50.
You do not obtain many programming hints from this manual, but it
is very interesting to compare the Z80 chip with the 8080A in terms
of the instruction set.

7. Byte, Byte Publications, Inc., 70 Main Street, Peterborough, New
Hampshire 03458, $12 per year, $22 per two years, or $30 per three
years.

The individual articles vary in quality but you will find useful pro-
grams and programming techniques discussed in this journal, which is
one of the magazines that is aimed at the hobby microcomputer
market.

o

National Semiconductor Corp., PACE Logic Designer's Guide to
Programmed Equivalents to TTL Functions, National Semiconduc-
tor Corporation, 2900 Semiconductor Drive, Santa Clara, California
95051, $5.00.
Although it is for an entirely different microprocessor, the 16-bit
PACE, this book does an excellent job of demonstrating the substitu-
tion of software for hardware. Hardware circuits are provided and
described. Programs are then provided that duplicate the basic func-
tions of the hardware. With some knowledge of the PACE instruction
set, you should be able to convert the programs to Intel 8080 lan-
guage. The advantages of 16-bit operations are certainly evident.

9. Kilobaud, Kilobaud, Peterborough, New Hampshire 03458, $15 per
year, $36 for three years, $155 for life subscription.
In the same category as Byte, i.e., the magazine is directed toward
the hobby market. A useful magazine.

10. Adam Osborne and Associates, Inc., P. O. Box 2036, Berkeley, Cali-
fornia 94702.
The following books are available for 8080 users:
An Introduction to Microcomputers. Volume 1. Basic Concepts, $7.50
An Introduction to Microcomputers. Volume II. Some Real Prod-
ucts,, $12.50

8080 Programming for Logic Design, $7.50
All of these books belong in the library of any serious user of 8080
systems. In some cases, they provide information that is not avail-
able anywhere else.

11. W. J. Weller, A. V. Shatzel, and H. Y. Nice, Practical Microcom-
puter Programming. The Intel 8080, Northern Technology Books,
P. O. Box 62, Evanston, Illinois 60204, $21.95.

We found this book to be quite useful in the development of pro-
gramming skills, including small assembly language algorithms.

8080 INSTRUCTION SET SUMMARIES

Machine code and assembly language summaries of the 8080 instruc-
tion set are available from a number of different sources:

1. Intel Corporation, Intel 8080 Assembly Language Reference Card,
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California
95051.

Provides a hexadecimal listing of the 8080 instruction set as well as a
listing by instruction function. Hexadecimal-ASCII listing is also
provided.

2. Tychon, Inc., 8080 Octal/ Hexadecimal Code Cards, Tychon, Inc.,
P. O. Box 242, Blacksburg, Virginia 24060.
A sliding insert permits you to rapidly find the 8-bit octal or hexa-
decimal instruction code for an assembly language instruction. Flag
status after an instruction is also indicated.

3. Martin Research, 8080 Instruction Set, 3336 Commercial Ave., North-
Brook, Illinois 60062.
Subdivides the 8080 instruction set by function. Compact statement
of flag status after different types of instructions are executed.

4. R. Baker, Byte, p. 84 (February 1976).
Compact octal code listing of the 8080 instruction set.

5. P. R. Rony, D. G. Larsen, and J. A. Titus, The 8080A Bugbook: Mi-
crocomputer Interfacing and Programming, Howard W. Sams & Co.,
Inc., 4300 West 62nd St., Indianapolis, Indiana 46268.

The 8080 instruction set is given as an instruction group listing, an
alphabetic listing of mnemonics, and an octal/hexadecimal numerical
listing. The octal/hexadecimal listing provides a handy conversion
table for octal to hexadecimal, and vice versa.

DESCRIPTION OF INDIVIDUAL 8080 INSTRUCTIONS

We now shall proceed to describe the 8080 instruction set in detail.
We shall use material from both the Intel 8080 M icrocomputer Systems
User's Manual and the pCOM-8 Software Manual, courtesy of Intel
Corporation and NEC Microcomputers, Inc., respectively. For your use,
several pages are provided from the Intel manual to help you under-
stand the significance of the terms, symbols, and abbreviations used in
the description of each instruction. Intel groups the 8080 instructions as:

® Dara TransFer Group: Move data between registers or between
memory and registers

357

® ArrTHMETIC GrouP: Add, subtract, increment, or decrement data

in registers or in memory

® LocicaL GROUPS: AND, OR, exclusive-OR, compare, rotate, or com-
plement data in registers in memory.

® Brancu Group: Conditional and unconditional jump instructions,
subroutine call instructions, and return instructions.

® Stack, I/O, aNp MacHINE CoNTROL GROUP: Includes I/O instruc-
tions, as well as instructions for maintaining the stack and internal

control flags.

INSTRUCTION SET

A computer, no matter how sophisticated, can only
do what it is “told” to do. One “tells” the computer what
10 do via a series of coded instructions referred to as a Pro-
gram. The cealm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit {CPU) with the ability to per
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer’s Instruction Set

Each computer instruction aliows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions {e.g.,
increment a register) are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an |/O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero, Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can “tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form {i.e., a series
of 1's and 0's), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

are programs available which convert the programming lan-
guage instructions into machine code that can be inter-
preted by the processor.

One type of programming language is Asssmbly Lan-
guage. A unique assembly language mnemonic is +ssigned to
each of the computer's instructions. The programmer can
write a program {called the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions {called the Object
Code). Each assembly language instruction is converted into
one machine code instruction (1 or more bytes) by an
Assembler program. Assembly languages are usually ma-
chine dependent (i.e., they are usually able to run on only
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types
of instructions:

+ Data Transfer Group—move data between registers
o between memory and registers
Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory
Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

Branch Group - conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

Stack, 1/0 and Machine Control Group — includes
1/0 instructions, as well as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-
ties, called Bytes. Each byte has a unique 16.bit binary
address corresponding o its sequential position in memory.

The 8080 can directly address up to 65,536 bytes of mem-
ory, which may consist of both read-only memory (ROM)
elements and random-access memory (RAM) elements {read/
write memory).
Data in the BO8O is stored in the form of 8-bit binary
integers
DATA WORD

D; Dg Ds Da 04 Do
[53) s8

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number} is referred to as the Most Significant Bit
(mss).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
fiest byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

oy Do | Op Code

Two-Byte Instructions

Byte Two | D7 Do | Data or
Address

Three-Byte Instructions

Byte One | D7 Do | Op Code
Byte Two | D7 Dol) Data
.

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The B0BO has four different modes for
addressing data stored in memory or in registers:

® Direct —Bytes 2 and 3 of the instiuction contain

the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).
® Register — The instruction specifies the register or
register-pair in which the data is located.
© Register Indirect — The instruction specifies a reg-
ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

@ Immediate ~ The instruction contains the data it-
self. This is either an 8-bit quantity or &
16-bit quantity (feast significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations, A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

@ Direct —The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST" instructian,
byte 2 contains the fow-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-
cates a register-pair which contains the
address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.}

The RST instruction is a special one-byte call instruc-
tion (usually used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

Condition Flags:

There are five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is “set”” by forcing the
bit to 1; “reset”” by forcing the bit t0 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign. 1f the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

If the modulo 2 sum of the bits of the re-
sult of the operation is 0, {ie., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the resuft has
odd parity).

If the instruction resuited in a carry
{from addition), or a borrow (from sub-
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is
reset.

Parity:

Carry:

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and inta bit 4 of the resulting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:

The following symbols and abbreviations are used in
the subsequent description of the B0BO instructions
SYMBOLS MEANING

accumulator Register A

addr 16-bit address quantity
data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an 1/0 device
o2 One of the registers A,8,C,D,EH,L

DDD,SSS The bit pattern designating one of the regis
ters A,B,C.D.EH,L (DDD=destination, S3S=
source):

DDD or S8§ REGISTER NAME
1m A
000
oo1
010
on
100
101

» One of the register pairs

FImoow

B represents the B,C pair with B as the high-
order register and C as the low-order register;
D represents the D,E pair with D as the high-
order register and € as the low-order register;
H represents the H,L pair with H as the high
order register and L as the low-order register;

SP represents the 16.bit stack pointer.

RP The bit pattern designating one of the regis-
ter pairs B,D,H,SP:
RP REGISTER PAIR
00 BC
o1 DE
10 HL
" sp
th The first (high-order) register of a designated

register pair.

PC

sP

The second (low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low
order 8 bits respectively).

Bit m of the register r {bits are number 7
through 0 from left to right).

ZSPCY,AC The condition flags: Zero, Sign, Parity,

NNN

Carry, and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

“Is transferred 10"
Logical AND

Exclusive OR

Inclusive OR

Addition

Two's complement subtraction
Multiplication

“15 exchanged with”

. (AN
The restart number 0 through 7

The one's complement {e.

The binary representation 000 through 111

for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of

the instruction set of the 8080. Each instruction is de- "

scribed in the following manner:

1.

o

=)

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on left side of first line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

This is followed by a narative description of the
operation of the instruction.

The following line(s} contain the binary fields and
patterns that comprise the machine instruction.
The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and states required to exe-
cute the instruction are listed first, If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes are listed. The last line lists any of
the five Flags that are affected by the execution of
the instruction,

DATA TRANSFER GROUP

This group of instructions transfers data to and from registers and
memory. Condition flags are not affected by any instruction in this
group.”

MOV r1, r2

(Move Register)
(r1) = r2)
The content of register r2 is moved to register c1.

l0‘1]D|D‘D sTs's
Cycles: 1
States: 5
Addressing: register
Flags; none

The MOV rl, 12 instruction transfers data from the specified source
register S (or r2) to the specified destination register D (or rl). The
source or destination may be any of the single registers B, C, D, H, or
L, the accumulator A, and M (the contents of the memory address
specified by the register pair H, L). In the three-octal-digit byte, the
first digit is always a 1. The second and third octal digits vary depend-
ing upon the source and destination. The octal instruction, 166, is a
halt rather than a MOV instruction. The contents of the source register
are not changed during a MOV instruction; you are copying the reg-
ister contents to some other location.

MOV rM

{Move from memory)
() =— ((H) L)
The content of the memory location, whose address
is in registers H and L, is moved to register r.

r0'1|o’o[o T
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

The MOV 1,M instruction transfers data from M (the contents of the
memory address specified by the register pair H,L) to the specified
destination register r, which may be any of the single registers B, C,
D, H, or L, or the accumulator, A. You copy the contents of the memory
address into a register; the contents of memory remain unchanged.

*The following description of an 8080A instruction, and others like it in the follow-
ing pages, appears in the Intel 8080 Microcomputer Systems User’s Manual and is
reprinted in this text through the courtesy of the Intel Corporation, Santa Clara,
California 95051. All rights reserved.

361

MOV M,r

(Move to memary)
(H) (L)) =— ()
The content of register r is moved to the memory fo-
cation whose address is in registers H and L

ol 1T 1T 1 Toa]ssTs]

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

The MOV M;r instruction transfers data from the specified source
register r to M (the memory address specified by the register pair
H,L). The source register may be any of the single registers B, C, D,
E, H, or L, or the accumulator, A. The register contents are copied
in memory; the contents of the register remain unchanged.

MVI r,data

(Move Immediate)
(1) - (byte 2)
The content of byte 2 of the instruction is moved to
register 1.

ID|D|]||0|

P]

Cycles: 2
States: 7
Addressing: immediate
Flags: none

[eTo]0

The MVI r,data instruction transfers data from the second byte of the
two-byte instruction to the specified destination register r. The term
immediate refers to the fact that the data byte is contained within
the multibyte instruction. The specified destination register may be any
of the single registers B, C, D, E, H, or L, the accumulator, A, and M
(the contents of the memory address specified by the register pair
H,L). When the destination is M, you have the instruction MVI M,
data, which is discussed in the following paragraph. The data can be
any 8-bit binary number between 00000000 and 11111111.

v‘ M d.'. (Move to memoary immediate)
M ’ (H) (L) =— {byte 2)

The content of byte 2 of the instruction is moved to
the memary focation whose address is in registers H

and L.
[o'olilq'u’|'|'oJ
[data |
Cyctes: 3
States: 10

Addressing: immed./reg. indirect
Flags: none

362

The MVI M,data instruction transfers data from the second byte of
the instruction to M (the memory address specified by the register
pair H,L). The data can be any 8-bit binary number between 00000000
and 11111111.

LXI rp,data 16

(Load register pair immediate)
{rh} =— (byte 3),
{rl) =— (byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (rl) of
the register pair rp,

ol o] RT P 0 o0l ol 1

low-arder data

high-order data

Cycles: 3
States: 10
Addressing: immediate
Flags: nane

The LXI rp,data instruction causes a 16-bit quantity contained in the
second and third bytes of the instruction to be loaded into the register
pair specified by rp. Register pair rp can be any of the double registers
HL, DE, or BC or the stack pointer, which are represented by the
mnemonics H, D, B, and SP, respectively. The second instruction byte
is loaded into the LO registers L, E, G, or the LO eight bits of the stack
pointer; the third instruction byte is loaded into the HI registers H, D,
B, or the HI eight bits of the stack pointer. The 16-bit data word can
vary from 0000000000000000 to 1111111111111111, in binary notation.

Fig. A-1. The singlo-byte data transfer instructions MVI r and MOV rl, ¢2. Only two sets of
MOV rl, r2 instructions are shown.

363

. [
X!
.
&, [H l L I&-Iﬁovam Counter]
% l
SPHL

Fig. A-2. The two-byte data transfer instructions LXI rp, PCHL, SPHL, and XCHG. PCHL
causes a branch to the location initially contained in register pair H.

Figs. A-1 and A-2 illustrate some of the characteristics of the MOV,
MVI, and LXI instructions. Only two sets of MOV r1,12 instructions are
shown. Note that LXI rp,data is equivalent to two MVI r,data instruc-
tions. Thus:

LXI B
<B2>
<B3>

is equivalent to:

MVI B
<B2> (corresponds to <B3> in the LXI B instruction)
MVIC
<B2> (correspondsto <B2> in the LXI B instruction)

The second byte in a two-byte instruction is always referred to as
<B2>. A single LXI rp,data instruction requires ten states for its exe-
cution, whereas two MVI r,data instructions require a total of fourteen
states of execution time. Thus, by using the LXI rp,data instruction,
you save four states of execution time. In many cases, however, such
a saving is unimportant.
STA addr (Store Accumulator direct)

(ibyte byt 20) ~— (A)

The content of the accumulator is moved to the

memory location whose address is specified in byte
2 and byte 3 of the instruction.

T

DIOIII||0 Ullll)

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

The STA addr instruction permits you to store the contents of the ac-
cumulator directly into a memory location without the use of the regis-
ter pair H,L. The address of the memory location is specified in the
second and third bytes of the instruction. The LO address byte is byte
2 and the HI address byte is byte 3. The STA addr instruction is equiva-
lent to the two-instruction sequence:

LXIH
<B2>
<B3>
MOV M,A

LDA addr

(Load Accumulator direct)
(A) =— ((byte 3){byte 2))
The content of the memory focation, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

0 "o 1 171 o

low-order addr

T To

high-order addr

Cycles; 4
States: 13
Addressing: direct
Flags: none

The LDA addr instruction permits you to load the accumulator with
the contents of the memory location specified by bytes B2 and B3 in
the instruction. You need not use the H.L register pair. The LO address
byte is <B2> and the HI address byte is <B3>. The LDA addr instruc-
tion is equivalent to the two-instruction sequence:

LXIH
<B2>
<B3>
MOV AM

LHLD addr

(Load H and L direct)
(L) =— ({byte 3){byte 2}))
(H) =— ((byte 3)(byte 2} + 1)
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca-
tion at the succeeding address is moved to register H.

T T

00"'0"'010

tow-order addr

high-order addr

Cycles: 6
States: 16
Addressing: ~ direct
Flags: none

This instruction is useful when memory locations contain address in-
formation. Thus, LHLD addr causes the L register to be loaded with
the memory byte addressed by bytes B2 and B3 in the instruction, i.e.,
addr. The H register is loaded with the memory byte located at addr
+ 1. Thus, you perform a 16-bit transfer of a memory address to the
register pair H,L. Once you learn XCHG, you will observe that the
section of code:

LHLD
<B2>
<B3>
XCHG

is functionally equivalent to:

LXIH
<B2>
<B3>
MOV EM
INXH
MOV DM

The first section of code requires 20 states for execution; the second
section of code requires 29 states.

XCHG

{Exchange H and L with D and €}
H) = (D)
(L) =€)
The contents of registers H and L are exchanged with
the contents of registers D and €

T T

||‘IIDI||0|||I

Cycles: 1
States: 4
Addressing: register
Flags: none

The XCHG instruction causes the contents of the register pairs D,E and
H,L to be exchanged. To be specific, the contents of registers D and H
are exchanged, and the contents of registers E and L are exchanged.
This instruction permits you to use register pair H,L as a memory ad-
dress while another address is held in register pair D,E. You can modify
the contents of register pair D,E, without changing register pair H,L.
For example, register pair H,L. may specify a memory location that you
use to modify register pair D,E. Two XCHG instructions in sequence:

XCHG

XCHG

are equivalent to a no operation.

366

SHLD addr

{Store H and L direct)
(tbyte 3)(byte 2)) <— (L)
({byte 3)(byte 2) + 1) =— (H)
The content of register L is moved to the memory lo
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

T

o o071 Tolo o 1 "o

low-order addr

high-order addr

Cycles: &
States: 16
Addressing: direct
Flags: none

The SHLD addr instruction causes the contents of the L register to be
stored at the memory location given by bytes B2 and B3 in the instruc-
tion, i.e., addr. The contents of the H register are stored in the memory
location, addr + 1. In other words, you perform a 16-bit transfer of an
address byte in register pair H,L to two successive memory locations,
addr and addr + 1. This instruction is useful in creating a group of
memory locations that contain address information rather than data.
As for most 8080A instructions, byte B2 is the LO address byte and
byte B3 is the HI address byte of addr. The section of code:

XCHG
SHLD
<B2>
<B3>

is equivalent to the section of code:

LXIH
<B2>
<B3>
MOV M,E
INXH
MOV M,D

LDAX rp

{Load accumulator indirect)
(A} =— (o))
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp-B (registers B and C} or 1p=D
(registers D and E) may be specified

]’TIDIRIF|!0]|IUJ

Cycles: "2
States: 7
Addressing. reg. indirect
Flags: none

367

The LDAX rp instruction permits you to load the accumulator with the
contents of the memory location addressed by a register pair other than
register pair H,L. Thus, with LDAX B, you use register pair B,C to sup-
ply the 16-bit memory address; with LDAX D, you use register pair
D,E to supply the address. The section of code:

LXID
<B2>
<B3>
LDAXD

is functionally identical with:

LXIH
<B2>
<B3>
MOV AM

STAX rp

(Store accumulator indirect)
{rpl), =— (A)
The content of register A is moved to the memory lo-
cation whose address is in the register pair rp. Note:
only register pairs rp=B {registers B and C) or rp=0
(registers D and E) may be specified.

OIHIHIP oTol1To
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none

The STAX rp instruction permits you to store the contents of the ac-
cumulator in the memory location addressed by either register pair
B,D or register pair D,E. The section of code:

LXIB
<B2>
<B3>
STAXB

is identical with:
LXIH
<B2>

<B3>
MOV M,A

The significance of the STAX rp and LDAX rp instructions is that you
can have three independent 16-bit memory addresses stored in the

368

general-purpose registers inside the 8080A microprocessor chip. Enough
instructions are available to permit you to use all three addresses.

The condition flags are not affected by any of the instructions in the
following list:

MOV rl,x2
MOV rM
MOV Mr
MVIr, data
MVI M, data
LXI rp, data 16
STA addr
LDA addr
XCHG
LHLD addr
SHLD addr
LDAXrp
STAX rp

These instructions comprise the data transfer group in the 8080A micro-
Processor.

ARITHMETIC GROUP

This group of instructions performs arithmetic operations on data in
registers and memory. Unless indicated otherwise, all instructions in
this group affect the zero, sign, parity, carry, and auxiliary carry flags
according to standard rules. All subtraction operations are performed
via two’s complement arithmetic and set the carry flag to one to indicate
a borrow and clear it to indicate no borrow.

ADDr

{Add Register)
(A) =— (AV+ ().
The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

To Vo s!s! LI
Cycles: 1

States: 4

Addressing: register

Flags: 2.8P.CY.AC

1T ol o

The ADD r instruction causes the contents of the source register S to
be added to the contents of the accumulator. The source register can
be any of the general-purpose registers B, C, D, E, H, L, the accumu-
lator A, or M (the contents of memory as addressed by register pair
HL). The ADD M instruction is described below. The instruction

369

affects all four of the testable flag bits: carry, parity, zero, and sign. The
auxiliary carry flag is also affected.

ADD M

(Add memory)
(A) =— (A} + ({H) (L))
The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

[T ToToTaThTiTo)

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 25P.CYAC

The ADD M instruction causes the contents of the memory location
M, which is addressed by register pair H,L, to be added to the con-
tents of the accumulator. The memory contents remain unchanged
after the addition. The instruction affects all five flags and requires two
machine cycles.

ADI data

{Add immediate)
(A) =— (A) + (byte 2)
The content of the second byte of the instruction is.
added to the content of the accumulator. The result
is placed in the accumulator,

L|’|‘o'o[o'1’|'u]
L

data |
Cycles: 2
States: 7

Addressing: immediate
Flags: ZSP.CYAC

The ADI data instruction causes the data present in the second byte
of the instruction to be added to the contents of the accumulator. The
instruction affects all five flags.

ADC r and ADC M

(Add Register with carry)
{A) =— (A)+(n) +(CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator,

[ToToeToTi[sTsTs

Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CY.AC

370

(Add memory with carry)
(A) =— (A) +{{H) (L)) + (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The result
is placed in the accumulator.

r||o]olo|||||||u

Cycles: 2
States: 7
Addressing: reg. indirect
Fiags: ZSP.CY.AC

To quote the uCOM-8 Software Manual: “In order to perform add and
subtract operations, some special arithmetic instructions are required.
Multiple-digit arithmetic requires that two items be monitored and
saved somewhere. These two items are the sum of the digits as they are
added, and the presence or absence of a carry bit. When a carry bit
is produced, it must be added to the sum of the next digits. Similarly,
with subtract operations, the existence of a borrow must be detected so
it can be deducted from the difference of the next digits. The Add with
Carry and Subtract with Borrow instructions provide simple monitoring
and saving of carry bits, making multidigit addition and subtraction
quite straightforward. ADC r, ADC M, and ACI data are the Add with
Carry instructions. ADC r causes the contents of the source S to be
added to the sum of the accumulator contents and the carry bit.”

The ADC r and ADC M instructions are similar to the ADD r and
ADD M instructions; the only difference is that the carry bit is added
to the least-significant bit in the 8-bit accumulator byte. All flags are
affected by these instructions. Memory location M is addressed by the
contents of register pair H,L.

ACl data

(Add immediate with carry)
(A ~— (A] + {byte 2) + (CY}
The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the sccumulator. The result is placed in the
accumulator,

T Tolo 1 1110
data J

Cycles: 2
States: 7
Addressing: immediate
Flags: ZSPCY.AC

The ACI data instruction causes the 8-bit data quantity present in the
second byte of the instruction to be added to the sum of the accumu-
lator contents and the carry bit. The instruction affects all five flags.

371

SUB r and SUB M

{Subtract Register)
(A) =— [A) —(r)
The content of register r is subtracted from the con-
tent of the accumulator. The result is placed in the

accumulator,

1 ToToT1To s 's 's
Cycles: 1
States: 4

Addressing: ~ register
Flags: ZS,P.CY.AC

(Subtract memory)
{A) =— (A} - ({H) (L))

The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator.

1'0’0’1'0[1'1101

Cycles: 2

States: 7
Addressing: reg. indirect
Flags: ZS.P.CYAC

The SUB r instruction causes the contents of the source register S to be
subtracted from the accumulator. The source register can be any of the
general-purpose registers B, C, D, E, H, and L, the accumulator, A, or
M (the contents of memory as addressed by register pair H,L). All
five flags are affected by the execution of this instruction. If you wish
to clear the accumulator, the single instruction:

SUB A
which has an instruction code of 227, will do it.
SUI data

(Subtract immediate)
(A) =— (A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

L1'|’o'1’u'|'|'0|
[data |

Cycles: 2
States: 7
Addressing: immediate
Flags: 2,5,P,CY,AC

The SUI data instruction causes the 8-bit data quantity specified in the
second instruction byte to be subtracted from the accumulator. All five
flags are affected.

372

SBB r and SBB M

(Subtract Register with borrow}
(A} =— (A} = (1) —(CY}
. The content of register r and the content of the CY
fiag are both subtracted from the accumulator. The
result is placed in the accumulator.

|D|0]1||SIS

Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CYAC

(Subtract memory with borrow)
(A) =— (A) —{(H} (L)) — (CY}
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumuta-
tor. The resuit is placed in the accumulator.

ﬁ]0|0||(||||||ﬂ

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: ZSPCY.AC

The SBB r instruction causes the contents of the source S to be sub-
tracted from the difference of the accumulator contents and the borrow
bit. The source register can be any of the general-purpose registers B,
C, D, E, H, and L; the accumulator, A; or M, the contents of memory
addressed by register pair H,L. All five flags are affected by the SBB r

and SBB M instructions.

SBI data (Subtract immediate with borrow)
(A) =~— (A) — (byte 2} — (CY)
The contents of the second byte of the instruction
and the contents of the CY flag are both subtracted
from the accumulator. The result is placed in the
‘accumulator.

|||0;|]||1|
data

Cycles: 2

States: 7

Addressing: immediate
Flags: ZSP.CY.AC

The SBI data instruction causes the 8-bit data quantity specified in the
second instruction byte to be subtracted from the difference of the
accumulator contents and the borrow bit. All five flags are affected.

Some examples of the various addition and subtraction operations
would be appropriate. Consider the following program:

ADDB
ADDC

373

If the initial register contents are A = (00111110, B = 11100000, and
C = 00101111, and if the carry bit were initially zero, then the above
section of code would yield the following result in the accumulator:

Carry Bit
0 00111110 accumulator contents
+11100000 register B contents
1 00011110 sum stored in accumulator
+00101111 register C contents
0 01001101 sum’ stored in accumulator

Note carefully the behavior of the carry bit in this situation. If there is
no carry out of the most significant bit (MSB) in the accumulator, the
carry bit is cleared; if there is a carry out of the most significant bit
in the accumulator during the addition, the carry bit is set. When you
added B to the accumulator, you had a carry. When you added the
contents of C to the sum, there was no carry. The carry from previous
operations is not preserved, or “carried forward.”

Now let us contrast the preceding results with the behavior of the
following section of code:

ADCB
ADCC

Assume the same initial values for registers A, B, C, and the carry bit.
You would obtain the following results:

Carry Bit
0 00111110 accumulator contents
+11100000 register B contents
1 00011110 sum stored in accumulator

So far, there is no difference. However, when we add the contents of
register C to the above sum, we do observe a difference:

Carry Bit

00011110 sum stored in accumulator
+ 1 carry bit
+00101111 register C contents
0 01001110 sum’
Now consider the following section of code:
SUB B
SUBC

for the same initial values of registers A, B, C, and the carry bit. Note
that if you perform a borrow out of the MSB of the accumulator, the
carry bit is set; if no borrow occurs, the carry bit is cleared. Thus you
should observe the following:

374

Carry Bit

0 00111110 accumulator contents
—~11100000 register B contents
1 01011110 difference stored in accumulator
—00101111 register C contents
0 00101111 difference’ stored in accumulator
Now let us perform subtraction operations using the SBB r instructions:
SBB B
SBBC
We have the following results:
Carry Bit
0 00111110 accumulator contents
—11100000 register B contents
1 01011110 difference stored in accumulator

When we perform the SBB C operation, we subtract the contents of
register C from the difference between the borrow bit and the contents
of the accumulator:

01011110 difference stored in accumulator
- 1
—-00101111 register C contents
0 00101110 difference’ stored in accumulator

The ADC r and SBB r instructions are used whenever you perform
double- or triple-precision arithmetic operations. A double-precision
arithmetic operation is one which is performed on two 16-bit quantities
to yield a 16-bit result. A triple-precision operation is one which is per-
formed on two 24-bit quantities to yield a 24-bit result. The preceding
examples of addition and subtraction operations are provided courtesy
of NEC Microcomputers, Inc., from their uCOM-8 Software Manual.

DAA (Decimat Adjust Accumulator)

The 2ight-bit number in the accumulator is adjusted

10 form two four-bit Binary-Coded-Decimal digits by

the following process:

1. 1f the value of the lesst significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is s, 6 is added to the accumulator.

2. 1f the value of the most significent 4 bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: Al flags are affected.

ﬁlol1|nlol|l|lg

Cycles: 1
States: 4
Flags: ZSP.CYAC

375

To quote the uCOM-8 Software Manual: “In order to perform opera-
tions in binary coded decimal (bcd), one special instruction is needed.
When the 8080A CPU performs an arithmetic operation, it produces
the result in binary. When working in bed this does not produce the
correct result. To remedy this, a DAA instruction is used. DAA stands
for Decimal Adjust Accumulator, which is exactly what DAA does.
The DAA instruction treats the 8-bit Accumulator as two 4-bit Accumu-
lators. Through the use of a nontestable flag known as the Auxiliary
Carry, the DAA operation adjusts the result of a binary addition opera-
tion to packed bed.

“For example, the DAA instruction causes the following operation.
If the Auxiliary Carry is set to one or the least significant nibble (LSN)
is greater than 9, six is added to the least significant nibble. Then, if
the Carry flag is set to one or the most significant nibble is greater
than 9, six is added to the most significant nibble (MSN).”

The term nibble is defined as follows:

nibble—A group of four contiguous bits that usually represent a bed
digit.

The least significant nibble (LSN), most significant nibble (MSN),
accumulator, auxiliary carry flag (ACy), and carry flag (Cy) can be
represented as shown in Fig. A-3. Assume, as is done in an example
in the uCOM-8 Software Manual, that the accumulator contains the
bed representation for 75 (MSN = 0111 and LSN =0101), that the
B register contains the bed representation for 38 (MSN = 0011 and
LSN = 1000), and the carry flag is logic zero. The instruction ADC B
produces the following result in the accumulator:

Carry Auxiliary
Bit Carry Bit
0

01110101 accumulator contents
+00111000 register B contents
0 0 10101101 sum stored in the accumulator

With the auxiliary carry, if the instruction causes a carry out of bit 3
and into bit 4 of the resulting value, the auxiliary carry flag is set; other-

Accumulator

7 6 5 4 3 21 0
HEEEE BN
MSN ACy LSN

Fig. A-3. Identification of the most significant and least significant nibbles.

376

wise it is reset. In the preceding example, there is no carry out of bit 3
and into bit 4, so the auxiliary carry bit is zero after the operation.

The DAA command finds ACy reset to 0 and LSN = 1101, Because
the LSN is greater than nine, six is added to it and the result is 0011.
Because the MSN is greater than nine, six is also added to it and the
result is 0000. The final result after the DAA operation is:

1 0 00000011 decimal adjusted sum

which is equivalent to the decimal number 103. The DAA operation
can be written as follows:

Carry Auxiliary
Bit Carry Bit
0

0 1010 1101 sum
+0110 +0110 DAA Operation
1 1 0000 0011 result of DAA Operation
1 0000 0011 bed
1 0 3 decimal number

Thus, 75 -+ 38 = 103.

In actual operation, the DAA adjustment is done in parallel, rather
than in the serial manner illustrated. However, this serial explanation,
courtesy of the uCOM-8 Software Manual of NEC Microcomputers,
Inc., is easier to understand and illustrates the adjustment better. The
DAA instruction should immediately follow an addition operation, as
certain 8080A instructions alter the state of the auxiliary carry flag. Such
an alteration could result in incorrect results.

There is an important difference between the Intel 8080A micro-
processor chip and the equivalent chip, the uCOM-8 chip of NEC
Microcomputers, Inc. The uCOM-8 chip has an extra nontestable flag
called Subtract. To quote from the NEC Manual: “For addition, the
Sub flag is set to zero. . . For subtraction, Sub is set to one causing the
following DAA operation. If ACy is set to one (a borrow occurred) six
is subtracted from the LSN. Then if the Cy is set to one (2 borrow oc-
curred) six is subtracted from the MSN. The use of a DAA instruction
immediately after an operation on two bytes in packed bed format
adjusts the result to two bed digits and a carry or borrow in packed
bed format. Note that the DAA operations performs directly after sub-
traction, eliminating the need for 100’s complement arithmetic for sub-
traction.”

If you are doing considerable amounts of bed manipulation, you
would be interested in the wuCOM-8 chip in preference to the 8080A.
However, such would only be the case if you require the full speed
of the microcomputer. With additional instructions, the 8080A can
easily accomplish the same task of producing a packed bed format after
a subtraction.

377

INR r and INR M

{Increment Register)
()~ () +1
The content of register r is incremented by one.
Note: All condition flags except CY are affected.

0'0 n'u'o[i'olo]

Cycles: 1
States: 5
Addressing: register
Flags: 25P.AC

{Increment memory)
({H) (L)) =— ((HI{L) +1
The content of the memory location whose address
is contained in the H and L registers is incremented
by one. Note: All condition flags except CY are
affected.

[0,0l||1|0||'010]

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: 2.SP.AC

The INR r instruction causes a one to be added to the destination
register D. The destination register can be any of the general-purpose
registers B, C, D, E, H, and L; the accumulator, A; or M, the contents
of memory as addressed by register pair H,L. All flags are affected
except the carry flag.

DCRr and DCR M

(Decrement Register)
(e} =— (0 -1
The content of register r is decremented by one.
Note: All condition flags except CY are affected.

[T o ToToTiToTy]

Cycles: 1
States: &
Addressing: register
Flags: ZSP.AC

(Decrement memory)
(H) (L) =— (H) (L) =1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

o To T T ToT i ToTe]

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: 2 SP.AC

The DCR r instruction causes a one to be subtracted from the destina-
tion register D. The destination register can be any of the general-
purpose registers B, C, D, E, I, and L; the accumulator, A; or M, the
contents of memory as addressed by register pair H,L. Only four of
the five flags are affected; the carry flag remains unchanged.

INX rp and DCX rp

(Increment register pair

(rh) () ~— (b} () +1

The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

o To[rTr REE

Cycles:

States:

Addressing
Flags

1

5
register
none

{Decrement register pair)
(th) ()} =— (rh) (7)) = 1
The content of the register pair rp is decremented by
one. Note: No condition flags are d

FlﬂlﬂlP 1lﬂlllu

Cycles:

States:
Addressing:

Flags:

1

5
register
none

The INX rp causes the register pair specified by rp to be incremented
by one; the DCX rp causes the register pair specified by p to be dec-
remented by one. RP can be the register pair specified by B, D, or H
(corresponding to BC, DE, or HL) or the 16-bit stack pointer specified
by SP. INX and DCX do not affect any flag bits; they are usually not
used in arithmetic operations, their main use being to increment or
decrement 16-bit memory addresses.

DAD rp

(Add register pair to H and L)

(H) L) =— (H) (L) + (rh) {et)

The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it s reset.

no|R'P1'o'o'|
Cycles: 3
States: 10
Addressing: register
Flags: CY

According to the NEC manual: “While the INX and DCX instructions
allow incrementing and decrementing register pairs, the DAD, Double

379

Add, instruction allows adding register pairs together. DAD rp causes
the register pair specified by rp to be added to the contents of the H,L
register pair, with the result remaining in the H,L pair. The Carry
Flag is the only status flag affected by the DAD instruction. The in-
structions INX, DCX, and DAD allow the calculation of table lookup.”
Also used for indexed addressing and file data manipulation.

CMP r and CMP M (Compare Register}
(A - 0
The content of register r is subtracted from the ac.
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction
The Z flag is set to 1 if (A) = (r}. The CY flag is set to
TiFA < ().

|'n'1'|'|Js‘s's]

Cycles: 1
States: 4

Addressing: register
Flags: Z5P.CY,AC

{Compare memory)

(A) — ({H) (L)

The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un-
changed. The condition flags are set as a result of the
subtraction. The Z flag is set to 1 if {A) = {{H) {L)).
The CY flag is set to 1 if (A) < {{H) (L)),

||ﬂ|l||||l|l|]'o]
Cycles: 2
States: 7
Addressing: reg. indirect

Flags: ZSPCYAC
To quote the uCOM-8 Software Manual: “CMP r and CMP M are used
to compare two data quantities without altering them. CMP r compares
the contents of the accumulator with one of the single registers B, C,
D, E, H, and L; the accumulator, A; or M, the memory location ad-
dressed by the H,L register pair. The instruction does not affect any
of the data registers, but affects the four flag bits Carry, Zero, Sign,
and Parity. The compare instructions actually perform an internal sub-
traction of the source S from the accumulator. The flags are set on the
basis of what would have been the result of the subtraction. Thus Zero
is set if the quantities were equal, Sign is set if the result was negative
(the most significant bit is logic 1), Parity is set if the result has even
parity, and Carry is set if there is a borrow out.of bit 7 (source data
greater than Accumulator data).

“Thus, in every case:

Carry is set if a borrow occurs; else reset;
Sign is set equal to the MSB of the result;

Zero is set if the result is zero; else reset;
Parity is set if the parity of the result is even; else reset.”

The compare instructions are best used for unsigned arithmetic com-
parison (numbers in the range of 0 to 25510), also called logical or
character comparisons. For this case, the results for the zero and carry
flags may be interpreted as follows:

Result of Compare Operation
Relationship Between Accumulator
ZeroFlag CarryFlag and Register

accumulator = register
accumulator < register
accumulator = register
accumulator > register
accumulator = register

PO
OO A

Note: X = don’t care

Thus, the relations =, <, = may be tested using a single jump instruc-
tion, while =, > require two. Note that if the operands are reversed, >
replaces = and < replaces =.

CPI data

{Compare immediate)
(A) — (byte2)
The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is

st 10 1 if (A) = {byte 2). The CY flag is set to 1 if
(A) < (byte 2)
Tt T T T Tl
data
Cycles: 2
States: 7
Addressing: immediate

Flags: 2S.PCYAC

The CPI data instruction is an immediate operation which compares
the contents of the accumulator with the 8-bit quantity in the second
byte of the instruction. The instruction affects all five flags, but only
four of the flags produce useful results. The flags are set or cleared on
the basis of what would have been the result of the subtraction. The
contents of the accumulator remain unchanged. See the preceding
discussion of the CMP r instruction for additional details.

It can be argued that the CMP r and CPI data instructions are logical
rather than arithmetic operations. In view of the fact that an arithmetic
operation—subtraction—is performed, we include it in the group of

381

arithmetic operations. The objective of the compare instructions is to
produce decisions that are reflected in the logic states of the flag bits.

LOGICAL GROUP

This group of instructions performs logical, i.e., Boolean, operations
on data in registers and memory and on condition flags. Unless indi-
cated otherwise, all instructions in this group affect the zero, sign,
parity, auxiliary carry, and carry flags according to the standard rules.

ANA r and ANA M

(AND Register}
(A) =— (A) A1)
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

IID'|IOIO S[S]S—I

Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CY.AC

(AND memory}

(A) =— (AJALH) (LD

The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

[I]OIIIﬂI0l|I|'0J

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: ZSP.CY.AC

The ANA r instruction performs a parallel bit-by-bit logical AND of the
contents of the accumulator and the contents of the source register S.
The source register can be any of the general-purpose registers B, C,
D, E, H, and L; the accumulator, A; or M, the contents of the memory
location addressed by the register pair H,L. For example, the ANA B
operation performs a bit-by-bit logic ANp operation with the contents
of register B and the contents of the accumulator. The special case of

ANA A

clears the carry flag and causes the zero flag to be set if the result
is zero, cleared if the result is not zero. All of the flags are affected by
the ANA r instruction. Since A ¢« A = A, the data in the accumulator is
not changed. This is a “trick” to clear the carry flag or simply test for
zero in the accumulator.

382

ANI data

(AND immediate)
{A) =— (A} Albyte 2)
The content of the second byte of the instruction is
lagically anded with the contents of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

Fl17|’0'UI|I|IOJ
[g]

Cycles: 2
States: 7
Addressing: immediate
Flags: ZSP.CYAC

The ANI data instruction performs a bit-by-bit logical anp of the con-
tents of the accumulator with the contents of the second byte of the
instruction. All flags are affected by the instruction.

ORA r and ORA M

{OR Register)
(A) =— (A V(1)
The content of register r is inclusive-OR‘d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

'71‘0'111’0 s Ts Ts |

Cycles: 1
States: 4
Addressing: register
Flags: Z,SPCY.AC

{OR memory)
(A} =— {A) V ((H) (L)

The content of the memory location whose address is
contained in the H and L registers is inclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. Tha CY and AC flags are

cleared,
TTol1 1 TaTy Ty
Cyeles: 2
States: 7
Addressil reg. indirect

Flags: ZSPCYAC
The ORA r instruction performs a parallel bit-by-bit logical or of the
contents of the accumulator and the contents of the source register S.
The source register can be any of the general-purpose registers B, C,
D, E, H, and L; the accumulator, A; or M, the contents of the memory
location addressed by the register pair H,L. The command

ORA A

which has the octal instruction code 267, is a convenient way to clear
the carry flag without affecting anything else. Both ORA r and a related

383

two-byte instruction, ORI data, clear the carry flag and cause the zero
flag to be set if the result is zero, or cleared if the result is not zero.

ORI data

(OR Immediate)
(A} =— (A)V (byte 2)
The content of the second byte of the instruction is
inclusive-OR’d with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

I|I|I1I|IOI1T|YDI

[data] H
Cycles: 2
States: 7

Addressing: immediate
Flags: ZSPCYAC

The ORI data instruction performs a bit-by-bit logical or of the con-
tents of the accumulator with the contents of the second byte of the
instruction. All flags are affected by the instruction.

XRA r and XRA M

(Exclusive OR Register)
(A) -— (A) ¥ ()
The content of register ¢ is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

[||n'|'o’|fs]sjs

Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CYAC

(Exclusive OR Memory)
{A) =— (A) ¥ ((H) (LD
The content of the memory location whose address
is contained in the H and L registers is exclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are

cleared.
|[D’1IOII]|I|’0
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: ZSP.CYAC

The XRA r instruction performs a bit-by-bit logical exclusive-or of the
contents of the accumulator and the contents of the source register S.
The source register can be any of the general-purpose registers B, C,
D, E, H, and L; the accumulator, A; or M, the memory location ad-
dressed by the register pair H,L. All flags are affected by the instruction.

XRI data

{Exclusive OR immediate]
(A) =— (A) ¥ {byte 2)
The content of the second byte of the instruction is
eXclusive-OR’d with the content of the accumulator
The result is nlaced in the accumulator. The CY and
AC flags are cleared.

[1|1|||a'1||||‘o
[data]

Cycles: 2
States: 7
Addressing: immediate
Flags: Z,SPCYAC

The XRI data instruction performs a bit-by-bit logical exclusive-or
of the contents of the accumulator with the contents of the second
byte of the instruction. All flags are affected by the instruction.
To quote the NEC Microcomputers, Inc., wCOM-8 Software Manual:
“The above logic instructions will be used to implement a program-
ming technique known as masking. Masking is a technique by which
bits of an operand are selectively modified for use in a later operation.
There are three general types of masking:

® Clear all bits not operated upon.
@ Set all bits not operated upon (seldom used).
® Leave unaltered all bits not operated upon.”

“The first two approaches are called exclusive masking and the third
approach is called inclusive masking. For example, assume that the
accumulator contains the following value:

Bit: 7664 8 210
1101/,110 accumulator contents
To test bit 3 for a zero or one and simultaneously clear the other bits,
the accumulator is masked with 00001000. By using the instruction

ANI
010

the accumulator will contain zeros with the zero flag set if bit 3 had
been a zero, and it will contain 010, in octal code, with the zero flag
cleared if bit 3 had been one.

“In order to set bit 3 to one and leave the other bits alone, the same
bit pattern is used and the instruction

ORI
010

is used. The result in this case is 11011110 in the accumulator.

385

“In order to set bit 3 to zero and leave the other bits alone, the ac-
cumulator is ANped with 1111011, the complement of the mask of the
first example. With the instruction

ANI
367

the accumulator result is 11010110. These are the most commonly used
bit manipulation operations, since masking is accomplished in one step.
Many others are possible, but they often require more than one in-
struction for implementation.”

RAL and RAR

{Rotate left through carry)

(Ans)) =— (Ap):{CY) =— (A7)

(Ag) =— (CY)

The content of the accumulator is rotated left one
position through the CY flag. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

[OIOIGIVIUIIV|I|J

Cycles: 1
States: 4
Flags: CY

(Rotate right through carry)
(Ap) =— (Apsq)e; (CY) =— (Ag)
(A7) =— (CY)
The content of the accumulator is rotated right one
position through the CY flag. The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit, Only the CY flag is
affected.

[0'0'0

Cycles: 1
States: 4
Flags: CY

The RAL instruction, or rotate accumulator left, causes the accumulator
to rotate all bits one position to the left through the carry bit, i.e., a 9-bit
rotate. Bit 7 transfers to the carry flag, the carry bit transfers to bit 0,
bit 0 transfers to bit 1, bit 1 transfers to bit 2, and so on, as shown in
Fig. A-4.

The RAR instruction, or rotate accumulator right, causes the accumu-
lator to rotate all bits one position to the right through the carry bit, i.e.,
a 9-bit rotate. Bit 0 transfers to the carry flag, the carry bit transfers
to bit 7, bit 7 transfers to bit 6, bit 6 transfers to bit 5, and so on, as
shown in Fig. A-4.

386

1
1
1
:

RAR

<
o
o
»
e
™
e
~
-
o
L

i
]
]

]
]
I

RRC

H
o
[|
N
B
u
o |
|~ |
Lo

]
[
§
§

1
i
1
:

=]
[~ |
o
o
|
»
ol
N
"~ |
|~ |
L°]

RAL i

i
[
0

o

]
1

[

ree [l [ole o]

Fig. A-4. The four rotate instructions.

RLC and RRC (Rotate left)

(Ansq) = (Aq) {Ag) =— (A7}

(CY} = (A7)

The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-
tion. Only the CY flag is affected. .

n]0|0!0‘0|||1

4

o |
[°]

i

Cycles: 1
States: 1
Flags: CY

{Rotate right)
(Ag) =— (Ag1): (A7 +— (Ag)
cY) = (Agh
The content of the accumulator is rotated sight one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi-
tion. Only the CY flag is affected.

]0I°|0|‘I1I

Cycles: 1
States: 4
Fiags: CY

387

The RLC instruction, or rotate left circular, rotates the accumulator
one bit to the left and into the carry flag, as shown in Fig. A-4.
The RRC instruction, or rotate right circular, rotates the accumulator
one bit to the right and into the carry flag, as also shown in Fig. A-4.
In both of these instructions, the original information appearing in
the carry flag is lost.

CMA

{Complement accumulator)
(A) ~— (A)
The contents of the accumulator are complemented
{zero bits become 1, one bits become 0}. No flags are
affected.

[0’0'1'0[|I|r|llj

Cycles: 1
States: 4
Flags: none

The CMA instruction complements the contents of the accumulator
without affecting any of the flag bits. For example, if the accumulator
contained 11010001, the CMA instruction would convert it to 00101110.
Each individual bit is complemented.

STC and CMC

{Set carry)
©Y) ~— 1
The CY flag is set to 1. No other flags are affected.

[T o T THToTy T T,
Cycles: 1

States: 4
Flags: CY

(Complement carry)
cY) =— (©V)
The CY flag is complemented. No other flags are
affected.

u'o’1'1'1'1'|1|]
Cycles: 1

States: 4
Flags: CY

388

The STC instruction sets the carry flag to logic 1; the CMC instruction
complements the carry flag. No other flag bits are affected.

BRANCH GROUP

This group of instructions alters normal sequential program flow.
Condition flags are not affected by any instruction in this group. The
two types of branch instructions are unconditional and conditional.
Unconditional transfers simply perform the specified operation on regis-
ter PC, the program counter. Conditional transfers examine the status
of one of the four process flags—zero, sign, parity, or carry—to deter-
mine if the specified branch operation is to be executed. The conditions
that may be specified are as follows:

Condition ccce

NZ not zero (Z=0) 000
Z zero(Z=1) 001
NC nocarry (CY =0) 010
C carry (CY=1) 011
PO parity odd (P =0) 100
PE parity even (P=1) 101
P plus (S=0) 110
M minus (S=1) 111

NOTE: CCC is the three-bit code for the condition of the flags
JMP addr

(ump)
(PC) = (byte 3} (byte 2)
Control is transferred to the instruction whose ad-
dress is specified in byte 3 and byte 2 of the current
instruction.

T 7o Taolo loli

low-order addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Flags: none

The program counter is the 16-bit register in the 8080A microprocessor
chip that contains the memory address of the next instruction byte that
must be executed in a computer program. The JMP addr instruction
is simply a byte transfer instruction, in which the second and third
instruction bytes are transferred directly to the program counter. No
arithmetic or logical operations are involved, and no flag bits are af-
fected. The JMP instruction is a three-byte instruction that contains the

389

Mein _program

NP
(O]
NP
| ®
r"‘"‘ Fig. A-5. Diagram that illustrates the branching
characteristics of the JMP instruction.
K2
[©,]
Subprogram
[T
L9

16-bit memory address to which program control is transferred. You
can jump forwards or backwards to any of the 65,536 possible memory
locations. The microprocessor chip does not remember the point from
which it jumped, in distinct contrast to the behavior of the CALL and
RET instructions discussed in the following.

The behavior of the JMP instruction can be understood with the aid
of Fig. A-5. The first JMP instruction, @, is a backwards jump that
creates a loop. JMP ® and JMP ® transfer program control to the
subprogram. The exit from the subprogram is to the same place, that
designated by the JMP @ instruction.

CALL addr and RET

Many times you may want to branch out of a main program but return
to it later. To do so, you must not only know your new destination, but
you must somehow also remember your original location. To accom-
plish this, you have two types of instructions: call subroutine and
return from subroutine. Here we shall discuss the unconditional in-
structions CALL addr and RET. To quote the NEC Microcomputers,
Inc., manual: “The call instruction transfers control to a subroutine.
The instruction CALL addr saves the incremented program counter
on the pushdown stack and places the address in the program counter.
The pushdown stack is a block of read/write memory addressed by a

390

(cal)
{{SP) — 1) =— (PCH)
{(SP) ~ 2} ~— (PCL)
(SP) <— (SP) -2
(PC) =— (byte 3) {byte 2)
The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current

instruction.
T T oToli 1 Tols
low-order addr
high-order addr
Cycles: 5
States: 17
Addressing: immediate/reg. indirect
Flags: none

special 16-bit register known as the Stack Pointer which can be loaded
by the user (LXI H, data 16). The stack operates as a last-in first-out
memory (LIFO), with the Stack Pointer register addressing the most
recent entry into the stack. The Return instruction causes the entry
at the top of the stack to be placed into the Program Counter. Thus a

{Return}

{PCL) =— ({SP});

(PCH) =— {(SP) + 1);

(SP) =— (SP) +2;
The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is one more than the content
of register SP is moved 1o the high-order eight bits of
register PC. The content of register SP is incremented

by 2.
1 1 0 o 0 0
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none

CALL instruction transfers program control from the main program
into the subroutine and a RET instruction transfers control back to the
main program.” See Fig. A-6.

The location of the stack is usually at the higher memory addresses
in the available memory of an 8080A-based microcomputer. In Fig. A-7,
the stack is some distance from the main program and subroutines.

3N

CALL
® ®
—
Fig. A-6. Diagram that demonstrates the
® branching characteristics of the CALL and RET
® b o] instructions, Note that the return is always to
" the i ion byte il diately following the
CALL instruction.
Subroutine No. |
Olg)
— RET
Subroutine No.
®
—

dNZ, JZ, JNC, JC, JPO, JPE, JP, and JM addr

{Conditional jump)
If {CCC),
{PC) =— (byte 3} (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-
wise, control continues sequentially

T

||ICICCDIIIO

low-order addr

high-order addr

Cycles: 3
States: 10
Addressing: immediate
Flags: none

In a conditional jump instruction, if the condition is satisfied, the sec-
ond and third bytes of the instruction are transferred to the program
counter and a jump occurs. If the condition is not satisfied, no changes
occur to the program counter; program control passes to the instruction
immediately following the jump.

392

Memory oddress

WL
000 000
Interrupt
service
routines
000 100
Main
program
Fig. A-7. Memory map for a typical 8080-based 001 300
microcomputer. Observe that the stack is lo- Subroutines
cated near the end of memory.
003 300
Stack

The various conditions can be summarized as follows:

NZ: The 8-bit result of the immediately preceding arithmetic or
logical operation is Not equal to Zero, ie., the zero flag is
cleared.

Z: The 8-bit result of the immediately preceding arithmetic or
logical operation is equal to Zero, ie., the zero flag is set.

NC: The 8-bit result of the immediately preceding arithmetic or

logical operations produces No Carry out of the most sig-
nificant bit; or, the carry flag is cleared.

C: The 8-bit result of the immediately preceding arithmetic or
logical operation produces a Carry out of the most signifi-
cant bit; or, the carry flag is set.

PO: The 8-bit result of the immediately preceding arithmetic or
logical operation has a Parity that is 0dd, i.e., the parity flag
is cleared.

PE: The 8-bit result of the immediately preceding arithmetic or
logical operation has a Parity that is Even, ie., the parity
flag is set.

P: The 8-bit result of the immediately preceding arithmetic or
logical operation produces a MSB that has a Plus sign, ie.,
the sign flag is cleared.

393

Main _program Main program
e e

JZ] JNZ
. - flag= 0 tag =1 - . flag = ¢ tlag = 0

(A) JZ instruction. (B) JNZ instruction.
Fig. A-8. The characteristics of JZ and JNZ instructions.

M: The 8-bit result of the immediately preceding arithmetic or
logical operation produces a MSB that has a Minus sign, i.e.,
the sign flag is set.

The value of CCC that corresponds to each of the conditions has been
shown several pages previously. The behavior of two of the conditional
instructions, JNZ and JZ, can be understood with the aid of Fig. A-8.
In the JNZ instruction, the jump occurs only if the 8-bit result or an
arithmetic or logical operation is Not Zero. The decision symbol

previous instruction

flag= 0

which is used in flowcharting, indicates that what happens next de-
pends upon the state of the zero flag. For JNZ, a jump occurs only if
the zero flag is cleared, i.e., at logic 0. For JZ, a jump occurs if the 8-bit
result is equal to zero; in such a case the zero flag is at logic 1.

It is possible to become confused concerning the conditions NZ and
Z. Note that NZ and Z refer to the 8-bit result of an operation, not to
the logic state of the zero flag. NZ means that the 8-bit result of an
operation is not zero; Z means that the 8-bit result of an operation is
zero (though the zero flag is at logic 1). This discussion has tried to
demonstrate that a condition can be viewed in terms of the 8-bit result
of an arithmetic/logic operation (NZ, Z, NC, C, PO, PE, P, or M) or

394

in terms of the logic state of the individual flags that test the result
of an arithmetic/logic operation. The authors prefer the use of the 8-
bit result of an ALU operation, including the letter symbols NZ, Z,NC,
etc.

CNZ, CZ, CNC, CC, CPO, CPE, CP, and CM addr

(Condition call)

1 (cco),

{(SP) — 1) == (PCH)

({SP) —2) =— (PCL}

(SP) «— {SP) -2

{PC) =— (byte 3) (byte 2)
1f the specitied condition is true, the actions specified
in the CALL instruction (see above) are performed;
otherwise, control continues sequentialfy.

|l||ClC]C|IDlD
Jow-order addr
r high-order addr
Cycles: 3/5

States: 11/17
Addressing: immediate/reg. indirect
Flags: none

In a conditional call instruction, if the condition is satisfied, the sub-
routine at the memory location given in the second and third instruc-
tion bytes is called. The contents of the program counter are placed
on the stack, so that a return instruction can return program control
to the instruction immediately following the conditional call instruction.
If the condition is not satisfied, program execution passes to the in-
struction immediately following the conditional call instruction.

RNZ, RZ, RNC, RC, RPO, RPE, RP, and RM

{Conditional return)

if (cCC,

(PCL) %— {(SP))

(PCH) =— ({SP)+ 1)

(SP) =— (SP)+2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

1 ||c'c|c|o|n’o
Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none

In a conditional return instruction, if the condition is satisfied, a return
occurs from the subroutine; the program counter contents on the stack
are transferred to the program counter and program execution resumes
at the instruction immediately after the subroutine call instruction.

395

43
. flag=0 1 flag= |
Subroutine
"y _RET

(A) CZ instruction.
Fig. A-9. The characteristics of CZ and CNZ instructions.

Main _program
—

CALL

Subroutine

RZ
instruction

-

(A) RZ instruction.
Fig. A-10. The characteristics of RZ and RNZ instructions.

396

Main _program

[z}
- - flag 1 flag : 0

—

Subroutine

L w7

(B) CNZ instruction.

Main progrom

CALL

Subroutine

RNZ
insteuction

RET

(B) RNZ instruction.

If the condition is not satisfied, the program execution passes to the
instruction which is immediately following the conditional return
instruction. :

The conditional instructions CZ, CNZ, RZ, and RNZ are depicted
schematically in Figs. A-9 and A-10. Remember, Z means that the zero
flag must be at logic 1 for a call or return to occur; otherwise, program
control passes to the next instruction. NZ means that the zero flag must
be at logic 0 for a call or return to occur; otherwise, program control
passes to the next instruction.

RST n

(Restart)
{(SP) ~ 1) =— (PCH)
(ISP} - 2) =— (PCL}
{SP) =— (SP} -2
(PC) =— B INNN}
The high-order eight bits of the next instruction ad
dress are moved to the memory facation whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad
dress are moved to the memory location whose
address is two less than the content of register SP
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad
dress is eight times the content of NNN

1 1 NDONTON 1 1 1

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

4514131211109 8 7 6 5 4 3 2 10
[oloTefo[o o o o o on]n n o o]o]

Program Counter After Restart

To quote the uCOM-8 Software Manual: “The EI (Enable interrupt)
and DI (disable interrupt) instructions provide control over the accep-
tance of an interrupt request. With this control established, the next
problem to be resolved is how does the external device indicate to the
processor where the desired interrupt routine is located. The 8080A
accomplishes this identification by allowing the device to supply one
instruction when the interrupt is acknowledged. Although any 8080A
instruction can be specified, only two are of practical value: a Call in-
struction, CALL, and a Restart instruction, RST. . . A RST instruction
is actually a specialized type of CALL. The instruction RST N is a call
to one of eight locations in memory specified by an integer expression
in the range, 0 through 7 in octal code, indicated by N. The locations
specified by the integers 0 through 7 are listed below.

397

Value of N Location Called

HI = 000 and LO = 000
HI = 000 and LO =010
HI = 000 and LO = 020
HI = 000 and LO = 030
HI = 000 and LO = 040
HI = 000 and LO = 050
HI = 000 and LO = 060
HI = 000 and LO =070

DU LN~

“A RST instruction causes the incremented program counter to be
pushed onto the stack exactly as a CALL instruction does. It then
loads the program counter with HI = 000 and LO = ONO, where N is
0 through 7. Thus, RST 4 causes the program counter to be pushed
onto the stack and HI = 000 and LO = 040 to be entered into the pro-
gram counter.

“Program execution then continues from the restart location. If the
device service routine requires more than eight bytes to service (as
most do), the instruction placed at the Restart point must jump to the
interrupt service subroutine. Since RST is actually a specialized sub-
routine call, the interrupt service subroutine must end with a return
instruction, to return control to the interrupted program by popping
the return address.

“Since the 8080A has only eight RST instructions, any additional
levels of interrupt must be implemented using CALL instructions. This
means a CALL addr instruction must be supplied by the interrupting
device, which is somewhat more difficult to implement in hardware
because CALL is a three-byte instruction. However, once imple-
mented, a direct call to a routine is slightly faster than a Restart and
subsequent jump operation. Although this is not a major factor, this
difference in response speed should be considered when determining
how to implement interrupt service routines. The primary benefit
realized by using the CALL approach is that n-way interrupt vector-
ing is achieved in hardware, eliminating the need for software in low
order memory (for RST processing). This frees those memory locations
for use by user programs and removes a constraint from the system
memory design.”

PCHL

The PCHL instruction causes the program counter to be loaded with
the contents of the H,L register pair. Program execution then continues
at the point designated by the content of H,L. In effect, this is a jump
instruction, but since the H,L register pair can be operated upon
arithmetically, it allows the implementation of a variety of calculated
jumps. The instruction sequence:

398

(Jump H and L indirect — move H and L to PC}
(PCH) ~— (H)
(PCL) =— (L}
The content.of register H is moved to the high-order
eight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

1 1 1 0 0 1

Cycles: 1
States: 6
Addressing: register

Flags: none

LXIH
<B2>
<B3>
PCHL

is identical in function with:

JMP
<B2>
<B3>

STACK, 1/O, AND MACHINE CONTROL GROUP

This group of instructions performs 1/0, manipulates the stack, and
alters internal control flags. Unless otherwise specified, condition flags
are not affected by any instructions in this group.

PUSH rp and POP rp

To quote the pCOM-8 Software Manual: “Two special instructions
enable programmers to save and restore the registers using the stack,
PUSH and POP. PUSH rp causes the register pair specified by rp
to be placed at the top of the stack. The stack is a special portion of
read/write memory designated by the user and treated as a last-in

(Push}

((8P) = 1) =— {rh)

(56} = 2) =— {0

{SP) =— (SP) -2

The content of the high-order register of register pair
¢p is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory tocation whose address s two less
than the content of register SP. The content of reg
ister SP is decremented by 2. Note: Register pair
+p = SP may not be specified.

1 1 R [0 1 0 1

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

399

{Pop)
el -— ((SP))
(rh) <— {{SP)+ 1)
(SP) =— (SP) +2
The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp, The content
of the memary location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Note: Register pair
1p = SP may not be specified.

1]I RIPIOTOIDI']

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none

first-out (LIFO) memory through the use of a 16-bit Stack Pointer.
A PUSH operation causes the Stack Pointer to decrement by one and
store the most significant register (the HI register) in memory at this
new location specified by the Stack Pointer. The Stack Pointer is then
decremented again and the least significant register (the LO register)
is then stored in memory at that address. For a POP operation, the data
at the memory location addressed by the Stack Pointer is moved into
the least significant register (the LO register, which can be C, E, or
L); the Stack Pointer is incremented and the data at the new memory
location is loaded into the most significant register (the HI register,
which can be B, D, or H). The Stack Pointer is then incremented
again.

“For both PUSH and POP operations, the register pair, rp, may be
one of the three double registers BC, DE, or HL (identified as B, D,

Flags

Fig. A-11. The four different PUSH instructions. Observe that the HI byte is pushed first on
the stack.

400

——
)
= /

Fig. A-12. The four different POP instructions. Observe that the LO byte is popped first.

Misped) | —ror ,
-
o

and H, respectively) or the contents of the Flag register and the Ac-
cumulator, indicated by PSW which stands for program status word).”

The PUSH and POP instructions are represented schematically in
Figs. A-11 and A-12. In these diagrams, SP is the stack pointer location
before the PUSH or POP instruction.

PUSH psw and POP psw

{Push processor status word)
((SP) — 1) =— (A}
({SP) — 21g =— (CY) , (ISP} =2}y =— 1
(SP) — 217 =— (P), ((SP)~2i3 «— O
((SP) — 2)4 =— (AC}, ({SP} —2)g =— O
{SP) — g +— (2}, ((SP) —2)7 =— (8}
(SP) ~— (SP) -2
The content of register A is moved to the memory
location whose address is one less than register SP
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg
ister SP is decremented by two.

,:1'\‘1'u|1|0'1j

Cycles: 3
States 1
Addressing: reg. indirect
Flags: none

The letters PSW stand for processor status word, which is the contents
of the accumulator and the five status flags. Refer to the preceding
description of the PUSH rp and POP rp instructions. The flag register,
F, is regarded as the least significant register and the accumulator, A,

401

{Pop processor status word)
(CY) ~—- ((sPilgy
(P} =— {(SP))y
(AC) =— (ISP}
{2) =— ({SP)}g
1S} =— {(SP)7
(A} =— (ISP} + 1)
{SP) =— (SP) +2
The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem-
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

1'||1I1'DIDIGI1

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: ZSP.CY.AC

is regarded as the most significant register. The program status word
is important because it saves the actual machine status as determined
by the five flag bits. When it is restored, machine operation can resume
in the correct state, regardless of how the interrupting subroutine af-
fected the flags.

FLAG WORD

D Dg Ds Ds Dy D Dy Do
[sTz]olac]o]r]1]er]

In the uCOM-8 integrated-circuit chip, which is essentially identical
in function with the 8080A microprocessor chip, there is an extra status
flag, SUB. In the flag register, SUB occupies the Dj bit position. In ad-
dition, the Dj bit position is at logic 1 rather than at logic 0 (which
is the case for the 8080A chip). The authors consider the SUB flag to be
a useful feature of 8080A-type microprocessors, and hope that it be-
comes incorporated in future versions of the chip by manufacturers
such as Texas Instruments, National Semiconductor, Intel, etc.

An example of the operation of the stack is given in Fig. A-13. The
section of code employed is

Main Task Subroutine
LXI SP PUSH B
303 PUSHD
003 PUSH H
CALL PUSH PSW
<B2>
<B3>

The stack pointer originally was located at HI =003 and LO = 303.
After the CALL subroutine instruction, the two program counter bytes

402

are pushed onto the stack and the stack pointer moves to HI = 003 and
LO = 301. Note that the HI program counter byte goes on the stack
first, but comes off the stack last. A succession of four push instructions
load the stack with the contents of the six general-purpose registers,
the accumulator, and the flag register. After all of this, the stack pointer
(SP) location is HI = 003 and LO = 9271, the top filled location on the
stack.

Once the subroutine has been executed, there is the problem of re-
moving the contents of the stack and placing them back into the 8080A
microprocessor chip. The section of code, located at the end of the
subroutine, that accomplishes this is:

SP-1| 003 270

SP 003 27! Flags Top of stack
SP+ | o003 272 Accumulator
003 273 Register L

003 274 Register H

003 275 Register E

003 276 Register D

o003 277 | Register C

003 300 Register B

003 301 "'“ﬂ([gmh:;unm

003 302 "“t:m“::unm

003 303 Original SP location
003 304

003 305

003 306

Fig. A-13. The stack.

POP PSW
POPH
POPD
POP B
RET

In each case, the LO byte comes off the stack first. Recall that in
three-byte instructions, the LO byte is always the second byte of the
instruction. Thus, the 8080A chip is consistent in its handling of 16-bit
address words. Once the contents of the stack have been popped off,
the stack pointer returns to its original location of HI =003 and LO =
303.

Registers can be pushed and popped in any order. However, the
program counter is almost always pushed first and popped last. The
caution that you must observe is that you must pop registers in the
reverse order with which you pushed them. For example, with the
stack configuration shown in Fig. A-13, if you executed the following
section of code at the end of the subroutine

POP PSW
POP B
POPH
POPD
RET

you would encounter problems with the execution of the main program.
The original register contents would not be returned to their original
locations. The chip would attempt to execute the program, but there
is not much chance of a useful result.

If you do not need to push registers on a stack during a subroutine
call, do not do so. Store only that information on the stack which is
needed by the 8080A chip when it resumes the main program.

XTHL

(Exchange stack top with H and L)
(L) == {(SP))
(H) == ((SP) + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

1T T ToTo Ta T Th]
Cycles: 5
States: 18
Addressing: reg. indirect
Flags: none

404

The XTHL instruction is used to exchange the contents of the L
register pair with the top pair of items on the stack. The contents of the
top location, the one addressed by the stack pointer SP, are exchanged
with the contents of register L. The stack pointer is incremented, and
the contents of memory addressed by this new value of SP are ex-
changed with the contents of register H.

SPHL
{Move HL to SP)

1SP) =— (H) (L)

The contents of registers H and L {16 bits) are moved

ta register SP.

l1‘|‘|'1’1]o‘alj

Cycles: 1
States: 5

Addressing: register
Flags: none

The SPHL instruction is used to load the stack pointer register with
the contents of the register pair H,L. The contents of L are placed in
the LO eight bits of the stack pointer, and the contents of H are
placed in the HI eight bits of the stack pointer. As pointed out in the
NEC Microcomputers, Inc., manual: “The SPHL instruction can be
used to load the stack pointer with a value which has been computed
using the double register arithmetic operations available with the HL
register pair. This should always be done with care, since it is easy
to lose track of where the stack pointer is pointing, with subsequent
loss of stack content.”

OUT port

(Output)
(data) ~— {A)
The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec-
ified port.

[1‘1'0‘1‘0'0'1'14]
port
Cycles: 3
States: 10

Addressing: direct
Fiags: none

The OUT port instruction moves the 8-bit contents of the accumulator
to the output port specified by the second byte of the instruction. Two-
hundred fifty-six unique output ports can be selected. During the third
machine cycle of the instruction, the device code appears on the ad-

405

dress bus, an OUT control pulse is generated, and the contents of the
accumulator appear on the external bidirectional data bus.

IN port

{input)
(A} =— (data)
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

[T Te T T T T Ty]

[

Cycles:
States:
Adoressing:
Flags:

3

10
direct
nane

The IN port instruction permits the 8080A chip to read the data present
at the input port given by the second byte of the instruction. Two-
hundred fifty-six unique input ports can be addressed. During the third
machine cycle of the instruction, the device code for the input device
appears on the address bus, an IN control signal appears on the control
bus, and information appearing on the bidirectional data bus also ap-
pears in the accumulator.

El and Di
(Enable interrupts)

The interrupt system 1s enabled following the execu-
tion of the next instruction.

T T Ty Ty T T Ty

Cycles: 1
States: 4
Flags: none

{Disable interrupts}
The interrupt system is disabled immediately fol-
lowing the execution of the DI instruction,

[T T T TeTo Ty Ty

Cyecles
States:
Flags:

1
4
none

To quote the NEC Microcomputers, Inc., uCOM-8 Software Manual:
“Whether the 8080A responds to an interrupt request is determined
by the state of an internal interrupt flip-flop, INTE. When this flip-flop
is set to one, the processor responds to interrupts. When it is reset to
zero, the processor ignores interrupt requests. The INTE flip-flop is
affected by both program control and system operation. System opera-
tions which affect INTE are a system reset and the acknowledgement

406

of an interrupt. Both operations clear INTE and thus disable the
interrupt facility. If further interrupts are to be acknowledged after a
Reset or Acknowledge Interrupt, the program must re-enable the flip-
flop. Two instructions, EI, Enable Interrupt, and DI, Disable Interrupt,
provide programmed control of the INTE flip-flop. The EI instruction
sets the INTE flip-flop to one, enabling the interrupt facility, while
the DI instruction clears the INTE flip-flop to zero, disabling the inter-
rupt facility. Thus if it is desired that a section of the program be
executed with high speed and without the possibility of being inter-
rupted, the DI instruction may be used to disable interrupts for that
section of code. After the section is complete, EI re-enables the inter-
rupt facility. Since the acknowledgement of an interrupt request resets
the INTE flip-flop to zero, an EI should be the first instruction in any
routine that services interrupts. (This assumes that the interrupt ac-
knowledge resets the interrupt request. This must be done to prevent
hanging up the 8080A processor.) An exception should be made when
servicing the fastest /O device. To avoid disturbing service to this
1/O unit, the INTE flip-flop should be enabled at the end of the
routine.”

HLT

{Hatt)
The processor is stopped. The registers and flags are
unaffected

01'\’1|0|1T|IU
Cycles: 1

States: 7
Flags: none

The HLT instruction causes the processor to suspend operation until
the 8080A chip receives a reset signal or receives an interrupt request
signal (INT). The processor accepts the INT request regardless of the
condition of the internal interrupt flip-flop. After processing the inter-
rupt, instruction execution continues at the next location after the halt
command.

NOP

(Noop)
No operation is performed. The registers and flags
are unaffected.

ﬁ‘o'o‘u'u'o‘u'g

Cycles: 1
States: 4
Flags: none

The NOP instruction does absolutely nothing except occupy a loca-
tion in memory and take up four states during program execution. It is
used for program debugging, in which extra NOP instructions are
placed in a program for subsequent modification. When deletions are
made to a program, NOPs should be inserted in their place.

With the aid of material in the Intel 8080 Microcomputer Systems
User’s Manual and the NEC Microcomputers, Inc., uCOM-8 Software
Manual, a detailed description of the individual instructions of the
8080A microprocessor chip has been provided. The authors are grateful
to both Intel Corporation and NEC Microcomputers, Inc., for their
kind permission to use information in their manuals. If you are a seri-
ous user of the 8080A chip, you should have both manuals in your
possession.

APPENDIX 3

8080 Instruction Set
(Intel Corp. Summary)

Istuction Codett Giocki> n Codelt] Clockl?
Mosmans Desrgtion 0 O By D4 03 O Oy O Crees | Mnemonic Dy 0z Dy By Cvees
HOV.1.3 Woveegste o cegate G n oo s s " Voo s
MOVH ' Mowngumomemoy 0) 1) 0 5 S S) ANz 00 co s
MOVEH Mowmmony Grgse 0 1 D O D 1 1 0) w 000w
W e RO SR an voooo sm
[V — o0 000t 10 I avE Voooo m
MVIM Meveromedawmemsy 0 0 1 1 0 1 1 0 1 w0 0000 sn
wa so Dm0y o 5 ast Ao
ochr 90 D boo1o s w Voo
waw co s o100 M0 our G oo 1w
ocam G0 1 im0 W X8 Laad imtine egeer co o w0
ADD ¢ Vo000 s ¢ PnBaC
ADCI AdtqaisloAwmcmy 1 0 0 0 15 55 4 [OT R - e o o o0 01w
SUBC Sublracragater rom A To oo ot oS ss e au 0 €
SBBC Subiactegane ftom A Tooo a1 s s s Bk Lot mmedae regare 00 1 000 01w
PacHEL
ANA ¢ To v o as s s LIS Lood mmegtestckpam B 0 1 1 0 0 0 110
uy o0t s ss e PUSKE Puh e Pac8BCon 1 1 0 0 0 1 0 1 m
oA Vo110 s ss e
WP Compareregate wih A Poor a1 s ssoa PUSKD P 0&E 1 1 0 1 0 1 0 U 1
ADDM Add memary t0A EEEEEREE ik
Adcm Add memory lo Awithcary) 0 € 0 1 1 10 ! PUSHH Puth registes Paur HE L on T g 01 0 "
sus Tooc oo 0 an
sepm Voot a0 PuSH S Puih A ot Foge T I S BRI
ANAM Toot oo o PoP6 PuprgseipsrBECON 1 1 8 0 0 0 0 1 10
nau REREEEREE o
oRA M Voo o e POPD FepregseiomDsESH 1 U 0 1 D 0 0 1
cupH RN s
a0l T oo oot FOPH FapegsepmESLa 1 1 1 0 D 0 011
Azt Aggmmeme oA w1 1 0 0 1 0 40 iy
i POP IS ap A snd Fags Ty vt 000w
su Subtart g AV 1 0 10 0 10) ek
s Sttt mmedatetmA 1 1 0 1 14107 s Sweka TEEEEREEE
win bariow WA LA [R IR T
AN ng mmedatewin & [I R R KCHG Enchangt OBE WAL R IR B R
XA Excawt Ormmegarwn 1 1 3 0 1 1 10 7 Rewsios
A KL facngeopotsuca BEL 111 0 0 0 1 b
ORI Ocometarewin A T v o0 P W Lo e poue Vi 0 e s
o Compmesmmedaewn A 111 1 1 3 101 Pehl MELiowowemcouwns 1 1 1 0 1 0 0 1 5
RC RomeAlen so cot o1 1 e 0ADE AWBACW oo 0 0 1001 w0
R RoweAnght vo o011 s 0A0D AMDAEWHEL co 0 11001 10
RAL voo0 0 e ADH AWNELiHSL 0o 1 s 001 10
AR b0 0 111 . DADSP AN stckpomerto &L 0 0 1 1 1 0 0 1 10
STARD Stoe A et G0 0000 10 7
e Vs oot w STAXO Store A mdrect IR
x Voo 10 e LOAXS Lot A e vo o0 1010 1
we Vo100 o LOAXD Lusa A duect v 0 0 1 1o
2 tioo oo e VA8 w88 Cigues 0 0 0 0 0 0 1 1 5
™ Vi oo o0 to WKD e OB Eregnes 0 0 0 1 8 0 1 1 5
» v i 0010w INKH focementK8 Lages 0 0 1 0 D 0 1 1 5
™ Voo NXSP Increment ach poner o0 1 1 o0 1 s
e Voo oo acxe o R
o T oo o w0 acxo AR
caLL A AR] Doxn oo 1 o 10 11 s
o Toe a0 uw ocxse G0 v 1101 s
one Tico oo nw o IR
o trieocorpo mw st IR
o tiocoo o0 my one ORI I A
w P et o0 mu ona Do T oo 1
o R I T sHo oo 1 a0 1o
o P01 o0 rie IEEEEEREEE
w0 Vo0 01 oo € IR B AR T
RET IR IR I T)] Pl T o0 e
RC Vo110 00 s NP Nooperaton s 0 0000 00 4
AN Rewnonmocary 1o 00 00 am

NOTES. 1. DDD or $SS - 000 B - 003 C - 0100 — 011 € - 100H - 101 L — 110 Memory — 11} A
2. Two possible cycle times, (5/11) indicate instruction cycles dependent an condition flags

Index

A

Accumulator, 18, 29, 94, 119, 275
instructions, 153-157
Addend, 187
Address, 94, 115, 138
bus,
memory, 28
Allocate, 298, 314
U,
Altman, Laurence, 24
Arithmetic
group, 8080, 159-162
operations, 94
Assemble, 94, 167
Assembler, 95, 167
Assembly
definition, 95
language, 95, 166-168
programming, 95, 167
program, 95, 167
Augend, 187
Autoranging instrument, 276
Auxiliary carry flag, 95, 143

B
Basic types of interrupts, 318-320
Bed

addition programming example, 186-188
to binary routine, 184-185
Bidirectional
definition, 18
data bus, 18, 235-238
8080 chip, 44-45
Binary
numbers, 100
to bed subroutine, 188-191
Bit, 40, 95
status, 41
Bootstrap, 40
Branch
group, 8080, 163-164
instruction, 95, 138
operation, 95, 138

Breakpoint, 298
instruction, 298
switch, 208
Buffer, 276
Bus, 18, 234, 238
driver, 40
drivers, microcomputer, 55
monitor, 276
Byte, 40, 95
status, 41

Call, 95, 138
subroutine, 95
Carry flag, 95, 145
Cell, memory, 28
Character, 100
Clear accumulator instructions, 157
Clearing memory, programming example,
I

70-171
Clock, 18
cycles and timing loops, 211-232
clock cycle listing, 8080, 215-217
counting clock cycles, 217-223
controlling power with a micro-
computer, 231
definitions, 211-212

time, 214-215
microcomputer as multivibrator,
212-214
monostable multivibrators, 212
ing with a micr
228-232
timing loops, 212, 223-228
generator/driver chip, 8224, 47-51
Clocks, 8080 chip, 42-43
Closed subroutine, 139
Code, mnemonic, 108-109
Computer
definition, 18
digital, 19
hierarchy, 17-18
instruction, 95, 100

4an

Computer—cont

interfacing, 13, 18, 40, 72

program, 95, 99-100

uses of, 11-12

vs. digital computer, 25-26

wired-program, 2
Conditional

branch instructions, 141-144

breakpoint instruction, 96

call, 141

definition, 96

instruction, 139

jump, 96, 141

return, 141
Condition flag, 96, 144
Control

input, 234

lines, microcomputer, 53-55

output, 234

pulses, device select pulses as, 205-206
Controller, 1

what is a, 26-27

lling power with a
23

Controls, 8080 chip, 45-47
Counting clock cycles, 217-223

DAD instruction, register pair, 148
Data
and memory addressing modes, 153
bus

bidirectional, 44
buffer/latch, 234
byte, 96, 116

input, typical 8080 microcomputer, 32-33

logger, 276, 288-289
logging with an 8080 microcomputer,
288-29

how many data points, 289-290
per second, 291-295

logged data, what to do with, 291
short- or long-term storage, 290-291
single data point, information in, 291

‘memory, 28

output, typical 8080 microcomputer,

31-32

point, 276
processor, 18
vs. mi vs.

23-25
transfer group, 8080, 157-159
DBIN, 47
DCX instruction, register pair, 148
Decimal adjust accumulator, 156, 276
Decision
definition, 142
symbol, 142
Decoder, 75154, 198, 199, 200-201
Decoding
arithmetic and logic operation, 135-137
branch operation, 138-141
condition flag, 144-146
decrement and increment, 152-153
device select pulses, 197-202
immediate operation, 137-138
instruction, example, 134
register, 134-135
Decrement, 96, 112, 152
Deferred interrupt, 298, 324
Distribution register, 96, 135

412

Dy ining effects of
instructions, 189-184

Device
code, 96, 116
select pulse, 18, 72
generating, 195-208
as control pulses, 205-206
decoding, 197-202
definitions, 196
8080 microprocessor
1/0 instructions, 196-197
example, 206-208
sample microcomputer program,
202-204
uses for, 74-75
Digital computer, 19, 26
computer, 19, 26
controller, 27
electronics, review of, 20-21
Direct
address, 19
addressing, 96, 153
Disable interrupt, 298, 320

E
Eadie, Donald, 23
8080A

instruction set, 351-408
individual 8080 instructions, 357
arithmetic group, 369-382
branch group, 389-399
data transfer group, 361-369
logical group, 382-389
stack, I/0, and machine control
group, 399-408

microcomputer programming, 351-352

sources of 8080 programming
information, 352-357
summaries, 8080, 357, 409
microprocessor chip, 53
8080 microprocessor chip
information sources, 14
instruction set, 12
memory, 1
number of manufacturers, 12
price, 12
programming, 12
programs available, 13
8224 clock/generator driver chip, 47-51
Enable interrupt, 298, 320
Execution, 234
Exploring jump instructions, 176-178
External
device addressing, 19, 72
typical 8080 microcomputer, 33-36
flags, 298, 321-327
clearing, 323-324
deferred and immediate interrupts,
324-325
definition, 298, 321
output, 325-326
single-line (polled), 327
lens, 234

Fetch, 234

Field, 96, 115

Fixed-program computer, 19, 26

Flag, 40, 46, 96, 144, 298, 321
register, 96

Flowchart
definition, 142
symbol, 142

Flow diagram, 142

General-purpose
computer, 19, 26

Generating
device select pulse, 195-208
definitions, 196
device select pulses
as control pulses, 205-206
decoding, 197-202
8080 microprocessor 1/0 instructions,
96-197
example, 206-208
sample microcomputer program,
202-:
status information, 233-273
bidirectional data bus, 235-238
definitions, 234-235
8212 eight-bit input/output port chip,
263-267
instruction cycles, 238-240
machine cycles, 240-242
identification, 242-258

Interfacing, 19, 40, 71
a keyboard, 329-335
flag-bit testing, 329-330
vectored interrupts, 330-335
four fundamental tasks of, 13
what is, 71-73
Internal
bus, 235
flag, 298, 321
Interrupt, 19, 36, 298
basic types, 318-320
flag, 298, 320
flip-flop, 320
hardware priority, 339-342
mask, 327-329
priority, 335-339
servicing, typical microcomputer, 36-37
software priority, 342-346
duction to mi progr:
93-192
accumulator instructions, 153-157
assembly langnage, 166-168
bit, byte, word, and address, 114-115
conditional branch instructions, 141-144
data and memory addressing modes, 153
decoding
arithmetic and logic operation, 135-137
branch operation, 138-141
condition flag, 144-146

single stepping an 8080
258-263

H

Halt instruction, 112
Hardware, 19, 25
integration, 309
priority interrupts, 339-342
vs. software, 2
Hexadecimal code, 96
HI
address byte, 96, 116
‘memory address, 40
Hierarchy, computer, 17-18
HLDA, 46
HOLD, 46

Immediate
addressing, 96, 137, 153
interrupt, 298, 324
N, 62
Increment, 96, 112, 152
Indirect addressing, 153
IN instruction, 110, 196
Input circuits, microcomputer, 278-279
Input/output, 19, 73, 276
microcomputer, 275-295
data logging, 288-295
definitions, 275-276
input circuits, 278-279
instructions, 279-282
output circuits, 277-

278
output to multiplexed display, 285-288

programs, 283-285
small 8080 microcomputer, 68-70
typical 8080 microcomputer, 33
INT, 45
INTA, 62
INTE, 46

and increment, 152-153
immediate operation, 137-138
instruction, example, 134

register, 134-135
register pair, 146-152
definitions, 94-99
8080
microprocessor registers, 118-122
'mnemonic instructions, 123-127
examples, programming, 170-192
instruction
groups, 8080, 157-166
summary, 8080, 166
vs. data, 117-118
learning, programming, 108-114
machine language, 103
vs. assembly language programs,
168-169
‘mnemonic code, 108-109
multibyte instructions, 115-117
octal
and hexadecimal machine codes,
103-108
/hexadecimal listing, instruction set,
127-133
operations performed by 8080
microprocessor, 122-123
what is
a computer program, 99-100
an instruction, 100-101
an operation, 101-103
Instruction, 97, 115
code, 97, 119
cycle, 234, 238-240
decoder, 97, 120
execution time, 214-215
groups, 157-166
input/output, 279-282
register, 97, 120
set, 80804, 351-408
ind‘vidual 8080 instructions, 357
arithmetic group, 369-382

13

Instruction—cont
set, 8080A
individual 8080 instructions
branch group, 389-399
data transfer group, 361-369
logical group, 382-389
stack, I/0, and machine control
group, 399-408
programming, 351-342
sources of 8080 programming
information, 352-357
summaries, 8080, 357, 409
summary, 166
INX instruction, register, pair, 148
1/0, 40, 73, 196, 276
device, 40, 73-74, 196

4
Jump, 97, 138
K
Keyboard, interfacing, 329-335
flag bit testing, 329-330
vectored interrupts, 330-335
L
Label, 97, 168, 169
Large-scale
integration, 298
programs, 298
Latch, 40, 276
status, 41
Loading stack, programming example, 173
Log, 276
Logic, synchronous, 41, 72
Logical group, 8080, 162-163
LO

address byte, 97, 116
memory address, 40
Loop, 140, 211, 212
LXI instruction, register pair, 149
M
Machine
code, 97
instruction, 97
language, 97
cycle, 196, 235, 240-242
fetch, 241
halt, 242
identification, 242-258
eight status bits, 244-246
8080 control inputs and outputs,
246-248
8212 eight-bit input/output port
chip, 263-267
latching the status bits, 243-244
single stepping an 8080
microcomputer, 258-263
state timing, 254-258
timing diagrams, 8080 instructions,
248-254
input, 241
interrupt, 242
memory
read, 241
write, 241
output, 241
stack
read, 242"
write, 241
language vs. assembly language, 168-169

44

Main program, 314
Mask, 298, 327
Medium-scale
integration, 299
programs, 299
Memory, 19, 28
address, 19, 28, 40
bus, 29
8080 chip, 43-44
allocation, 314
cell, 19, 28
clearing, programming example, 170-171
data, 19, 28
PROM, 28
read
-only, 28
/write, 28
small 8080 microcomputer, 62-67
volatile, 20, 29
word, 19-20, 28
Microcomputer
as controller, 12
bus, small 8080, 68
definition, 20
input
circuits, 278-279
/output, 275-295
data logging, 288-295
definitions, 275-276
instructions, 279-282
objectives, 275
output to multiplexed display,
285-288

programs, 283-285
output circuits, 277-278
use to strobe integrated-circuit chips,
counters, 76-77
data selectors/multiplexers, 77
decoders, 77
demultiplexers, 77
latches and flip-flops, 78-79
memories, 79-80
other chips, 80
pin configurations, 80
priority encoder, 78
shift registers, 78
what is a, 11-13
Microcontroller, 20
Microprocessor, 20, 24-25
applications, 16
as controllers and logic processors, 14-18
8080
bidirectional data bus, 44-45
clocks, 42-4:
controls, 45-47
memory address, 43-44
power, 42
8080A, 53
Mnemonic, 97
code, 108-109
instructions, 108
language, 108
operation code, 108
symbol, 97, 108
Modes of microcomputer operation, 314-318
interrupt operation, 316-318
polled operation, 315-316
Monitor, 276

ags,
174-176

Monostable multivibrator, 20, 212
MR, 59
Multibyte instructions, 115-117
Multilevel interrupt, 299, 318
Multiplexed display, output to, 285-288
Multivibrator, microcomputer as, 212-214
MW, 59

N
Nest, subroutine, 178-180
Nesting, 288, 299
Nonoverlapping two-phase clock, 235

]
Qctal code, 97
Operand, 97, 169
Operation, 97, 101-103
code, 97,
small 8080 microcomputer, 70-71
0sC, 51
OUT, 62
OUT instructions, 110, 196
Output
circuits, microcomputer, 277-278
to multiplexed display, 285-288

4
Parity, 97-98
flag, 98, 145
Period, 212, 214
¢, and ¢,, 51
Polling, 299, 315
Pop, 98, 150
POP instruction, register pair, 148
Popping stlack, programming example,
4

Power
lling with a mi 231
8080 chip, 42
microcomputer, 52
Priority, 299, 317
interrupts, 335-339
software, 342-346
Program, 115, 139
counter, 98, 120, 150
Programmable
read-only memory, 20, 28
sequencer, 212, 228
Programming, microcomputer, 93-192
accumulator instructions, 153-157
assembly language, 166-168
bit, byte, word, and address, 114-115
conditional branch instructions, 141-144
data and memory addressing modes, 153
decoding
arithmetic and logic operation, 135-137
branch operation, 138-141
condition flag, 144-146
decrement and increment, 152-153
immediate operation, 137-138
instruction, example, 134
register, 134-135
pair, 146-152
definitions, 94-99
examples, programming, 170-192
instructions, 100-101
groups, 157-166
mnemonic, 123-127
summary, 166
vs. data, 117-118

learning, 109-114
machine language, 103
vs. assembly language programs,
168-169
mnemonic code, 108-109
multibyte instructions, 115-117
octal /hexadecimal
listing, instructions set, 127-133
machine codes, 103-108
operations, 101-103, 122-123
program, 99-100
registers, 99-100
Programs, input/output, 283-285
Pulser, 20
Push, 98, 150
PUSH instruction, register pair, 148

Random access memory, 20
RDYIN, 51
READY, 51
Read
definition, 20, 29
-only memory, 20, 28
/write memory,
Reading B and C registers, prograrnming
example, 1
READY, 45-46
References
helpful, 21-23
text (superscript), 349-350
Register, 30, 98, 118
pair, 98
addressing, 98

q 27
RESET, 51
RESET, 45
RESIN, 47-51
Response time, 299, 316
Restart instruction, 113
Return, definition, 98, 139
Rotate, 276
instructions, 154-155
Routine, 98, 139

Sense, 299
Sequencer, 212, 228
S ing with a mi
Sequential operation, 228
Service routine, 299
Sign flag, 98, 145
Single
-byte instruction, 98, 115
-line interrupt, 299, 318, 327
Small
8080 microcomputer, 39-91
definitions, 40-41
8080 microprocessor chip, 42-47
bidirectional data bus, 44-45
clocks, 42-43
controls, 45-47
memory address, 43-44
power, 42
8224 clock generator /driver chip,
4’

- interfacing, what is, 7173
1/0 device, what is, 73-74

228-232

415

Small—cont
8080 microcomputer
microcomputer, 51-71
bus drivers, 55
control lines, 53-55
8080A microprocessor chip, 53
input/output, 68-70
memory, 62-67
microcomputer bus, 68
operation of the microcomputer,
70-71
power, 52
status information, 55-62
objectives, 39-40
use for device select pulses, 74-75
use to strobe integrated-circuit chips,
counters, 76-77
data selectors/multiplexers, 77
decoders, 77
demultiplexers, 77
latches and flip-flops, 78-79
memories, 79-80
other chips, 80
pin configurations, 80
priority encoder, 78
shift registers, 78
-scale
integration, 299
programs, 299
Software, 20, 25
driver, 299, 316
integration, 308-311
priority interrupts, 342-346
Source register, 98, 135
Sources, information, 8080 chip, 14
Special-purpose computer, 20, 26
SPHL instruction, register pair, 149
Stack, 98, 150, 299
instructions, 8080, 312-314
1/0, and machine control group, 8080,
164-166
pointer, 98, 120, 150
addressing, 98, 153
use of, data and status storage, 302-307
State, 212, 214, 215
Status, 299
bit, 41, 235
byte, 41, 235, 238
information
generating, 233-273
bidirectional data bus, 235-238
definitions, 234-235
8212 eight-bit input/output port
chip, 263-267
instruction cycles, 238-240
machine eycle identification, 242-258
machine cycles, 240-242
single stepping an 8080
microcomputer, 258-264
microcomputer, 55-62
latch, 41
Stored-program computer, 20, 26
STSTB, 51
Subroutine, 98, 139, 299-300
instructions, 8080, 311-312
what is a, 300-302
when used, 307-308
Symbolic
address, 98, 167

416

Symbolic—cont
code, 99, 167
coding, 99, 187
language programming, 99
programming, 99, 167
Sync, 41, 71
SYNC, 47, 51
Synchronize, 41, 71
Synchronization pulses, 41, 71
Synchronous, 41, 71 |
computer, 41, 72 i
inputs, 41, 72 |
logic, 41, 72 {
operation, 41, 72

TANK, 47
Three
-byte instruction, 99, 115
-state device, 41, 235, 236
Timing loops, 212, 223, 228
Top of stack, 150
Twe

0
-byte instruction, 99, 115
-phase clock, 41, 235
Typical 8080 microcomputer, 27-37
data
input, 32-33
output, 31-32
external device addressing, 33-36
interrupt servicing, 36-3'
memory, 28-31
other input/output techniques, 33

(1]
Unconditional
cell, 111
definition, 99
instruction, 139
jump, 99, 110
return, 99, 111

v
Vector bits, 300
Vectored interrupt, 300, 318
Very-large-scale
integration, 300
programs, 300
Volatile memory, 20

w

WAIT, 46
‘Wired-program computer, 20, 26
Word, 41, 99, 115

length, 41

memory, 28
Write, 20, 29
WRITE (WR), 46
Writing into memory, programming

example, 172-173

X
XCHG instruction, register pair, 148
XTAL, 47
XTHL instruction, register pair, 149
z
Zero flag, 99, 111, 145

