&

VE u

Afivanced
formation
Display Systems

SCION)

MicroAngelo
MA 512

User’'s Manual
SCION Corporation ©1980

~

SCION Corporation April 1881

Warranty

SCION Corporation certifies that each computer system will be free from defective materials and workman-
ship for ninety [90) days from date of shipment to the original customer.

SCION Corporation agrees to correct any of the above defects when the system is returned to the factory
prepaid. Written authorization must be obtained and confirmed in writing by the Customer Service Depart-
ment before returning the equipment to the factory.

Under this warranty, SCION Corporation will, at the request of the customer, provide the necessary com-
ponents required by the customer to correct the equipment in the field. The components will be shipped,
prepaid, on a biling memo which will be cancelled upon receipt of the defective components at the factory.
When ordering components for repair or replacement, the model number and serial number must be includ-
ed on the customer reguest.

This warranty is invalid if the system is subject to mis-use, neglect, accident, improper installation or applica-
tion, alteration or negligence in use, storage, transportation or handiing and where the serial number has
been removed, defaced or changed.

FOREWORD April 1981

This Spring marks the beginning of MicroAngelo’s second year of wide acceptance across a broad range of
applications. In this system we have attempted to bring a carefully designed and integrated hard-
ware/firmware/software package to the marketplace in an affordable and powerful single board graphics
computer. We are pleased to share our excitement in the design of MicroAngelo with you.

Charles J. Rieger, Il
Vice President
Research & Design

Contents

B = s i pir e s T M R SO PSBELN LR s U S IR S SRR NG 7
1.1 Brief SYStern DVBIVIBWc..occoiiiiimomrmsarsvemmmorssnnnnsnsssasass srosssnsassanhabsssins sesssstsinges 7
1.2 Guick ILBGFraION SEORE ..o vcumusiirssismniisses inyes sboass bbb vosonmnissnnih o ssnham ks sn s ssssns s 8
1.3 Driving MicroAngelo™ from High Level SOftware ... B

. BYBEEM INBBGPBBION csmansiiosisivsansnsbesissiasn ynnssssbivhossiadisssabis subons s suis dusiinan svenonsin iuives 11
2.1 Changing the Port AJdressescccocoeeeeeunns s AR e N e R e 11
0D Cornetting B TVIVORIEORo i cmeipiesnss e o ssvmmobud s ot stnbbani e seisms Tatss s s 1oy e enss 1=
B e B A ae IRERRIAER L 05 el e il s VT M D il o O g e S b e Ao 12

231 Bonding s Bk o MIGPOABEIIO™ .o ..l icniidaioimes v seisinsuyommmsss sy e ks e
2.3.2 Reading a Response From MicroAngelo™ ... 13
238 Nesttiog MicrolinRelt™ .. . i i rse s SR e b S e s N 14
2.3.4 Sumenary of he ComPalPOrtc...ooo. . aipisnivi v iansss iwisesi s sos s s eraahmssoas 14

. Screenware Pak | and Screenware Pak |l - the Onboard Softwarecoooeveiiiiiciiiinininnnnes 17

3.1 ALPHA - the Dumb Terminal EMUIBEOrooiiiiiee e caeeenines 18
3.1 DumbiTerminsl Screer ConVBOEIDDE .. q. sl odimmnprasimm s vsnns s susman sirsmasbasie 18
342 Dumb Tenminal ASE ComalCOgBS. .. s ustaimsibassin s san ot Soas i st 2
3.1.83 DumbiTerminal PRRENg EIPGORNE & . e cvaviasseiirismis i e st 18
3.1.4 The Dunb Terminal IntertBce Bode ..o i wisanimsssisinsinisssiasssiiess o o desess s 20

3.2 BRAPHICS: The MicroAngelo™ Graphics SYSLEMovvevireirerriieeriiiieeiieiie i eeee e 20
3.2 GRAPHIGS Screar CORVENEIONSoxseusens vbsmnssiss nsisnitns s adhohsntnssasssomnss st sasis e 21
3.2.2 GRAPHICS Cursors and CoordiNBheSvveeeeereraein et ciiiaieieaea e s aneaeiians 21

o MAETOANGERIO™ COREDBIIIEl i v ssvarsassssassennimmmssss amsa s ssavnns s wessnammames AN 203 25
b e e L R O e i U St | o Wil B, K6 B < SRS RSl X o 26
4.2 BRUBRBHR ¢ v men s v s s s vuacsen s s o s S s i e S A S R b A A ke W e S e 28
A BEIEEN s s s 1o o labl s S a3 R o s e T S S R 1 Ko b i S s e Lt 249
e B e r on A S S P D O e L A 30
F e T | S e e sl s e POt et a
B BEBNIINL e o costbucnn a it v anr s s kR in eyt s b s R e 8 A R R S SN S E e S R R 32
e a0 e R = e g 1 2 A e e S = . RSP O | el e Bl (SR Bl e o = e R 343
S T T 2 e RS ool SN - - IOl TN . . 0 L S < 1. 35
it T s el e o T e I el A e, _on VI o o= S R 37
A AAONNENDBY i onmns s i s s e i s s s v h s s AV oim o meE er em iemor i Ao oo e e 38
o I L T e e o S v e B D R e T R et e 39
L B D e S e R A e e T e A TR R S A e S e S N g A S 41
o b L) B A I L e o it 42
4.14 RGRAPHCoooovvviieenrierenin, Il o T e el N el 43
A SR SR ISR e T Fon e o v S et s S B Aoa N S, U, et g 44
NG BREINT i v ittt s e st i s S st siie s e e s S i w2 s ire S e e S S A SR i 45
P o e N SOOI RN T R N 46
e T O P e S Sl g e s 47
e B 2 e e e o R el L e o Lo S e S 48
o T s e N S SO RN SR AR 1 N Al o RS e s N 49
s e T R e S WP N. MO W o el il oo OO . A0 SR oy o 50

5. SYStEM DBLAINSocomiimirieniieisiiiiiiniirite s s s o e e Ca 5b

5.1 MICroANGEIO™ MEMOPY MEDooiimiimuiiiiiiriie ettt 85
5.2 Defining the Alternate CharaCter SBLcciiiiiiiiiii s 56
5.3 Interfacing Onboard User Code to the SCreenware ..o 56
5.4 The MicroAngelo™ Physical I/0 POFESc.oiiiiiiiiiiiiiisiiiss st 57
B IRBOPUBIES 1wy oisnrunssiestasuisseianaspugsnsmsdmysoss s omarss spbe A TN R SARRIRARSHES SRS SR picami ey 57
5.5.1 Enabling/Disabling the Maskable INterrupts ... 58

5.5.2 Enabling the Real Time INLErPUPELooiiiii it 58

5.5.3 Connecting HOst-Side INEERPUPLSoooiviiiiiiiiiiii i 58

5.6 CoNNECNG 8 LIGE PENoiiiiiiiiiiis ittt 59
5.7 Summary of Hardware Jumper Options 8Nd CONNBCLONSvoeevrensessosisinssssassesaismsinanssses 59
5.7.7 HardWare JUMPEEScuuiiiiumiieiineiiuienssiesssiasesrsasass s ts st s ssntansssesyannssss 60

5.7.2 HardWare CONMBOUONS ... cuiuewruessunmmnssiininssaimsisissmansssashonsshsssmnsnrnmsspusssnssnssms 61

5.8 Adapting MicroAngelo™ to Non-S100 Bus SyStems ..., 63
5.9 Bit Mapping of Display RAM t0 Video SCreen ..o B4

B. Software INterface EXBMPIESoviiiiiiiiiiieiii e 67
B.1 Graphics: Clear Screen, Draw Triangle, Embed in Region ..., 67
6.2 Turnonand Read the Tracking CrOSSocvuiiiiieiiiiiiiiierieri st s e 67
6.3 Write a Message Around the Border of asquare et e 68
6.4 Underlining in Dumb Terminal MOOEouiiiiiiiiiiiiiii s 69
6.5 Sample BASIC Interface............c..... AL o L U e v . 70
6.6 Interfacing to FORTRAN ...ttt st 71
Appendix 1 - Summary of Screenware COMMENGSooiiiiiiiiii s 75
Appendix 2 - The Standard Character FON ... 78
Appendix 3 - Internal Entry Paints [Screenware™ Pak 1] ... 83
Appendix 4 - Internal Entry Points (Screenware™ Pak Il] ... 87
Appendix 5 - MicroANGEID™ SCHEMELICSouveririiiiiiitie i 93

General Information

The MicroAngelo™ Graphics System User’s Manual

1. General Information

MicroAngelo™ is an intelligent high resolution refreshed raster scan graphics display system capable of
drawing character and graphics images at high speed on a standard television monitor. Completely contained
on a single IEEE-696 [5100] bus card, MicroAngelo is an independent ZBOA-based computer with its own
32K byte display memory and 4K resident operating system, Screenware Pak ™, or optionally, Screenware
Pak II™ [BK). By talking in concise high level commands over a simple inferface, your host computer directs
MicroAngelo in generating graphics and text displays and in controlling the light pen interface. Because of its
self-reliant architecture, MicroAngelo places no computing load or memory space demand on your com-
puter. This means that, after giving directions to MicroAngelo, your CPU can continue with its own com-
puting as MicroAngelo concurrently carries out those directions using its own separate memory and CPU.
The results are a more responsive and convenient graphics/text display system than ever before possible
with traditional graphics board designs.

1.1 Brief System Overview

The MicroAngelo hardware resides on a single S100 bus board. This board contains all the electronics and
software for generating a 512 dot wide, 480 dot high, black and white display for a high-resolution TV
monitor [10 mhz bandwidth or better]. Since the board includes a ZBOA microprocessor, complete with its
own RAM [32K bytes), EPROM (up to BK bytes), and TV display circuitry, MicroAngelo is actually an in-
dependent, single card computer which when inserted into your computer, appears to your system as two
parallel ports. This architecture makes it possible for your computer to direct MicroAngelo via simple,
powerful high-level graphics commands sent over the two parallel ports, then proceed with its own computa-
tions while MicroAngelo carries out the display generation in parallel. Because of this simple and fast two-
port interface, MicroAngelo is easy to integrate and does not require any of your system's valuable address
space.

The MicroAngelo software, Screenware Pak | or Screenware Pak |, has been designed so that the system
can be used either as your main console output display, or as a separate graphics display processor, or both.
Logically, the Screenware consists of two largely independent software subsystems called ALPHA and
GRAPHICS. ALPHA emulates a “‘dumb terminal” interface, while GRAPHICS supports all the graphics
primitives. To get on the air with MicroAngelo as your main output device, you need only implement the sim-
ple interface to ALPHA shown below.

1.2 Quick Integration Steps

(Unless otherwise indicated, all memory addresses and operation codes throughout the manual
are in hexidecimal notation.]

To interface MicroAngelo to your computer as the main output device, do the following three things:

1. Decide whether or not the MicroAngel parallel ports, mapped from FO-FF, are compatible with
your' system. If your system currently uses any port in this range, you may have to alter the Port
Address Jumpers to some other 1 6-port boundary. This procedure is described in the section en-
titled "'Changing the Port Addresses’".

2. Install the following interface code as your system's main ["'console’') output routine. This code
will send the byte in the A register to MicroAngelo’s ALPHA component, and appear to your
operating system to be a "'dumb terminal’’ interface:

ttyout push psw save the output byte
tyo1 in OF1H read the Control Port
ani 1 test buffer-full bit
jnz ty01 wait until not full
pop psw restore the output byte
out OFOH send it to the Data Port
ret return

If you have changed the port addressing as the result of Step 1 above, replace the references to
output ports FO and F1 in this code to the appropriate new values. The software interface to
MicroAngelo is described in more detail in the section entitled ' Screenware Pak | and Screenware
Pak Il - The Onboard Software'’

3. Connect MicroAngelo to a TV monitor, as described in the section entitled System Integration"’.

At power-up time, MicroAngelo will clear the screen and display the winking text cursor in the upper left cor-
ner of the screen.

After getting on the air, you will then be able to take full advantage of the MicroAngelo graphics facilities,
described in detail in later sections.

1.3. Driving MicroAngelo from High Level Software

If you will be driving MicroAngelo primarily from software written in a higher level language [e.q., BASIC,
FORTRAN], you will find the interface very straightforward. Read the section entitled *' The Software Inter-
face™, then refer to the sections 6.5 and 6.6 for examples.

System Integration

2. 8System Integration

The system is supplied fully assembled and tested, and is ready to insert into virtually any S100 bus com-
puter after the port addresses have been set to be compatible with the host. (MicroAngelo can be easily
adapted to non-S100 bus structures. See the section entitled “‘Adapting MicroAngelo to Non-S100
Systems'".] As shipped, the two MicroAngelo ports are mapped as FO and F1 in your system’s port address
space. Because of the way MicroAngelo interprets port addresses, however, the hardware will actually res-
pond to 8 different ports within the group FO-FF, with port addresses FO, F4, FB, FC responding as one port,
and F1, F5, F9, FD responding as the second port. Before inserting MicroAngelo into your system,
therefore, verify that your system does not already currently use one of these B port addresses.

2.1 Changing the Port Addresses

If the MicroAngelo default port addressing is not appropriate for your system, you may move to any other
16 port boundary by altering the Port Address Jumpers J11-J14, which are located near the bottom right
corner of the board. As shipped, all four jumpers are set to logic **1"" by default printed circuit traces bet-
ween the center and right hole. To switch a jumper to 0", scratch through the default trace and connect
the center and left hole with a short length of wire. Set J11-J14 according to the following table to obtain
the desired port mapping:

Desired Ports J14 J13 J12 J11
00-0OF B - 0 0 8]
10-1F 8] 0 0 1
20-2F 8] 8] 1 0
30-3F 0 0 1 1
40-4F 0 L 0 0
50-5F 0 1 0 1
B60-6F 0 1 1 0
70-7F 0] 1 1 1
80-8F 1 0 0 0
80-9F 1 0 0 1
AD-AF 1 0 1 0
BO-BF 1 0 1 1
CO-CF 1 1 0 8]
DO-DF 1 1 0 1
EO-EF 1 1 1 0
FO-FF 1 1 1 1

For example, to map the ports in the CO-CF group, cut through the default traces on J11 and J12, and
solder in a short wire between the left and center holes on each of these two jumpers.

1

2.2 Connecting a TV Monitor

The final video signals are available at connector JB at the extreme top left of the board. These pins are
numbered 1-6 from left to right, and deliver the following signals:

JB-1 RS-170 composite video
JB-2 ground

JB-3 direct-drive TTL video

JB-4 ground

JB-5 direct-drive, horizontal sync
JB-6 direct-drive, vertical sync

The system can drive either a composite video monitor or a direct-drive monitor, or both simultaneously.

Connect a composite video monitor to JB-1, JB-2. Connect a direct-drive monitor to JB-3, JB-4, JB-5,
JB-6.

After setting the port addresses and connecting the TV monitor, the MicroAngelo hardware will be fully
operational in your host system, and you will then be able to install the simple software interface described in

the next sections. The section entitled ''System Details’ describes other hardware options you may even-
tually wish to use.

2.3 The Software Interface

All communications between your host computer and MicroAngelo occur over the two ports which have
been situated at some 16 port boundary in your system. The lower-addressed port of this pair [e.g., FO] is
the Data Port, the higher-addressed port [e.g., F1] is the Control Port. The Data Port is used for com-
municating 8-bit data and command bytes to and from MicroAngelo, the Control Port for handshaking and
for restarting MicroAngelo. The Screenware constantly monitors these two ports in anticipation of the next
graphics command or data byte.

When power is first applied to MicroAngelo, automatic restart circuitry initializes the system hardware
and software. The screen is cleared, all cursors and software options described in sections below are set to
their default values, and the Screenware begins listening over the Data Port for a command or data.

2.3.1 Sending a Byte to MicroAngeio

The Data Port is a latched, bi-directional pathway with handshaking. '‘Handshaking” means that before
sending a byte, the sender must first verify that the previous byte has been processed by the receiver.
Without handshaking the preceding data or command byte, which may not yet have been acted upon by the
receiver, might inadvertently be overwritten by the sender’s next byte. A latched, handshaking port is essen-
tial when each side of the interface is an intelligent system running asynchronously with respect to the other.
Handshaking applies symmetrically to both sides of the interface.

Handshaking is accomplished with MicroAngelo as follows. The rightmost bit of the Control Port byte will
be "'1"" when there is a host command or data byte in the outbound Data Port which MicroAngelo has not yet
acted upon. Thus, before sending any command or data byte over the Data Port, your system should always
read the Control Port, test this ""outbound buffer full’’ bit, and wait for it to become "'0", if it is not already.

12

[

The following B0BO assembly language subroutine is the standard method of sending a data or command
byte from the host's A register to MicroAngelo [without destroying any other registers]:

dport equ OFOH declare the Data Port address
cport equ OF1H declare the Control Port address
sendbyte . push psw save the byte a moment
sdb in cport read the Control Port

ani 1 examine the status bit

jnz sbd1 loop if buffer is full

pop psw restore the byte to send

out dport send to the Data Port

ret return

[Note that this code is exactly what would be used if you were driving a dumb terminal.) See the section en-
titled ""Software Interface Examples'* for an equivalent interface written in BASIC.

In the opposite direction, when the Screenware sends the host system a response, an identical
mechanism will cause the Screenware to wait for the host [i.e., your software] to read the response from
the Data Port before sending the next response byte.

2.3.2. Reading a Response from MicroAngelo -

The second from the right bit of the Control Port indicates to the host computer whether or not there is a
response byte back from MicroAngelo waiting to be read from the inbound port. When **1", this bit indicates
that a response byte is ready to be read over the Data Port; "0 means there is no
byte to be read. When the host reads the byte from the Data Port, this bit is automatically reset to *'0'* to
inform the Screenware that it is free to send the next response byte, if any.

The following code is the standard method of reading a response from the Screenware. It waits for a
response byte to enter the interface from the MicroAngelo side, then reads it and returns it in the host's A
register [without altering any other registers).

readbyte in cport read the Control Port
ani 2 isolate the ''data available'" bit
iz readbyte wait if no byte ready yet
in dport read the byte from the Data Port
ret return

The SENDBYTE and READBYTE routines implement a complete MicroAngelo interface. In a typical CP/M-
based system, these two subroutines should be coded and placed in the USER I/O area, where they can be
called by high-level system and user software to control MicroAngelo.

13

2.3.3. Restarting MicroAngelo

Your system can restart MicroAngelo at any time via the Control Port. By outputting a 01 byte [actually,
any byte with the rightmost bit 1) to the Control Port, the host causes the hardware reset condition to
begin on the MicroAngelo board. This reset will persist until a 00 byte is sent to the Control Port, and is func-
tionally identical to the power-on reset generated by the MicroAngelo hardware at the time the system was
first turned on. Immediately after the host releases the MicroAngelo from the reset, Screenware Pak | will
clear the screen and reinitialize all modes and parameters to their default values. All current context will be
lost. Screenware Pak Il reacts somewhat differently, see Section 4.15 for details.

Example code for restarting MicroAngelo is:

graphrst mvi al send a 1" to the Control Port
out cport
mvi 8,0
out cport
ret return

You may wish to include this code in your operating system’'s warm- and/or cold-start initialization code so
that the MicroAngelo display will be restarted each time the host goes through its own initialization se-
guence. On the other hand, the only condition under which you actually have to use the reset is when user
software has sent an erroneous or incomplete command sequence to MicroAngelo, or when user-loaded
code has lost control onboard MicroAngelo [see the UTILITY and USER commands).

2.3.4. Summary of the Control Port

To summarize, the Control Port plays two roles. Reading this port delivers the interface handshaking bits:

7 6 5 4 3 2 1 0

L)(X XX XX XX XX XX IF OF

IF: Inbound buffer [from MicroAngelo to host) is full
OF: Outbound buffer(from host to MicroAngelo] is full
XX: Unused

Writing to this port controls the MicroAngelo hardware reset:

7 & 5 4 3 2 1 0

XX XX XX XX XX XX XX HR

HR: 1" causes the hardware reset to begin
0" releases the reset condition, allowing MicroAngelo to restart

XX: Unused

14

Screenware Pak | and

Screenware Pak |i
The Onboard Software

3. Scresnware Pek | and Screenware Pak Il - the Onboard Software

Screenware responds to commands and data sent over the Data Port under the conventions described in
the previous section. Screenware can be thought of as two largely independent components: ALPHA and
GRAPHICS. The ALPHA [standing for ““alpha-numeric’’) component manages the graphics display as though
it were a text-only “'dumb terminal”’. This allows you to get on the air quickly, using MicroAngelo as your
system’s primary output device. The GRAPHICS companent recognizes a variety of graphics commands for
operations such as point, vector, region and special character generation, and light pen control. Because of
the way the Screenware interprets commands and data, ALPHA and GRAPHICS are both always active, so
that you are not forced to be in one mode or the other at each moment, as with some other types of
graphics systems.

Upon receiving a byte from the host over the Data Port, the Screenware first inspects the high-order bit
of the byte. If this bit is 0"

7 6 5 4 3 2 1 0

0 ASCII CODE

the byte is sent to the ALPHA processor. Since the ALPHA processor is emulating a dumb terminal, the
byte will be interpreted as an ASCIl character, and acted upon appropriately. If the code is a printing
character, it is printed on the screen at the current ALPHA cursor, and the cursor is advanced, possibly in-
voking the ALPHA scrolling mechanism. Alternatively, if it is an ASCIl control character [e.g., carriage-
return, backspace), then the ALPHA processor takes the appropriate control action. [The specific ASCII
control codes to which ALPHA responds are described below.] Thus, the ALPHA component provides a com-
plete dumb terminal emulation.

If the high bit of a received byte is **1"", the byte is interpreted as a command, with the next five high-order
bits specifying the opcode. Except for opcode O (which relates to the dumb terminal emulator], all commands
are handled by the GRAPHICS component.

The Screenware Pak | and Screenware Pak Il commands are:

i 6 5 4 3 2 1
1 OPCODE MODE
Opcode Command Function
Name

Screenware Pak | and Screenware Pak II:

) ALPHAMODE select various ALPHA mode options
1 GCURSOR set or read the graphics cursor

2 SCREEN clear the screen, set figure/ground

3 POINT turn on or read a point

4 VECTOR draw a vector [line)

5 REGION draw a rectangular region

6 CHARACTER plot or define a graphics character

7 LIGHTPEN turn on or off, or read the light pen
B CROSSHAIRS control the graphics crosshairs

g MEMORY dump, load screen or memory

10 uTILImYy arm USER, call user code, arm RTI
11 USER call user-defined function

17

Screenware Pak Il

e TEST perform diagnostic EPROM, RAM, ALPHA, or Mun-
ching Squares test

) i RGRAPHC move the graphics cursor by a relative amount

14 SPLITSCR split the screen, or load the default character
generator or ASCI control code group

i RPOINT plot a point at relative displacement from current cur-
sor

16 RVECTOR draw a vector to endpoint specified by relative coor-
dinates

17 RREGION paint a region of extent specified by relative coor-
dinates

18 CIRCLE draw a circle of specified radius at the current
graphics cursor

9 FLOOD flood a bordered region with all 1's or O's

20 MACRO define, invoke, or delete a named graphics object

21-31 RESERVED reserved for future use

The two rightmost bits of 8 GRAPHICS command byte are used in specifying a mode or subfunction within
these 20 categories. The ALPHAMODE command is described below.

3.1 ALPHA - The Dumb Terminal Emulator

At startup time, the Screenware clears the display, displays a winking text cursor in the upper left corner
of the screen, and begins emulating a "'dumb terminal’’ capable of at least a 300 character per second data
rate (3000 baud equivalent] under most conditions. Screenware Pak Il enhances this rate to more than
6000 baud. [The limiting factor for the data rate is the scrolling software. For applications requiring higher
data rates, “'rolling"” instead of scrolling may work to your advantage. See the ALPHAMODE command.]

Each ASCII code your system sends over the Data Port is treated by the dumb terminal emulator as either
a printing ASCIl character or an ASCII control code, and will cause the appropriate screen activity to occur
automatically.

3.1.1 Dumb Terminal Screen Conventions

The ALPHA processor treats the screen as a text grid of 40 lines of B85 characters per line. Row O is at
the top, row 38 is at the bottom, calumn O is at the left, column B4 is at the right. The ALPHA CURSOR,
(AR, AC], always identifies the screen position to which the next ALPHA character will be written, and is in-
itialized at restart time to (O, 0).

Characters on the screen are 12 pixels high, 6 pixels wide, and are generated by the Screenware from its
internal character generator table. [Appendix 2 shows this character set in detail.] However, using the
CHARACTER and/or MEMORY commands, you can define a second, alternate set of 128 characters. (See
the section “'Defining the Alternate Character Set™ for a description of this procedure.)

18

3.1.2. Dumb Terminal ASCII Control Codes

The ALPHA dumb terminal emulator recognizes and processes the following standard ASCIl control

codes:
t BS (0B]) - Backspace [back up to and erase previous character] - &<
HT (09) - Horizontal Tab [moves to next B column boundary])
LF [OA] - Line Feed [ignored)
FF [OC) - Form Feed [clears the screen) «ori=:
CR [OD] - Carriage Return [also does a line feed]
ESC (1B) - Escape [causes the next ALPHA byte to be printed literally)
DEL [7F) - Delete [treated as BS])

Screenware Pak |l conditionally recognizes

HOME (01) - Home alpha cursor
DELEOL [OE] - Delete text to end-of-line
DELEOP [OF) - Delete text to end-of-page
CURUP 4] - Cursor up

CURDN [12] - Cursor down

CURLF (13) - Cursor left

CURRT [14)] - Cursor right

3.1.3. Dumb Terminal Printing Options

The dumb terminal emulator can be conditioned to print text in @ number of special modes. If you do not

need any of these modes, no action is required. However, the following modes are available and can be

@ selected by calls to the ALPHAMODE command described in the section entitled *'MicroAngelo
Commands"":

. Figure/ground [whether to print white-on-black or black-on-white characters)

. Underlining (whether or not to underline characters as they are printed]

. Overstrike [whether to overstrike or print as usual)

. Font [whether to use the standard or user-defined font)

. Cursor [whether or not the winking cursor should be displayed)

. Scroll (how much to pop up when text would fall off the bottom of the screen]
. Coordinates [where to print the next text character)

Nogbhown -

The defaults for these are:

1. Light Characters on dark background

2. Underlining off

3. Overstrike off

4. Standard font

5. Visible cursor

6. 10-line pop-up

7. Starting cursor coordinates at row 0, column O

See the ALPHAMODE command if you wish to change any of these defaults.

18

3.1.4. The Dumb Terminal Interface Code

Because of the ALPHA component's ability to emulate a standard terminal, MicroAngelo will become your
system'’s main output device after a simple integration step. To make MicroAngelo your main output device,
install the following code in your system’s User area as the subroutine to be called to output the A register to .,
the screen. In this code (which is repeated from the section entitled ' Quick Integration Steps''], DPORT and
CPORT refer to the two communications ports described earlier. Unless you have changed the port mapp-

ing, these are FO and F1, respectively.

dport equ OFCOH
cport equ OF1H
ttyout push psw
tt01 in cport
ani 1
jnz tt01
pop psw
out dport
ret

declare the Data Port
declare the Control Port

save the output character

read the MicroAngelo Control Port
test the output status bit

loop if interface buffer still full

send the character

to the MicroAngelo Data Port
return

If you wish warm- and/or cold-starts of your system to restart MicroAngelo, also insert the following reset

code in your host system'’s initialization sequence(s):

ttyrst mvi a,n
out cport
mvi a0
out cport
ret

send a hardware reset
to the Control Port
release the reset condition

return ‘

3.2. GRAPHICS - The MicroAngelo Graphics System

The GRAPHICS processor is responsible for plotting points, vectors, regions and characters of
special size or orientation, and for controlling the light pen interface. GRAPHICS responds to various com-
mands described in the section entitled **MicroAngelo Commands®*, and is largely independent of the ALPHA
processor, which emulates a dumb, text-only terminal. The sections below describe the GRAPHICS conven-

tions and cursors.

20

3.2.1. GRAPHICS Screen Conventions

The Screen is a 512 wide by 480 high grid of on/off pixels [picture elements’'). X coordinates range from
0-511 left to right, Y coordinates from 0-479 bottom to top. In the descriptions below, the term "'graphics
coordinates' refers to this coordinate system. Since a graphics coordinate requires 9 bits, two bytes are
used when specifying a graphics coordinate to MicroAngelo. By convention, the high byte is always sent first,
the low byte second. For example, to send the coordinate 293 decimal [125 hex], send a first byte of O
hex, a second byte of 25 hex. Any graphics X coordinate larger than 511 or Y coordinate larger than 4738
sent to Screenware will be clipped to its maximum value.

A pixel is “'on'' when a "'1"" bit is stored in its corresponding location in the MicroAngelo display memory.
However, whether an "'on” condition is seen as a light dot on a dark background or a dark dot on a light

background is determined by the setting of the screen’s figure/ground hardware, described in the SCREEN
primitive below.

3.2.2. GRAPHICS Cursors and Coordinates
The Screenware continously maintains six cursor and coordinate pairs:

[AR,AC] - the current row and column of the ALPHA CURSOR; AR ranges from 0-39 top
to bottom, AC from O to 84 left to right

[AX,AY] - the graphics coordinates of the lower left pixel of the character at (AR,AC]

[CX,CY] - the main GRAPHICS CURSOR'S coordinates

[LX,LY] - the coordinates of the most recent light pen firing
[TX,TY] - the graphics coordinates of the tracking cross
[HX,HY] - the graphics coordinates of the crosshairs

[AR,AC) and [AX,AY] are maintained by the ALPHA component. The others are described in the following
sections, and are all initialized to [0,0] at restart time.

2t

MicroAngelo
Commands

®

4. MicroAngelo Commands

This section describes the 12 Screenware Pak | and Pak || commands, and 9 Screenware Pak Il com-
mands. In these descriptions the calling sequence is indicated by

CALL: (hex opcode> {byte)> ... (byte>

i.e., to use the command, send the hex opcode followed by the specified byte-sized parameters, all over the
Data Port. MicroAngelo responses, if any, are indicated by

RESPONSE: (byte) ... (byte)

If @ command generates responses, your software must always read those responses. Otherwise, the
Screenware will become backlogged and will eventually stop responding until any outstanding responses are
read.

The first command, ALPHAMODE, is used to set the various dumb terminal printing options, and relates
more to the ALPHA component than to the GRAPHICS component. The remaining commands relate to
MicroAngelo graphics. Appendix 1 summarizes all commands and gives decimal and octal equivalents for the
opcodes.

25

4.1. ALPHAMODE

OPCODE O

- ALPHAMODE 1 0 0 0 0 0 M

MODE O: SET ALPHA MODE BITS
CALL: BO ¢ mode >
RESPONSE: none

The ALPHA MODE word is set to the (mode » byte. The format of the ALPHA MODE word is:

SC

EC

HS

Ccu

FO

0s

UL

FG

SC

EC HS Cu FO 0s uL FG

-

g

=g 49 <d 49 =g -9

(PAK 1] means do not clear screen or home [AR,AC)
(PAK 1) means clear screen and home [AR,AC]

(PAK I} means do not clear alpha area or home [AR,AC)
[PAK I} means clear alpha area and home [AR,AC)

[SC is not actually stored as part of the ALPHA MODE word, but
has only a one-time effect at command time.]

(Pak Il only] disables special ASCII code interpretation
(Pak Il only] enables special ASCII code interpretation

(Pak Il only) selects normal mode
(Pak Il only) selects high speed mode

enables display of the winking cursor
inhibits display of the cursor

selects the standard Screenware Pak character set
selects the user define character set

selects normal erase-before-print mode
selects character overstrike mode

inhibits underlining
turns on underlining

selects light characters on dark background
selects dark characters on light background

26

._w. N

P

Bits 20H and 40H of the ALPHA mode word have meaning in Pak II. Bit 20H of the ALPHA MODE word is
now defined as the "high speed select” bit. When set to 1, the new high speed ALPHA mode is selected,
when set to O the normal [although also somewhat improved) mode is selected. the poweron default is nor-
mal mode. In high speed mode, only the innermost B scan lines of the character are generated, leaving the
top and bottom 2 of all characters’ 12 scan lines ungenerated. While this is adequate for all characters in
the default character set, user-defined characters that make use of the top or bottom 2 lines will not be fully
generated in high speed mode. Additionally, the high speed mode ignores the figure/ground, underline, and
overstrike option bits.

Bits 40H of the ALPHA mode word governs whether or not the special ASCI control codes for cursor and
screen control will be enabled [see the SPLITSCR command). When this bit is 1, special codes will be pro-
cessed, and will take precedence over any other interpretation of those 8 ASCIl characters. When this bit is
O [the power on default], codes will not be recognized.

MODE 1: POSITION ALPHA CURSOR
CALL: 81 ¢(row> (col>
RESPONSE: none

The ALPHA CURSOR s set to [<row), (col»). This “'escape sequence’ allows for quick reposi-
tioning of the cursor. Subsequent text will be printed starting at the new location.

MODE 2: READ ALPHA CURSOR
CALL: B2
RESPONSE: (row > <col>

The Current ALPHA CURSOR location is returned, row first then column.
MODE 3: SET ALPHA SCROLL WeT

CALL: 83 {n?>
RESPONSE: none

T e
iteETER

LA

The ALPHA scroll parameter is set to {n>.If <n) = 0, “roll mode" is selected. In this mode,
rather than popping up, the cursor wraps around to the top line and clears one line at a time in ad-
vance as it reuses the screen. This mode is fastest, since it requires no pop-up time, but can be
somewhat visually confusing. If <n) is greater than O and less than 40, the screen will be popped
up <n» lines each time text is about to fall off the bottom . If <n> is greater than 38, the entire
screen will be cleared at pop-up time, and new text begun at the top.

Notes

The SPLITSCR command augments the ALPHAMODE command and provides two other services relating
to the ALPHA facility. In particular, the ALPHA screen can now be restricted to a user defined number of
bottom screen lines. When the screen has been split by this command, issuing the ALPHA screen clear
command clears only this bottom region. Also, the scroll parameter applies to this bottom region, and is set
by SPLITSCR. Refer to the SPLITSCR sections for details.

27

4.2. GCURSOR

OPCODE 1 - GCURSOR 1 0 0 0 0 1 M M v

MODE O: SET GRAPHICS CURSOR
CALL: 84 <(xh> (xl> <yh> (yl>
RESPONSE: none

The Graphics cursor [CX,CY] is set to the values specified. [{xh > is the high byte of the CX coor-
dinate, {xl) isthelow byte, (yh) is the high byte of the CY coordinate, <yl the low byte.] The
main graphics cursor is never actually visible, but serves as the relative origin of several graphics
operations. [CX,CY) is automatically moved by several graphics operations.

MODE 1: READ GRAPHICS CURSOR
CALL: B85
RESPONSE: <{xh> <(xI> (yh> <(yl>

The current [CX,CY]) coordinates are reported.
MODE 2: SET [CX,CY] TO [AX,AY]

CALL: BB
RESPONSE: none

CX is set to AX, CY is set to AY. This is useful for coordinating text and graphics. Q“
MODE 3: SET [CX,CY] TO [TX,TY]
CALL: B7
RESPONSE: none

[CX,CY] are set to [TX,TY).

28

4.3. SCREEN

OPCODE 2 - SCREEN 1 0 0 0 1 0 M M

MODE O: CLEAR SCREEN
CALL: B8
RESPONSE: none

The display screen is cleared by turning all pixels "'off". If the figure/ground has been set to light-
on-dark, the screen goes completely dark. If the figure/ground has been set to dark-on-light, the
screen goes completely light.

NOTES

In Screenware Pak |l the CLEAR SCREEN command applies only to the top region of the screen, in case
the SPLITSCR command has been issued to divide the screen between top (graphics/text) and bottom [dumb
terminal text only]. If the screen is not divided (i.e., all 40 lines are allocated to the ALPHA screen), CLEAR
SCREEN will clear the entire screen. Refer to the SPLITSCR command for details. Also, the tracking cross
and crosshairs are momentarily removed [if on] during a clear so that they are not erroneously erased.

MODE 1: SET SCREEN FIGURE/GROUND
CALL: B2 (fg?»
RESPONSE: none

The figure ground is set according to the rightmost bit of the following byte, <fg > . A 0" bit
selects light-on-dark, & '*1"" bit selects dark-on-light.

MODE 2: TOGGLE SCREEN FIGURE/GROUND

CALL: BA
RESPONSE: none

The current figure/ground is toggled. This is useful, for example, in rapid screen flashes to attract
the user's attention.

MODE 3: READ SCREEN FIGURE/GROUND
CALL: BB
RESPONSE: (fg?

The current figure/ground status is returned as the rightmost bit of the response byte.

29

4.4 POINT

OPCODE 3 - POINT 1 0 8] 0 1 1 M M

MODE O: TURN POINT OFF
CALL: BC <xh> <xI> Cyh)> <yl>
RESPONSE: none

The point at the specified graphics coordinates is turned off. [CX, CY] are set to this location.

MODE 1: TURN POINT ON
CALL: BD <(xh> (xI> {yh) {yl>
RESPONSE: none

The point at the specified graphics coordinates is turned on. [CX, CY] are set to this location.
MODE 2: COMPLEMENT POINT

CALL: BE <(xh> (x> (yh> (yl>
RESPONSE: none

The paoint at the specified graphics coordinates is complemented. [CX, CY] are set to this location.
MODE 3: READ POINT
CALL: BF {xh} {(xI> <yh> {yl>
RESPONSE: < val >

A byte containing only the requested pixel is returned. If this byte is zero, the point is off; if non-
zero, the point is on. [CX, CY] are set to this location.

&1
St

30

Z

4.5 VECTOR

OPCODE 4 - VECTOR 1 o 0 1 o ol M WM™ 1

MODE O: TURN VECTOR OFF
CALL: 90 ¢(xh> (xI> (yh)> <yl>
RESPONSE: none

All paints lying along the vector between and including [CX, CY] and the coordinates specified in
the command are turned off. [CX, CY) are set to the new endpoint after the operation.

MODE 1: TURN VECTOR CON
CALL: 81 (xh> <xI> {yh> <(yl?
RESPONSE: none

All points lying along the vector between and including [CX, CY] and the coordinates specified in
the command are turned on. [CX, CY] are set to the new endpoint after the operation.

MODE 2: COMPLEMENT VECTOR
CALL: 82 (xh) <(xI> (yh> Cyl>
RESPONSE: none

All points lying along the vector between and including (CX, CY] and the coordinates specified in
the command are complemented. [CX, CY] are set to the new endpaint after the operation.

MODE 3: NO OPERATION

31

4.6 REGION

OPCODE 5 - REGION 1 0 0 1 0 1 M M

MODE O: TURN REGION OFF

CALL: 84 <(x1h) <x11) <ylh)> <y1l) <(x2h)> (x2> <(y2h)> (yel’
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner points given in the
command are turned off. [CX, CY] are unaffected.

MODE 1: TURN REGION ON

CALL: 85 (x1h> <(x11> <(y1h) <y1l) <(x2h) (x21> {y2h> (y2l)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner points given in the
command are turned on. [CX, CY] are unaffected.

MODE 2: COMPLEMENT REGION

CALL: 96 (x1h> (x11> C(ylh> C(y1> (x2h) (x21> <(y2h> C(y21)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner points given in the
command are complemented. [CX, CY) are unaffected.

MODE 3: NO OPERATION

32

v

4.7 CHARACTER

OPCODE 6 - CHARACTER 1 0 0 1 1 0 M M

MODE 0: PLOT GRAPHICS CHARACTER
CALL: 98 (c>
RESPONSE: none

The character identified by the following byte, <c >, is plotted at [CX, CY), and [CX, CY] is ad-
vanced to the position at which the next graphics character of similar type would be plotted. [CX,
CY] defines where the lower left pixel of the character [with respect to the character’s frame of
reference] is to be plotted. The low-order 7 bits of <c > are the ASCIl code of the desired
character. The high-order bit identifies the font: *'0" for standard, “1" for user-defined. [These
are the same fonts as used by ALPHA.] The plotting of the character is carried out according to
the four mode bits in the GRAPHICS MODE WORD [see MODE 1 below]:

(O s
o f
N

XX XX XX XX FG SZ DD B]8]

DD: These two bits determine the character's print direction
and orientation, as follows:

0: left to right, character upright

1: right to left, character upside-down

2- bottom to top, character S0 degrees ccw
3: top to bottom, character 90 degrees cw

SZ: “'0'" selects normal size character (6 by 12]
1" selects double size character (12 by 24]

FG: 0" selects light on dark figure/ground
1" selects dark on light figure/ground

For example, to write a double-size, dark on light message up the left edge of the screen
(characters 90 degrees CCW), set the mode word to OE. Note that GRAPHICS characters plot-
ted by this command have no relation to the ALPHA component, except that both rely on the
same fonts. Because of the added complexity, the GRAPHICS mode character plotting takes
somewhat longer than ALPHA mode.

33

MODE 1: SET GRAPHICS CHARACTER MODE
CALL: 99 { mode >
RESPONSE: none

The GRAPHICS MODE word is set to { mode > . The modes thus defined apply to all subsequent
GRAPHICS characters. [See above).

MODE 2: DEFINE ALTERNATE CHARACTER
CALL: BA (asc? (811> ... (s0>
RESPONSE: none

The B by 12 bit pattern for ASCIl character code ¢ asc) is defined and inserted into the user-
defined font. The bit pattern is sent as 12 bytes (s11), ..., (s0> which represent 12 scan
lines of the character, from top to bottom. Each (si) byte's low order B bits define the B pixels
across that scan line of the character. For example, to define ASCII code 13 as a bold, full-height
“T", you would call the Screenware as follows:

8A 13 3F 3F OC OC OC OC OC DOC OC OC oC ocC

When printed, this character would then appear on the screen as:

To install a complete user font, the UTILITY primitive's block DEPOSIT mode is faster. The user-
defined font is stored in MicroAngelo’s memory beginning at address OFS40H. By depositing

12*128 = 1536 continuous bytes starting at this address, you will effectively be loading the
entire user-defined font in one command.

MODE 3: LOAD DEFAULT CHARACTER SET (Screenware Pak Il only)
CALL: 9B
RESPONSE: none

The standard MicroAngelo character set in EPROM is copied to the user-defined font region.
Note that this region may also be in use for other purposes [see the USER and MACRO com-
mands]}, so that care should be taken in managing this storage. This command is useful when the
user wishes the alternate character set to be largely similar to the default, except where changed
via the DEFINE ALTERNATE CHARACTER command.

34

4.8 LIGHTPEN

OPCODE 7 - LIGHTPEN E 0 0 1 1 1 M M

The light pen interface [described electrically in the section entitled “Connecting a Lightpen'') provides a
method of communicating with host software by pointing rather than typing. When operating, the light pen
will generate pulses that are converted to coordinates by the Screenware. In Screenware, the light pen soft-
ware is always enabled, and is always ready to record the most recent light pen signal coordinates, [LX, LY].
These coordinates are accurate to two pixels vertically and horizontally when a guality light pen is used [see
the section entitled ""Connecting a Light Pen"').

When the "tracking cross" is turned on [and visible as a small complemented cross on the screen), any
light pen activity within the vicinity of the cross is interpreted as a command to adjust the cross so that it is
dead-centered under the light pen. With the Screenware continulusly (and at high speed] adjusting its loca-
tion to remain under the light pen, the cross appears to follow the pen where ever the user moves it. When
the tracking cross is enabled, its coordinates are known as (TX, TY¥].

The following commands deal with the light pen interface.

MODE O: TURN TRACKING CROSS OFF
CALL: 8C
RESPONSE: none

The light pen tracking cross is removed from the screen, if present. The system powers up with
the cross off.

MODE 1: TURN TRACKING CROSS ON
CALL: 8D <(xh> (xI> <(yh> <yl)
RESPONSE: none

If the tracking cross is on, it is turned off. The cross is then displayed at the specified coordinates,
and [TX, TY] are set to this position.

MODE 2: READ TRACKING CROSS
CALL: SE
RESPONSE: 00
or
01 (xh> (x> <yh)> (yl>

The current tracking cross coordinates, [TX, TY), are returned.

35

MODE 3: READ LIGHT PEN
CALL; SF
RESPONSE: 00
or
01 <xh> (x> Cyh> C(yl)

Regardless of whether or not the tracking cross is on, if the light pen has fired since the last
reading via this command, a 01 byte, followed by the most recent light pen coordinates, is return-
ed. A 0O response is returned if the light pen has not fired since the last reading. The light pen is
logically reset to await another firing. This mode is useful, for example, in detecting when the user
is pointing at a menu item on the screen.

Notes

In Screenware Pak Il the tracking cross pen-following algorithm has been improved to provide a more
stable cross display, and to provide better tracking response. Also, the tracking cross is now momentarily
removed [if on] during either an ALPHA or GRAPHICS screen clear or ALPHA scroll to prevent its erroneous
erasure or duplication

36

4.9 CROSSHAIRS

OPCODE 8 - CROSSHAIRS L 1 0 1 0 8] 0 M M

The Screenware “‘crosshairs’ are a full-screen vertical line and horizontal line which, when visible, in-
tersect at the current crosshair coordinates (HX, HY]. Crosshairs are useful for indicating the coordinates
of the next graphics operation in an interactive design environment. The crosshairs are independent of the
main graphics cursor [CX, CY] and the tracking cross and lightpen coordinates [TX, TY] and [LX, LY]).
However, simple user software that constantly monitors these other coordinates can logically couple the
crosshairs to any of them.

MODE O: TURN CROSSHAIRS OFF
CALL: AD
RESPONSE: none

If the crosshairs are on, they are turned off. [HX, HY] remain as they are.

MODE 1: DRAW CROSSHAIRS
CALL: A1 <(xh) <xI> <(yh> <y
RESPONSE: none

If the crosshairs are on, they are turned off. The crosshairs are then turned on at the specified
coordinates, and [HX, HY) are set to these coordinates.

MODE 2: READ CROSSHAIRS
CALL: A2
RESPONSE: <(xh> (x> (yh> (yl>
The current crosshair coordinates, [HX, HY], are returned.
MODE 3: DRAW CROSSHAIRS AT [CX, CY]

CALL: A3
RESPONSE: none

If the crosshairs are on, they are turned off. [HX, HY] are set to [CX, CY) and the crosshairs are
drawn at this new location.

Notes

In Screenware Pak |l the crosshairs are now momentarily removed (if on] during ALPHA or GRAPHICS
screen clears and for ALPHA scrolling to prevent their erroneous erasure or duplication.

37

4.10 MEMORY

OPCODE S - MEMORY 1 8] 1 0 0 1 M M

MODE O: DUMP SCREEN
CALL: A4
RESPONSE: <b1> ... (b7800)

The 7800H bytes of the display screen are reported, top screen scan line first, working left to
right. This command is useful for storing screen images on disk.

MODE 1: LOAD SCREEN
CALL: AS (b1 > ... {b7B00>
RESPONSE: none

The 7800H bytes of the display screen are loaded, top screen scan line first, working left to right.
This command will load a previously dumped screen image.

MODE 2; EXAMINE MEMORY BLOCK
CALL: AB <(nh> (nl> (ah)> (al>
RESPONSE: (b1 > ... {bn>

The N bytes [specified by (nh > < nl)] of MicroAngelo's memory starting at the address
specified by <ah) (al) are reported. See the section entitled ''The MicroAngelo Memory Map'’
for a description of how the system's memory space is allocated.

MODE 3: DEPOSIT MEMORY BLOCK
CALL: A7 <nh) {(nl)» {sh) Cal) (b1) ... £bn)
RESPONSE: none

The memory block of specified length and starting address is loaded, using the N bytes following
the command. This command is useful for loading the alternate font, and for loading user graphics
code to augment the Screenware. To load a complete user-defined font of 128 ASCIl characters
of 12 scan lines [bytes) each, say:

A7 06 0D F8 40

then write the 600H font bytes to the Data Port. [See the section entitled **Defining the Alter-
nate Character Set" for more details.] Before loading user code via this command, see the sec-
tion entitled *'The MicroAngelo Memory Map''.

Notes

In Screenware Pak Il memory deposits and screen loads run much faster because of a change in protocol.
Memory examines and screen dumps run slightly faster.

38

ﬁ\.\
)

4.11 UTILITY

OPCODE 10 - UTILITY 1 0 1 0 1 0 M M

MODE O: SET USER COMMAND ADDRESS
CALL: AB (ah) <al>
RESPONSE: none

The address of the code to be called by the USER command [opcode 11)is definedas (sh) (al) .
The code should have been deposited into MicroAngelo’s RAM via a MEMORY command prior to
this command. See the section entitled “‘The MicroAngelo Memory Map'* before installing any
user code.

MODE 1: CALL USER CODE
CALL: AS (ah)> (al> (imask?> (iah)» C(ial)
RESPONSE: none

The Screenware calls the user code at the specified address. The user code gains control of the
MicroAngelo CPU, may alter all registers except the stack pointer, and can return by executing a
RET instruction. If the stack pointer is altered, the Screenware should be reentered at location O,
[Pak 1] or location 6SH [Pak Il}, i.e., restarted.

As the user code is called, 3 types of logical interrupts can be enabled: DFHI [Data From Host),
DTHI [Data To Host], and LPI [Light Pen). [See the section entitled *'Interrupts” for a description
of MicroAngelo interrupts.] (imask) identifies which [if any] interrupt sources to enable:

74 6 5] 4 3 & 1 8]

XX XX XX XX XX LP DT DF

LP enable Light Pen interrupts
DT enable Data To Host interrupts
DF enable Data From Host interrupts

When an enabled interrupt occurs, the user interrupt handiing code at the address specified by «
iah > (ial > will be called under the following context: (1] interrupts will be disabled, [2] an EX AF,
AF', EXX sequence will have been done to save all registers, [3] the A register will contain the in-
terrupt mask (in the format shown above) defining the source(s) of the current interrupt. After
finishing, the interrupt handling code should return via the sequence EX AF, AF', EXX, El, RET.
This CALL command will permit you to install 8 completely independent operating system within
MicroAngelo, and will give this operating system access to interrupts.

39

MODE 2: SWITCH REAL-TIME INTERRUPTS
CALL: AA OD

or

AA D1 (ah> (al)
RESPONSE: none

If the second byte of the command is 00, the 1/60 second real-time interval interrupts are disabl-
ed. If the second byte is 01, real-time interrupts are enabled, and will call the user-defined code at
location {ah) (al) . This code should protect all registers on the stack [i.e., not via an EX AF,
AF', EXX sequence], and should return via a RETI instruction, since the real-time clock interrupt is
non-maskable. Before arming or using the real-time clock, read the section entitled ''Interrupts”.

MODE 3: FORCE COLD START [Screenware Pak |i only]
CALL: AB
RESPONSE: none

A cold poweron sequence is forced, causing the MicroAngelo to be completely reset and-send a-

~byte<AB>te-the-hest. This command is necessary because Screenware Pak |l distinguishes be-
tween the first and subsequent hardware resets by storing and reading a flag byte [a byte which
would be extremely unlikely to appear in RAM randomly at poweron.].

40

‘f\'

4.12 USER

OPCODE 11 - USER 1 0 1 0 1 1 M M

MODES 0,1,2,3: CALL USER PRIMITIVE
CALLS: AC, AD, AE, AF
RESPONSES: user-defined

This command provides a simple interface wherein user-extensions to Screenware software can
be called. Before using this command, first install the user code in MicroAngelo's RAM using the
MEMORY command’'s DEPOSIT mode. Then declare the code's entry address via the UTILITY
command’s MODE O. After this setup procedure, the four USER opcodes shown above will all be
routed to this user code. At call time, the two mode bits [i.e., the bits that distinguish the four
USER command opcodes) are available to the user code as the two rightmost bits of the B
register (all other bits zero]. The user code is permitted to alter any registers except the stack
pointer, and should return to the Screenware via a8 RET instruction. Before using this feature,
read the section entitled ""The MicroAngelo Memory Map™'.

Notes
The USER command will usually consume memory which is also used by the CHARACTER commands [per-

taining to the user-defined alternate character set). Since the MACRO facility [Screenware Pak Ii only) will

also require some of this memory, additional care in allocating this space should be exercised. Refer to the
MACRO command for details.

41

4.13 TEST (Screenware Pak Il only)

OPCODE 12 - TEST 1 8] 1 1 0 a M M

MODE O: TEST EPROM
CALL: BO ¢ blocks >
RESPONSE: { cksum)

{n) 1024 byte blocks, starting at address 0, of the EPROM are checksummed, and the result
returned as {cksum } , computed by summing all bytes in the block, modulo 258. This command
provides a means of verifying that the EPROMSs are functioning correctly. Specify 6 blocks to test
all of Screenware Pak Il. The checksum for each EPROM is noted on the EPROM's label. When
testing more than one EPROM [i.e., testing 4 or B blocks], add the individual EPROMSs’
checksums (in hexidecimal] to compare with the TEST EPROM'’s returned ¢ cksum)

MODE 1: TEST RAM
CALL: B1
RESPONSE: O or
1 (ah) (al> (eb) (fb)

The entire 32K MicroAngelo RAM is tested by writing a cyclic test pattern, which ensures that
every possible byte value has been successfully stored and read in every memory location. The
test reqguires several minutes, and is visible as patterns of changing vertical bands on the screen.
If the test discovers no faults, a O response is returned and a cold poweron sequence executed to
reset the system. If a fault is discovered, a 1 followed by the faulty address high and low bytes, ex-
pected data byte, and faulty data byte, respectively, are returned. The Screenware then disables
interrupts, and enters a halt loop, under the assumption that useful computations are no longer
possible.

MODE 2: ALPHA TEST
CALL: B2
RESPONSE: none

The entire default character set is repetitively printed to the ALPHA screen, exercizing the
figure/ground and underline options in various combinations. All ALPHA modes are left unaffected
by the test.

MODE 3: MUNCHING SQUARES
CALL: B3 <8) iy Cnd
RESPONSE: none

Visually interesting, changing geometric patterns are generated by the Munching Squares
algorithm. The seed (s) and increment ¢i) are any B bit values, and determine the pattern
that will be repetitively generated. <(n), any B bit value, determines how many cycles the display
will run through before terminating and clearing the screen [<n) = O causes 64 cycles]. Each ¢
n) unit corresponds to about 45 seconds of real time. Try some of these values of [{s), (i)]
for starters: [1.1], [5.19], [2.2]. [7.3].

42

4.14 RGRAPHC (Screenware Pek [i only)

OPCODE 13 - RGRAPHC 1 0 1 1 0 1 M M

MODE 0O: SET RELATIVE GRAPHICS CURSOR
CALL: B4 (dxh> (dxl> C(dyh> (dyl>
RESPONSE: none

The graphics cursor is moved by an offset specified by the four calling bytes. 2's complement
arithmetic is used for negative offsets. As with the GRAPHIC command, RGRAPHC clips if
necessary to keep the graphics cursor in bounds.

MODE 1: NO OPERATION
MODE 2: NO OPERATION
MODE 3: NO OPERATION

43

1y

4.15 SPLITSCR (Screenware Pak i only)

OPCODE 14 - SPLITSCR 1 0 1 1 1 0 M M

MODE O: SET ALPHA SCREEN SIZE

CALL: BB

<D

RESPONSE: none

The screen is logically split between a top graphics/text region and bottom text/scrolling region. ¢
I> specifies the number of text lines to be allocated as the bottom region, and is clipped to the
range 1-40 if not already in that range. Screenware Pak Il powers on with an ¢ 1) value of 40
(i.e., the entire screen is available to the ALPHA processor, as in Screenware Pak I). Note that
splitting the screen does not restrict graphics to the top region, but rather only restricts the
ALPHA facility to the bottom region. Two side effects of this command are that the ALPHA cur-
sor is homed, and that the ALPHA scrall parameter [the number of lines to pop up when the
ALPHA region of the screen is full] is set to one-quarter the new ALPHA region height [or |
minimum]. However, the user is free to redefine the scroll parameter after a SPLITSCR.
SPLITSCR may be called at any time to redefine the size of the ALPHA area.

MODE 1: DEFINE ALPHA CONTROL CODES

CALL: B9

(et ... £cB)

RESPONSE: none

MODE 2:
CALL: BA

The ALPHA [dumb terminal] processor can now be instructed to recognize eight special ASCII
control codes:

01H HOME the ALPHA cursor is homed to the top left of the ALPHA
region

OEH DELEOL text at and beyond the current ALPHA cursor is deleted to
the end of the line

OFH DELEOP text at and beyond the current ALPHA cursor is deleted to

the end of the page [ALPHA region)
11H CURUP the ALPHA cursor is moved up one line if possible
12H CURDN the ALPHA cursor is moved down one line if possible
13H CURLF the ALPHA cursor is moved left one character if possible
14H CURRT the ALPHA cursor is moved right one character if possible

OCH Fh the ALPHA region is cleared [form feed], and the cursor is
homed

To maintain Screenware Pak | compatibility, the ALPHA processor will interpret these special
codes only when the 40H bit of the ALPHA mode word is set [refer to the ALPHAMODE com-
mand]. If the default codes are not acceptable, the user may redefine them via this command. Al
codes must be in the range O-IFH [i.e., in the ASCII control code region). While this command re-
quires that all eight codes be specified, it will leave unchanged any code whose new value is not in
this range, allowing for selective alteration of the codes. <cl) ... (cB) correspond in order to
the eight functions listed above. In addition to defining the special codes, this command enables
their interpretation by the ALPHA processor [by setting the 40H bit of the ALPHAMODE word).

DON'T IGNORE LINE FEED

RESPONSE: none

MODE 3:

Where MicroAngelo receives command, LINEFEED will not be ignored until a cold start.

NO OPERATION

44

4.16 RPOINT (Screenware Pak Il only)

OPCODE 19 - RPOINT 1 0 1 1 1 1 M M

MODE O: TURN RELATIVE POINT OFF
CALL: BC (dxh> (dxl> (dyh) (ayl)
RESPONSE: none

MODE 1: TURN RELATIVE POINT ON
CALL: BD (dxh> <dxI> (dyh)> (dyl)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE POINT
CALL: BE ¢(dxh> (dxl> <(dyh> <dyl>
RESPONSE: none

MODE 3: READ RELATIVE POINT
CALL: BF (dxh> (dxl} <dyh) <{dyl>
RESPONSE: (val’

These commands are identical to the POINT commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. As with the POINT commands, the graphics cursor is updated to the new ab-
solute screen location resulting from the relative offset.

45

4.17 RVECTOR [Scresnware Pak i only]

OPCODE 16 - RVECTOR 1

MODE 0: TURN RELATIVE VECTOR OFF
CALL: CO ¢(dxh> (dxi> (dyh) (dyl>
RESPONSE: none

MODE 1: TURN RELATIVE VECTOR ON
CALL: C1 {dxh> (dxi; (dyh)> (dyl)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE VECTOR
CALL: C2 (dxh> <{dxl> C(dyh)> <dyl>
RESPONSE: none

MODE 3: NO OPERATION

These commands are identical to the VECTOR commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. As with the VECTOR commands, the graphics cursor is updated to the new
absolute screen location resulting from the relative offset.

486

'

4.18 RRECION (Screenwarse Pak i only]

OPCODE 17 - RREGION 1 1 0 0 0 1 M M

MODE O: TURN RELATIVE REGION OFF

CALL: C4 <(dx1h> (dx11> (dylh)> (dy1l> {(dx2h) {(dx2l)> <{dy2h)> <dy2l)
RESPONSE: none

MODE 1: TURN RELATIVE REGION ON

CALL: C5 <(dx1h> <dx11> <dylh> <dy1l> (dx2h> (dx2l) {dy2h)> {(dy2)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE REGION

CALL: CB <dx1h> (dx11> <dylh> <dy1l)> (dx2h) (dx2l)> (dy2h> {dy2l)
RESPONSE: none

MODE 3: NO OPERATION

These commands are identical to the region commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. Typically, to paint a region situated with one corner at the current graphics
cursor, RREGION is called with coordinates 0,0,0X,DY, where DX and DY are the size of the
desired region. As with the region commands, the graphics cursor is not moved.

a7

4.19 CIRCLE (Screenwsre Pak li only]

OPCODE 18 - CIRCLE 1 1 0 0 1 0 M M

MODE O: TURN CIRCLE OFF
CALL: CBL<r)
RESPONSE: none

Points on the circle of radius < r) centered at the current graphics cursor are turned off. (r)
may be any single byte value. Points on the circle out of range in the Y dimension are clipped.
Points out of range in the X dimension are wrapped around to the opposite side of the screen.

MODE 1: TURN CIRCLE ON
CALL: C8 <ir)
RESPONSE: none

Points on the circle of radius <r) centered at the current graphics cursor are turned on. Other-
wise, this mode is identical to Mode O.

MODE 2: COMPLEMENT CIRCLE
CALL: CA <r>
RESPONSE: none

Points on the circle of radius ¢ r) centered at the current graphics cursor are complemented.
Dtherwise, this mode is identical to Mode O.

MODE 3: NO OPERATION

48

4.20 FLOOD (Scresenware Pak Il only]

OPCODE 18 - FLOOD ;| 1 0 0 1 1 M M

MODE O: FLOOD WITH ZEROES
CALL: CC <(xh>» (xI> <(yh)> <Cyl>
RESPONSE: none

The bordered region containing the interior point specified by the arguments is flooded with
zeroes. The region must be completely bordered by zeroes, and its interior must be completely fill-
ed with ones for the algorithm to work properly. The region may be any shape, and the starting in-
terior point may be arbitrarily chosen. The fiood algorithm is capable in principle of filling virtually
any region. In practice, however, the algorithm is limited by stack space, and may not be able to fill
an unusually complex region. Generally speaking, the amount of stack storage will relate to the
degree of concavity detail in the border. Regions too complex for the 16-level stack will be rare,
but can be flooded in pieces if necessary. Additionally, certain narrow 45 degree corridors [i.e.,
"necks” of complex regions which have a single bit wide, stair-step type of interior) pose logical
problems, and cannot be filled because of potential confusion with the region’s exterior. Since the
flood algorithm checks screen limits, it can also be used to fill the exterior of an object, even
though there are no borders at the screen edges.

MODE 1: FLOOD WITH ONES
CALL: CD <(xh> <(xI> (yh)> <{yl>
RESPONSE: none

The region containing the specified interior point is flooded with ones. The region must be com-
pletely bordered by ones, and its interior must be completely zeroes. Otherwise, this mode is
identical to Mode O.

MODE 2: FLOOD RELATIVE WITH ZEROES
CALL: CE (dxh> <(dxl> (dyh> (dyl>
RESPONSE: none

This command is identical to Mode O, except that the starting interior point is specified as a
relative offset from the current graphics cursor.

MODE 3: FILL RELATIVE WITH ONES
CALL: CF ¢(dxh> <dxl> C(dyh> <dyl>
RESPONSE: none

This command is identical to Mode 1, except that the starting interior point is specified as a
relative offset from the current graphics cursor.

49

—

4.21 MACRQ [Screenware Pek [l only)

7 5] a 4 3 2 1 0
OPCODE 20 - MACRO 1 1 0 1 0 0 M M

The macro facility provides for the definition and automatic display of commonly used objects. It is useful
both in streamlining the display of such objects, and in higher speed movement of screen objects than would
otherwise be possible. The macro storage space can be up to 1536 (decimal] bytes long. Up to 255 distinct
macros can be defined in this region, each individual macro being up to 256 bytes long. A macro is any se-
quence of commands, exactly as they would be sent normally, and is defined by declaring its number [from O
to 254], then sending the bytes which represent the sequence of MicroAngelo commands to become its
"body”. Macros are executed by the INVOKE MACRO command described below. The ERASE MACRO
command can erase a macro and return its number to the available pool.

The macro facility will issue responses to the Mode O, 1, and 2 commands below [no response for Mode

3). Aresponse is either O, to indicate success, or a number from 1 to 6 indicating that a failure occurred and
its nature:

RESPONSE MEANING

SUCCESSFUL TRANSACTION

DEFINITION ALREADY IN PROGRESS
MACRO ALREADY EXISTS

MACRO FACILITY SPACE EXHAUSTED
NO DEFINITION IN PROGRESS

MACRO IS TOO LONG [OVER 256 BYTES])
MACRO DOES NOT EXIST

oobhwn-=0

Response bytes must always be read for proper MicroAngelo protocol to proceed.

Because of limited MicroAngelo RAM, the macro processor uses the memory which is also allocated as
the user-defined character font, and/or USER code area. While the user can arrange to use all three
features simultaneously, care must be taken to manage this 1536 byte area properly. Each macro occupies
2 bytes plus the number of bytes in its body. Each ASCII character in the user-defined character generator
area occupies 12 bytes. Thus, by arranging never to use the first N alternate character codes, the user can
have a macro storage area of 12*N bytes at the beginning of the 1536 byte area. To assist in the manage-

ment of this shared memory, the size of the macro definition area can be restricted via the ERASE MACRO
command.

MODE O: START/STOP MACRO DEFINITION
CALL: DO ¢n>

or

DO FF
RESPONSE: (code >

If ¢n) is any value but OFFH, this command begins the definition of the macro whose reference
number will be <n) . The new definition will not be begun if there is another definition in progress,
if <n) is already in use as a macro number, or if macro space has been exhausted. The response
code indicating success or one of these failures should always be read by the user code, since
otherwise the MicroAngelo to host communication port will remain blocked. After having opened
the definition, the ADD NEXT MACRO BYTE command is used repetitively to build the macro
body. Having built the body, the user instructs the macro facility to end the definition and “'install’’
the macro by calling the START/STOP MACRO DEFINITION command a second time, but with <n
> = OFFH. At that time, the macro becomes usable by the INVOKE MACRO command.

50

MODE 1: ADD NEXT MACRO BYTE
CALL: D1 {byte>
RESPONSE: ¢ code >

(byte > is added to the body of the macro under current definition. A failure code will be returned
if there is no definition in progress, if macro space is exhausted or if the macro has become too
long. In case of failure, the current definition is closed and partially built macro discarded. The user
should always read the response ¢ code) .

MODE 2: ERASE MACRO OR CLEAR FACILITY
CALL: D2 <(n>

or

D2 FF (sh > (sl}
RESPONSE: (code >

In the first case, if {n) is the number of a defined macro, that macro is deleted from the macro
space, and its storage number returned for reuse. If the named macro does not exist, the ap-
propriate error code is returned. In the second case, when {n»> = OFFH, the command is inter-
preted as a macro facility reset directive. In this case, all macros are erased, the number of bytes
of the 1536 shared memory region to be allocated to the macro facility is specified by (sh»>, (sl
>, which should be in the range 0-1536. After this command, any attempt to build macros
beyond this limit will return a failure code. The macro facility powers up in a reset condition, with all
1536 bytes allowed for macro definitions. Both forms of this command return a condition < code
> , which should always be read by the user.

MODE 3: INVOKE MACRO
CALL: D3 <n>
RESPONSE: none

The macro whose numberis <(n?» isinvoked, i.e., its body is fed to the command interpreter just
as if it were coming straight from the user. If there is no macro number <n», A NO OPERATION
results. While the macro’s invocation itself may cause a reponse to be generated, the INVOKE
MACRO command itself never returns a success or failure response. When the invoked macra's
body has been completely read, Screenware Pak Il reverts to its normal command loop. However,
since there are cases where it may be convenient for one macro to invoke other macros, Screen-
ware Pak |l allows a macro invocation nesting depth of 8. Nestings beyond this depth are ignored.
When a nested macro completes, control is resumed in the previous [calling) macro, and so forth
until the normal command processor is again active. Naturally, care should be exercised in defin-
ing macros, since, if a macra's body is incorrect, it may throw Screenware Pak Il and the user out
of logical touch with each other, just as would happen in any improperly formed direct command
sequence.

Macros will typically rely heavily on the new relative cursor, point, vector, and region commands, and on
the new circle and flood commands. Generally, the strategy for writing a macro is to work from the current
cursor, and ensure that the cursor is left either where it was originally, or at some meaningful place for the
next macro [if there will be a sequence of them, or, if they have been nested] to pick up. For macros that are
capable of moving objects at relatively high speed on the screen, use only the complement mode of all draw-
ing commands, so that the first invocation of the macro will draw, the second erase.

91

The following example illustrates how to set up, then use a macro. Suppose the goal is to define 8 macro
that will draw a triangle with lower left vertex at the current graphics cursor, flood the triangle's interior with
1's, draw a circle of O's inside the triangle, flood the circle's interior with O's, then leave the graphics cursor
at the lower left vertex of the triangle where it began. The sequence of commands that are to form the
macro’s body is therefore:

+50
-50
0
+1
+25

0
~25

draw first side of triangle

draw second side

draw third

flood triangle interior with ones
move to triangle center point
draw circle with zeroes

flood circle interior with zeroes
return cursor to starting point

Hence, the sequence which defines this sequence as, say, macro 0 is:

RVECTOR +25
RVECTOR +25
RVECTOR -50
RFLOODO s
RGRAPHC +25
CIRCLEZ 16
RFLOODZ 0
RGRAPHC ~gD
DO 00
D1 C1 D100 D119 D1 00 D1 32
D1 C1 D100 D1 19 D1 FF D1 CE
D1 C1 D1 FF D1 CE D1 00 D1 00
D1 CF D100 D1 01 D1 00 D1 O1
D184 D100 D119 D100D119
D1 CB D1 DA
D1 CE D1 00 D1 00 D1 00 D1 0O
D1 B4 D1 FF D1 E7 D1 FF D1 E7
DO FF

start macro O definition

send first vector command
send second vector command
send third vector command
send triangle flood command
send rel cursor move command
send circle command

send circle flood command
send rel cursor move command
terminate and install macro

This macro can then be invoked by calls of the form:

D3 00

invoke macro number O at current graphics cursor

52

¢

System Details

5. System Deteils

MicroAngelo can be effectively used without a knowledge of the information in this section. However, if you
wish to install a lightpen, read the subsection entitled “'Connecting a Light Pen”. If you plan on augmenting
@ Screenware Pak | or Screenware Pak Il with additional software, read this entire section.

5.1 The MicroAngelo Memory Map

Unless you plan on sending user code across to MicroAngelo via the MEMORY command, you need not be
4 concerned with the internal memory map of a Screenware Pak. However, in order to install and interface
user-defined graphics code, it is important to understand how a Screenware Pak uses the MicroAngelo

memory space.

REGION USE

0O000-0FFF Screenware Pak | in EPROM

0000-17FF Screenware Pak Il in EPROM

1000-7FFF Unimplemented [SW PK [}

1800-7FFF Unimplemented [SW PK Il

B8000-FFFF Read-write memory, subdivided as follows:

B8000-F7FF Visible display

FBOO-FBBF 2 and one-half visible scan lines [which should be kept blanked]
] FBCO-FS3F Screenware system stack

FO40-FF3F User-defined character generator, or user code area

FF40-FFFF Screenware working RAM

If the alternate character set is defined and used, there is no space for user code. If, however, the alter-
nate character set is not used [or if only a portion is used], the region FS40-FF3F [1.5K bytes] can be used in
whole or in part for user code.

User code should not make any unusual alterations to the system stack, nor should it alter any location in
the FF40-FFFF region.

85

5.2 Defining the Alternate Character Set

The alternate character set resides in the F840-FF3F region of MicroAngelo’s RAM. Each character sym-
bol occupies 12 bytes, top scan line first. Thus, the region F840-FS4B holds the symbol for ASCIi code O,
with the top scan line at F340, the bottom line at F34B. Within each byte, the low-order six bits define the
pixels across a scan line of the character. The CHARACTER and ALPHAMODE commands allow you to
select this alternate character set, or toggle between the alternate and standard sets.

The alternate character set can be defined all at once by the Pak II command LOAD DEFAULT
CHARACTER SET [Section 4.7), or by depositing [via the MEMORY command) all 128* 12 bytes starting at
location FS40. (If not all 128 symbols need to be defined, you need not send the entire set, and can use any
remaining space for user code.] Alternatively, symbols for individual ASCIl codes can be defined using the
CHARACTER command’s Mode 2.

As an example, suppose you wish initially to define alternate symbols for ASCIl codes 0-63 (the lower half
of the character set). To do this, you say:

A7 deposit 64*12 bytes at FS40
03 B4*12 = 300 [hex]

00

F9 location F840

40 send the 768 [decimal] bytes

Suppose then at a later time you wish to alter the symbol for ASCIl code 7. Then you say:

SA define individual symbol via CHARACTER
07 ASCIl code 7
send the twelve bytes, top scan line first

5.3 Interfacing Onboard User Code to The Scresnware

User code installed in the MicroAngelo RAM will probably need to interact with the Screenware software
primitives. Appendix 3, "'Screenware Pak | User Entry Points™ and Appendix 4, "'Screenware Pak Il Entry
Points" gives entry point addresses and calling conventions for the various user-callable Screenware Pak |
and Pak Il functions.

86

54

The MicroAngelo Physical I/O Ports

When running your own software in the MicroAngelo memory, you may occasionally wish to bypass the
Screenware software and interact directly with the MicroAngelo hardware. When interacting directly with the
hardware, user code has access to the following information as ZB0A I/0 ports 0-3:

PORT MODE FUNCTION

8]

5.5

Input Data Port, from host
Output Data Port, to host
Input Status Bits:

0 [rightmost bit]) host-to-MicroAngelo data buffer is full
1 MicroAngelo-to-host data buffer is full

2 Light Pen strobe has fired

3 Screen Fgure/Ground status

4-7 Unused

Output The rightmost bit sets the screen figure/ground ('O for light on dark, *'1"" for
dark on light]. All other bits are unused.

Input Light Pen horizontal counter latch [left of screen is count O, right of screen is
count 255), accurate to 2 pixels

Output Unused

Input Light Pen vertical counter latch [top of screen is count O, bottom of screen is

count 239), accurate to 2 scan lines. Reading this port also resets the light pen
interface, allowing it to trigger on the next light pen strobe. [See the section en-
titled "'Connecting a Light Pen' for more discussion.]

Output Unused

Interrupts

There are four potential interrupt sources for the MicroAngelo's ZB0A:

DFHI [Data From Host] - the host has just written a byte to the MicroAngelo Data Port
DTHI [Data To Host] - the host has just read a byte from the Data Port

LPI [Light Pen] - the light pen has just fired

RTI [Real-Time] - the B0 hz interval timer has just fired

The first three interrupt sources are connectable as maskable ZBOA interrupts. The Real-Time Interrupt,
when enabled by a hardware jumper, will generate a ZB0 NMI [non-maskable interrupt) every 1/60 second.

57

5.5.1 Enabling/Dissbling the Maskable Interrupts

As shipped, only the LPI and DFHI are physically enabled. The DTHI has been disabled by removing USS pin
g from its socket. Reinsert this pin to enable the DTHI. (Doing so will not logically interfere with the Screen-
ware's logical operation. However, it will slow the software down somewhat when sending responses back to
the host.]

To disable the DFHI, remove U58 pin 10 from its socket. To disable the LPI, remove U59 pin 13 from its
socket. [Do not disable these, however, unless you are installing a completely new operating system in
EPROM! The Screenware assumes that these two interrupts are enabled, and will not run properly with
them disabled.) See the UTILITY command [Mode 1] for a description of the logical user interface to these
three maskable interrupts.

5.5.2 Enabling the Real-Tims Interrupt

The RTI non-maskable interrupt can be enabled by scratching through the default trace between holes 2
and 3 of J3, and jumpering holes 1 and 2 together. After this procedure, a non-maskable interrupt will be
generated every 1/60 second. See the UTILITY command [Mode 2] for a description of the logical user inter-
face to this non-maskable interrupt.

It should be noted that with the RTI connected, there is a very remote possibility that MicroAngelo will not
power up correctly. Immediately after beginning, the Screenware software stores a specific code in one byte
of its read-write memory to remind itself that ATl interrupts are logically disabled. If, however, an RT| occurs
in the several microseconds between powering on and storing this disabling code, and if the MicroAngelo
memory randomly happens to power up with this special code already present in the RTI enabling byte [very
unlikely), then the Screenware will erroneously branch to what it thinks is the user-defined RTI handling code.
This, of course, would cause the system to lose contral. To be absolutely certain that MicroAngelo has
powered up correctly with the RTI enabled, use the MEMORY command to examine the RTI logical status
byte at location FFCS immediately after system power-on [i.e., put this in your cold-start initialization code).
if this byte is not DCCH, keep resetting MicroAngelo [over the Control Port] until it is. Then reset the
system ane final time. [The chance of a bad power-up because of these circumstances is guite remote. You
can therefore get along without these procedures for all but the most critical applications.]

5.5.3 Connecting Host-Side Interrupts

Jumper J5 on the MicroAngelo board can be set so that the hest will be interrupted whenever
MicroAngelo reads or writes & byte over the Data Port. J5 Pin 5 goes to logic “0" when MicroAngelo writes
a byte to the host. J5 Pin 10 goes to logic 0" when MicroAngelo reads a byte from the host [i.e., when the
host can write another byte to MicroAngelo). J5 Pins 6, 1, 7, 2, B, 3, 8, 4 connect to the S100 bus vec-
tored interrupt lines [S100 fingers 4-11, respectively). By jumpering J5 Pin 5 and/or J5 Pin 10 to these
vectored interrupt lines, you can route these two interrupt signals to the host CPU, if it is equipped to pro-
cess them. Doing so permits the host operating system software to support an interrupt-driven protocal
with MicroAngelo.

5.6 Connecting a Light Pen

Connector JA at the top right corner of the board is the Light Pen Connector. Pin1 accepts the rising edge
triggered Light Pen Strobe, Pin 2 is the Light Pen Ground connection, Pin 3 accepts the active high Light Pen
Enable, and Pin 4 is a regulated + 5 volt, 100 ma power source for the light pen. When Pin 3 is a logic 1"
and a positive edge occurs on Pin 1, the light pen hardware latch captures the display counters to record the
X-Y location of the light pen. Further positive edges at Pin 1 will not be honored until the Screenware soft-
ware [or user software] reads the counter value from the light pen hardware latch. As shipped, both Pin 1
and Pin 3 are pulled down to logic ‘0" [by resistors R18, R19, respectively] in the absence of a light pen.

If you wish to connect a light pen that generates both the strobe and enable signals, simply connect all 4 pins
as described. (If your light pen is of the low-power type, you may have to remove R18 and R19, since these pulk
down resistors may present an excessive current drain to the light pen.] If your ight pen has no enable line,
jumper Pin 3 and Pin 4 together to enable the light pen permanently.

See the LIGHTPEN command and the section entitled “'Interrupts’’ for descriptions of the logical light pen
interface and light pen interrupts.

5.7 Summary of Hardware Jumper Options and Connectors

There are 15 jumpers and 3 connectors on the MicroAngelo board. The tables and diagram below sum-
marize and describe these. For most applications there will be no need to alter any jumpers. Default settings
are indicated with asterisks.

5.7.1. Hardwere Jumpers

NAME
J1

J2

J3

J4

J6-410

J11-J14

J15

PINS

1-2*
2-3

FUNCTION

Select 480 visible scan lines

Select 448 visible scan lines

[Note that all Screenware software assumes that there are 480 visible
lines. If you select the 448 option, you must assume responsibility for
managing the display screen.)

Select 4 mhz ZBOA operation

Select 5 mhz ZBOA operation

A ZBOA can usually run at 5 mhz. If you want to increase the speed of the
system, select this option.

Enable B0 hz Real-Time Interrupt (RTI]
Disable 60 hz RTI
See section entitled “Interrupts’’

Holes B, 1. 7. 2, B, 3, 8, 4 connect to $100 bus fingers 4, 5, 6, 7, 8. 8,
10, 11 respectively. [These are the vectored interrupt lines.] The signal
at hole 5 is the inverted DTHI interrupt, the signal at hole 10 is the true
DFHI signal (see the section entitied *'Interrupts’’). By connecting DTHI-
inverted and/or DFHI-true to vectored interrupt lines, you can arrange
for your host system to be interrupted whenever MicroAngelo reads the
byte last sent from the host, or sends a byte to the host. [See the sec-
tion entitled Interrupts’.] The board is shipped with neither interrupt
source connected.

(These jumpers will allow future EPROM upgrade to an BK operating
system]

Select port address bit = o~

Select address bit = 1"

These four jumpers map the two parallel ports over which you com+
municate with MicroAngelo. See the section entitled ''Changing the Port
Addresses’’.

Enable DFHI and DTHI interrupts

Disable DFHI and DTHI interrupts

This jumper can cause the MicroAngelo ZBOA to be interrupted by com-
munications activities with the host, as described in the section entitled
"“Interrupts”

60

5.7.2. Hardware Connectors

NAME
JA

JB

JC

PIN
1

—

Oobhwn

1-20

FUNCTION

Light Pen Strobe. A positive-going signal on this pin causes the Screen-
ware software to update [LX, LY]), the light pen coordinates

Light Pen Ground

Light Pen Enable. A logic 1" on this pin physically enables the Light Pen
Strobe. It is typically fed by the activation switch in the light pen.

+ 5 volt, 100 ma power source for light pen

Composite Videa. Connect a composite video TV monitor to this pin and
Pin 2.

Composite Video Ground

TTL Video. Connect a direct-drive video monitor to this and Pins 4, 5, B
Direct-Drive Ground

Direct-Drive Horizontal Sync

Direct-Drive Vertical Sync

(Reserved for color interface)

B1

5

O
SIroy

+E9 o

R LR LR RO

| A3N odozqocui@

%0 0000*
pooogH + 1D uHu.
i_vn) ®
= 3o @
| _&n_| ©
®
g Al ®
zn] 4 . ~°
Im: ¥ 0
K
X e)
) 60 || 2 EEERE
i oin]I 2n | mn.na
T ()
1N @ EN
et T
0000 .
ottt o088

L_ESN |) v¥N _@u sen | ¥ ezn) Lefl Qu 2N
W.”wi J_svn _®u ZEn] ¥ oen _®u 22N EIn
mmmmm”,; T _@u 8EN | T TEn _@u £en 1N
) m,m:.L J ¢¥n |] 6EN _@ o }_¥2n GIN
; @ U i QU szn 9N
i 9sn] j 8vn | Qu orn_| Y
i_LSN _m”_ 6¥ N _@”_ »N_| w €EN)_92n _ b zin
L 850]3] 05N _®u Zen) gl £20 au 8N
U e ®u 82n | o1z} i_sin
L 6sn |) i1sn |{3) €Evn | @@
§
8§ _osn _mﬂmmg Qm::aonwnvv SEN @]
8600 - T

N
1NdNI N3d 119N

7
1Nd1NO O3aIA

62

5.8 Adapting MicroAngelo to Non-S100 Bus Systems

Interfacing MicroAngelo to non-S100 bus systems is relatively straightforward because of its simple
parallel port connection to the host system. Specifically, MicroAngelo requires the following 5100 bus cor-
nections:

S100 PIN NAME FUNCTION

1.5 +8 Unregulated + B volt power (2 amps]
50,100 GND Ground

2 +18 Unregulated + 18 volt power [1 amp]
52 -18 Unregulated — 18 volt power [100 ma]
90 DO7 Outbound data line 7
40 DOB Outbound data line 6
39 DO5 Outbound data line 5
38 D04 Outbound data line 4
89 D03 Outbound data line 3
B8 Do2 Outbound data line 2
35 D01 Outbound data line 1
36 DO0 Outbound data line O
43 DI7 Inbound data line 7
a3 DIB Inbound data line 6
g2 DIS Inbound data line 5
91 DI4 Inbound data line 4
42 DI3 Inbound data line 3
41 DI2 Inbound data line 2
94 D11 Inbound data line 1
85 DIO Inbound data line O
B3 A7 Address line 7

B2 AB Address line B

23 A5 Address line 5

30 A4 Address line 4

80 A1 Address line 1

79 AD Address line O

46 SINP Input request

45 SOouUT Output reqguest

78 PDBIN Input strobe

77 PWR-BAR Output strobe

The data input and output lines can be tied together to form one B line bidirectional data bus. Commands
and data are written to MicroAngelo on the coincidence of SOUT = “1", PWR-BAR = "0" and Board
Select. Responses and status flags are read from MicroAngelo on the coincidence of SINP = 1", PDBIN
= ""1" and Board Select. Board Select occurs when address lines A7-A4 match the settings of jumpers
J14-J11 and A1 = "0". On a read or write operation, address line AD determines whether the Data Port
or Control Port is selected.

63

For a stand-alone environment in which MicroAngelo will be powered by its own power supply and will be

unrelated to its host's address space, a simple bidirectional parallel port interface can be implemented as
follows:

1. Tie the data inbound and outbound lines together and route them to the host as the B bit
bidirectional paraliel I/0 port.

2. Tie A7, AB, A5, A4 permanently high [to match the default jumpers J14-J11), and tie A
permanently low.

3. Tie PDBIN permanently high, PWR-BAR permanently low.

Route AD to the host as the Data/Control Port select line [i.e., MicroAngelo looks like 2 logical
I/0 ports over one physical I/O port connection).

5. Route SINP and SOUT to the host as the input and output command lines.

Using this 12 conductor logical interface to the host [B data lines, AQ, SINP, SOUT, ground], MicroAngelo
becomes a stand-alone graphics computer compatible with virtually any type of host system. By connecting
the interrupt lines as described in the section entitled *‘Interrupts' and routing them to the host, the inter-
face can also support a full interrupt protocol.

5.9 Bit Mapping of Display RAM to Video Screen

The address space of the MicroAngelo from locations BO0O to OF7FF is RAM memory that is displayed on
the video screen. Each of the 245, 670 bits within this range appears as a single picture element [pixel] on
the screen. These bits are mapped onto the screen in a predefined way by the MicroAngelo hardware. The
top leftmost point on the display is the most significant bit of the byte stored at location 8000. The point im-
mediately to its right is the 2nd most significant bit of the byte at BODO. This continues for all the bits in byte
8000 and then proceeds on across the screen with the bits from byte 8001, then 8002, BOOS3, etc. for a
total of 64 bytes. The second display row then begins with the most significant bit from the byte at location
B040. The bottom rightmost bit of the display is the least significant bit of the byte at location OF7FF. The
MEMORY commands ‘‘examine’’ and “‘deposit’’ can be used for experimenting with the direct modification
of the video display.

478 - 7654321076543210 I N 76543210
... [byte B001]) [byte BO3F] ...:
... [byte BOOO]
Y-Axis

VIDEO DISPLAY

... [byte F7CO) (byte F7FF] ...

000 - 76543210 gl 7 76543210

| l
000 511
X - Axis

64

Soft'ware Interface
Examples

6. Software Interface Examples

Send and receive all bytes in these examples using the code shown in the section entitled “The Software In-
terface”.

6.1. Graphics: Clear Screen, Draw Triangle, Embed in Region

88 clear the screen

B4 set the graphics cursor to [128, 128] decimal
00

80

00

80

91 draw vector to [256,384)

01

00

01

80

81 draw a vector to [384,128]

01

80

8]8]

80

91 draw a vector to (128,128]

00

B0

00

80

96 embed triangle in region by complementing
00 make the region corners [64,64] and [448,448]
40

00

40

01

CO

01

COo

6.2. Turn On and Read the Tracking Cross

8D turn the tracking cross on at screen center

01 X = 256

00

6]8] Y = 242

F2
[wait for user to drag it to destination, then type a key on the host
keyboard]

SE read the location

[The Screenware will send the coordinates as four response bytes
which you then read.]

67

6.3. Write a Message Arcund the Border of a S8quare

This code writes the characters '‘MicroAngelo!"" in a box shape (i.e., ""Mic" is on the top, "roA’" is on the
right side going down, “‘nge"" is upside-down from right to left on the bottom, and "'lo!"" is on the left side go-
ing up. Characters are double size and reversed figure/ground.

84 move the graphics cursor to the screen center
01

00

00

F2

99 set graphics character mode for top characters
oCc reversed figure/ground, double size
98 print "M"’

4D

98 print """

69

98 print "'c"

63

99 select new orientation

OF 90 degrees cw, top to bottom
98 print "'r"

7a

98 print “'o"

6F

98 print A"

41

99 select new orientation

0D upside-down, right to left

S8 print *'n"’

BE

98 print "'g"”

67

9B print "'e"’

65

89 select new orientation

OE 90 degrees ccw, bottom to top
98 print “I"

6C

98 print ‘0"

B6F

98 print "1

21

68

6.4. Underlining in Dumb Terminal Mode

The following code prints the message '‘Hello there'" by switching into and out of ALPHA Underline Mode
for 8 moment.

48 print "'H"

65 print “e"’

6C print """

6C print "I

6F print "'o’’

20 print. space

80 give ALPHAMODE command to start underlining
02 second-from-right bit governs underlining
74 print “'t"

68 print “'h"’

65 print "'g"’

7e print *‘r"

65 print ‘e’

80 turn off underlining

00

69

6.5. Sample BASIC interface

Most high level graphics software is best developed in a higher level language. To illustrate how to drive
MicroAngelo from North Star BASIC, four functions, FNO, FNI, FNS and FNR are shown below. FNO will
wait for the Control Port to indicate a read-to-send condition, then send a single given byte to MicroAngelo.
FNI will await a single byte MicroAngelo response, then return it as the functional value. FNS will send a 16
bit quantity (e.g., a coordinate or address), high order byte first, by two calls on FNO. FNR will assemble a
16 bit [two byte) response from MicroAngelo and return the 16 bit quantity as its functional value. In these
examples it is assumed that the Control Port is F1 and the Data Port is FO (241, 240 decimal,
respectively). If you have changed the port addresses, substitute these with the appropriate port number.

10100 REM SEND A BYTE TO MICROANGELO
10200 DEF FNO[X]

10300 | = INP[241)

10400 IF I ¢ > 2*INT[I/2)THEN 10300

10500 OUT 240, X

10800 RETURN O

10700 FNEND

10800 REM READ A BYTE FROM MICROANGELO
10900 REM [CALL WITH A DUMMY PARAMETER]
11000 DEF FNI[X]

11100 | = INT[INP[241)/2)

11200 IF| = 2*INT[I/2)

11300 RETURN INP(240)

11400 FNEND

11500 REM SEND A 16 BIT QUANTITY TO MICROANGELO
11600 DEF FNS(X]

11700 | = FNO (INT[X/258))

11800 | = FNO[X-256*INT(X/256))

11900 RETURN O

12000 FNEND

12100 REM READ A 16 BIT QUANTITY FROM MICROANGELO
12200 REM (CALL WITH A DUMMY PARAMETER]

12300 DEF FNR(X]

12400 Q@ = FNI[O]

12500 RETURN 256*Q + FNI(O)

12600 FNEND

70

6.6 Interfacing to FORTRAN

The following subroutines are five examples of FORTRAN routines to direct MicroAngelo.

C
C
i s output a byte to MicroAngelo
Cc
subroutine maout [ibyte)
18 if (inp(241). and.1]) go to 10
call out (240, ibyte)
return
end

move graphics cursor to cx, cy

EEXEICD

subroutine cursor (cx, cy)
call maout [B4H)

call coord (cx, cy)

return

end

* ok ok

plot & point at cx, cy

) OCEd

subroutine point [cx, cy]
call maout [BDH])

call coord [cx, cy]
return

end

draw a vector to cx, cy

ey (C0ED
*
*
*

subroutine vector [cx, cy)
call maout [S1H])

call coord [cx, cy]

return

end

S output a 186 bit X and a 16 bit Y coordinate toc MicroAngelo

0000

subroutine coord [cx, cy]
ic = cx/256.0

call maout [ic]

ic = int [cx-ic*255.9]
call maout [ic)

i = ey/256.0

call maout [ic]

ic = int{cy-ic*255.9)
call maout [ic)

return

end

71

Appendix 1 - Summary of Scresnware Commands

HEX DEC OCT CALL/RESPONSE

ALPHAMODE

B8O 128 200 C: (mode ;
R:none

B1 128 201 C: (row) (col)
R: none

82 130 202 C: none
R: (row) <{cal)

83 i ebd B: {n)
R: none

GCURSOR

B84 132 204 C: (xh) (xI> <(yh} (y)
R: none

85 133 B05 C: hone
R: ¢(xh> {(xI> Cyh> Cyl)

B6 134 206 C: none
R: none

87 185 207 G none
R: none

SCREEN

88 186 1,210 C: nane
R: none

88 137 211 C: (fg)
R: none

BA 188 212 B nane
R: none

8B 139 2183 C:none
B {fg)

POINT

BC 140 214 C: <xh> (x> C(yh)> (yD)
R: none ‘

8D 141 215 C: (xh)> (x> <(yh) (yI)
R: none

BE 142 216 C: (xh)> (x> (yh)> (yl)
R: none

BF 143 217 C: (xh> (xI> (yh)> (yb)
R: (val >

VECTOR

90 144 220 C: (xh> (x> (yh) <y
R: none

a1 145 221 GC: (xh)> (x> <(yh)> C(yl)
R: none

g2 146 222 C: {(xh> (x> (yh> (yl
H: none

FUNCTION

Set Alpha Mode Bits
Position Alpha Cursor
Read Alpha Cursor

Set Alpha Scroll

Set Graphics Cursor
Read Graphics Cursar
Set [CX, CY] to [AX, AY)

Set [CX, CY] to [TX, TY)

Clear Screen
Set Screen Figure/Ground
Toggle Screen Figure/Ground

Read Screen Figure/Ground

Turn Paint Off
Turn Point On
Complement Point

Read Paint

Turn Vector Off
Turn Vector On

Complement Vector

REGION

84 148
85 149
96 150
CHARACTER
98 152
88 153
9A 154
9B 155
LIGHTPEN
8C 156
8D 157
8E 158
SF 158
CROSSHAIRS
AD 160
A1 161
A2 162
A3 163
MEMORY
Ad 164
AB 165
AB 166
A7 187

224

225

226

230

231

232

233

234

2358

236

237

240

241

242

243

244

245

246

247

DODODOIO

DTOTOTOIDO

DTOTODODO

s T

T OTOIDIOIO

e They Oy Cylh 2

(y11> (x2h)> (x21>
(y2h)> (y2l>

: none
A{x1h) (x11)> (ylh)

(y11> (x2h) (xal»
(y2h) (yel»

: none
c {x1h> (x11> (y1h>

(y11> (x2h)> (x21>
(y2h)> (y2i)

. hone

¢c.)
none
{ mode >

: none
il ased sty
. none
: none
. none

(s0>

: none
. none
: (xh) (x) C(yh)> (ybd

none
none
{xh?>

(x> (yh> (yl?

: none
: 00 or

01 (xh> <xI> C(yh> (yl?

: none
. nane
s lxn) sl D)

(yh> <y
none

. none

(xh)> (x> C(yh> C(yb)

. none
. hone

. hone

(b1 ... (b7B0D0>
(b7800 >

none

:(nh) (nl> (8h) (al)

ChA Y . ERD

s {nh) (nl) <(8h> (al>

(b1 ... {(bn>

. none

76

Turn Region Off
Turn Region On

Complement Region

Plot Graphics Character
Set Graphics Character Mode
Define Alternate Character

Load Default Character Set

Turn Tracking Cross Off
Turn Tracking Cross On
Read Tracking Cross ¢

Read Light Pen

Turn Crosshairs Off
Draw Crosshairs
Read Crosshairs

Draw Crosshairs at [CX, CY]

Dump Screen
Load Screen
Examine Memory Block

Deposit Memory Block

-

UTILITY

AB 168
AS 169
AA 170
AB 171
USER

AC 122
AD 173
AE 174
AF 175
TEST

BO 176
B1 177
B2 178
B3 1789
RGRAPHC
B4 180
SPLITSCR
B8 184
BS 185
RPOINT

BC 188
BD 189
BE 180
BF 191

250

251

252

253

254
255
256

257

260

261

262

263

264

270

271

274

275

276

277

B 6) 1616 D 6

(]

2

T.C3 130

POD O QDO

TODO DADO

(ah> (al>

. none
: Cah) (al)> (imask)

Cih > Cil)

: none
: AA 00 or

AA D1 (ah) (al)
none

. none

none

. [user defined)
: [user defined]
. [user defined)
: [user defined)
. [user defined)
. (user defined)
: [user defined)
. [user defined)

: { blocks)
: (cksum ?
: none

0or

1 ¢ah?} <al) (eb)> (fb)
none

none

Ced iy tn

none

: Cdxh > <dxl>

Cdyh > Cdyl>

. none

= S

: none

O 4 v [SRS (e 2
: none

paxhy 20 gliy

Cdyh> Cayl?
none

: Cdxh > (dxl»

Cdyh)> Cdyl>
none

: (dxh > (dxl)

(dyh> (adyl)>
none

(dxh > (dxli>
Cdyh> Cdyl>
Cval ?

77

Set User Command Address

Call User Code

Switch Real-Time Interrupts

Force Cold Start

User
User
User

User

Test EPROM

Test RAM

ALPHA Test

Munching Squares

Set Relative Graphics Cursor

Set ALPHA Screen Size

Define ALPHA Control Codes

Turn Relative Point Off

Turn Relative Paint On

Complement Relative Paint

Read Relative Point

RVECTOR

cO 182
C1 193
c2 194
RREGION
c4a 196
C5 197
CB 198
CIRCLE

cB 200
c8 201
CA 202
FLOOD

cC 204
CD 205
CE 206
CF 207
MACRO

DO 208
D1 208
D2 210
D3 211

300

301

302

304

305

306

310
311

a1e

314

315

316

317

320

321

322

323

By}

T O OD

DQDODO

0D 0OIODO

O 0ODOD O

(dxh > <(dxl>
{dyh> <dyl>

: none

: {dxh> <(dxl>
(dyh) <dyl>
none

: {dxh > (dxl?
(dyh> Cdyl>

: none

: Cdxlhy (axll>
(dylh> <dyll>
(dx2h > (dx2l>
(dy2h > <(dy2l)
: none

S dxih) Cidxhl>
Cdylh > <dyll>
(dx2h > (dx2l>
{dy2h> (dy2l>
: none

e dedh » Cdgli
Cdylh > <{dyll>
(dx2h > <(dx2l?»
{dy2h) <(dyal>
: none

‘e

none

S

. none

(r>

1 none

s {xh> (x> <yh> (yl>
: none

:{xh) {xI)> (yh)> <(yl>
none

: {dxh)> <dxl?
(dyh> (dyl>

: none

: {dxh > (dxi>
(dyh> Cdyl>

: none

:<{n) or

FF

: {code »

. { byte >

: {code)
sn Y ar

FF ¢(sh> (sl>
{ code ?

{(n»

78

Turn Relative Vector Off

Turn Relative Vector On

Complement Relative Vector

Turn Relative Region Off

Turn Relative Region On

Complement Relative Region

Turn Circle Off
Turn Circle On

Complement Circle

Flood with Zeroes
Flood with Ones

Flood Relative with Zeroes

Flood Relative with Ones

Start/Stop Macro Definition

Add Next Macro Byte

Erase Macro or Clear Facility

Invoke Macro

Appendix 2
The Standard Character Font

LR R
LA

L

00

L B

LN B

01

LR B

02

L

09

TE XX

LR

L

0A

L
® =% L
L
* * *

LR

0B

.- & 8 ® 8 ® »

0C

L

LR BN

11

L E RN N2

12

LR
- &

79

* # ¥ #* 8 @»

15

LI

18

—
o
* * B * B B s »
* B
O T

*® B % % # =» * @

M % % # = # % # »

20

s
.
*
%
.
*®

21

]

x

.

22

s =
. =

sesasn
* 3

sxsns
s s
s @

23

L]

: * *
rH
* * *
R ®
* *
24 28
LR * ®
. % * *
*
*
*
s . % *
L % *
25 29
*
. ® * =
IR R]
L [EE R R
. ® re
» s = @
sE %
26 2A
®
*
seees
L]
®
27 2B

'

e

2C

sEEEN

2D

*
%

2E

2F

80

LR

& ® 8 @
. # ® w =®

31

*rE®

LR

33

*E kS

34

LR

L B

LI

S

39

L

® %
® %

3A

L
LR

3B

3C

L

2 X BER

3D

3F

LR

LE RN

LR N

*E»

L R

LR

L

LR B

5C

58

54

50

4C

48

44

40

LR B

L

L

LR N

LI

LR R B N

L

L

LR

LE R B

5D

59

55

51

4D

49

45

41

LA B

LR R

LR R BB

LR

LR

L

* %

LR

L

LR .

sxsnn s

*EEE

SE

5A

56

52

4E

4A

46

42

k¥ %

LA

LR

LR R .

LR

%

LR

sEE S

L B
5F

5B

67

53

4F

4B

47

43

81

60

* &=

* =

62

LR B

L B

63

L

L

L

65

66

5% L]

LR

L

67

* 2 ® & @

69

8 % @ % B ®
-

6B

. ® 8 % @

. ® ® B ® »

6C

.- B ® B =

6D

LI

6F

* % ® »

.- % #» @

82

® 8

e kR

70

71

72

LR

LR B

LR B]

73

74

*» % # »

75

76

. # ¥ @

(4

* % * # ®

. # » =

*®
*
* * L
* * .
* L]
* * ®
* * *
*
78 7C
L]
* # .
* * *
= L
L I
= .
* k%
79 7D
LR B I
* *
L LR
& L]
LR
7A TE
=
®
*
»
« L
® LR
L] sa s
7B TF

Appendix 3

Scresnware™ Pak | internal Entry Points

SYSTEM

entry:

exit:
destroys:
description:

READBUF

entry:
exit:

destroys:
description:

GETBYTE

entry:

exit:
destroys:
description:

GETCOORD

entry:

exit:
destroys:
description:

GETYCORD

entry:

exit:
destroys:
description:

GETADDR

entry:

exit:
destroys:
description:

SENDBYTE

entry:

exit:
destroys:
description:

SENDCOORD

entry:

exit:
destroys:
description:

OO00H

none

none

NA

call here to restart the system as it would be at cold start

012FH

none

carry flag set if a byte is available, cleared otherwise; if carry set, (A] = byte from
host

A B HLL

call here to read a byte from the host (via the interrupt buffered interface] if a
byte is available

01A4H

none

[A] = byte from host

none

call here to read a byte from the host; GETBYTE waits until a byte is available

005BH

none

[HL] = coordinate from host [sent high byte first)

H L

call here to read a S-bit coordinate from the host; the high 7 bits of H are zeroed

0197H

none

[HL] = 9-bit coordinate clipped to 479

A

call here to read a S-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

038FH

none

(HL] = 1B-bit address from host [sent high byte first]
A

call here to get a 16-bit quantity from the host

0258H

[A] = byte

none

B

call here to send a byte to the host; SENDBYTE waits until the outbound buffer is
clear before sending

0254H

(HL) = 16-bit value to send to host

none

B

call here to send 16 bits [high order byte first] to the host

83

DPYLOC
entry:

exit:

destroys:
description:

SCREENC
entry:
exit:
destroys:
description:

POINT
entry:

exit:
destroys:
description:

VECTOR
entry:

exit:
destroys:
description:

REGION
entry:

exit:
destroys:
description:

021BH

[DE] = X coordinate [0-511)

[HL) = Y coordinate [0-478)

[A) = bit mask

(B] = bit mask

(C) = bit number (O leftmost, 7 rightmost]

[HL) = display buffer address

D, E

call here to convert coordinates into a8 ZBO memory address [on the visible screen)
and bit mask; the bit mask [containing one ON bit) identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

01AFH

[A) = mode [0, 1, 2,)

none

all

call here for SCREEN command, as described in the manual; do not call with mode
= 3, since this mode will try to read a byte from the host

01F7H

(B] = mode [0, 1, 2]

(DE) = X coordinate

[HL) = Y coordinate

[CX] = X coordinate

(CY] = Y coordinate

none

all

call here for POINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

0547H

[B] = mode

[DE) = x coordinate

[NEWCX] = x coordinate

[HL) = y coordinate

[NEWCY] = y coordinate

none

all

call here for the VECTOR commands, as described in the manual

0275H
enter via the following code sequence:

LXI H,RETURN
PUSH H

MVI B, { mode >
PUSH B
LXIH, <YI>
PUSH H
LXIH, (X2?>
PUSH H
LXID, <X1)>
IXIH, ¢Y2)
JMP REGION

RETURN: ...

none

all

call via the given sequence for the REGION commands, as described in the manual

B4

Fiand

CHAR

entry:

exit:
destroys:
description:

DRAWCROSS

entry:

exit:
destroys:
description:

DRAWHAIRS

entry:

exit:
destroys:
description:

ALPHINIT

entry:

exit:
destroys:
description:

TTYCHAR

entry:

exit:
destroys:
description:

entry:

exit:
destroys:
description:

03E7H

[A) = character or character mode bits

(B] = command mode (O, 1, 2]

none

all

call here for the CHARACTER commands, as described in the manual: the com-
mand mode bits select plot character, set character mode, and define alternate
characters; character mode bits are as described in the manual

068EH

[TX] = X coordinate

[TY] = Y coordinate

none

all

call here to complement the bits on the tracking crross at [TX, TY], (i.e., if the
cross is on at [TX, TY], turn it off, and vice versa)

07A2H

(HX) = X coordinate
[HY] = Y coordinate
none

all

call here to complement the bits on the crosshairs at [HX, HY] [i.e., if the
crosshairs are on, turn them off, and vice versa)

07D8H

none

none

all

call here to reset the alpha interface: [clears the screen and sets AX, AY to top
left of screen)

O7EBH

[A] = ASCIl code

none

all

call here to print an ASCIl character at AX, AY [TTYCHAR does not advance AX,
AY)

OB8EFH

(A] = ASCIl code

none

all

call here to send an ASCII code to the ALPHA processor; control codes are
recognized as described in the manual, and AX, AY are advanced, possibly invoking
the scrolling mechanism

85

Variebles and Parameters:

VARIABLE

CX

CcY

NEWCX
NEWCY

AX

AY

AR

AC
ALPHSCRL
ALPHMODE
CHARMODE
™

TY

TSTAT

LPX
LPY
LPSTAT

HX

HY
HSTAT

ROMCHAR

ADDR

FFFB
FFF9
FFED
FFE7
FFDO

-

FFCD
FFCC
FFCB
FFCA
FFCS
FFD4
FFD2
FFDB

FFFE
FFFF
FFFD

FFBF

FFC1
FFBE

OSFA

#8YTES DESCRIPTION

-

= nn

the current graphics X coordinate @
the current graphics Y coordinate

(see the VECTOR entry point]

[see the VECTOR entry point)

the current ALPHA screen X coordinate

the current ALPHA screen Y coordinate

the current ALPHA row number

the current ALPHA column number

the current ALPHA scroll parameter

the current ALPHA mode bits

the current GRAPHICS character mode bits

the current tracking cross X coordinate

the current tracking cross Y coordinate

1 if the tracking cross is visible, O otherwise [The DRAWCROSS
entry point does not maintain this cell - you should do it manually
when calling DRAWCROSS]

the [X coordinate/2) of the last light pen interrupt

the [Y coordinate/2) of the last light pen interrupt

0 if no light pen interrupt has occurred, 1 otherwise (you should
reset to O to acknowledge a light pen interrupt]

the current X coordinate of the crosshair

the current Y coordinate of the crosshair

1 if the crosshairs are visible, O otherwise (the DRAWHAIRS entry
point does not maintain this cell - you should do it manually when
caling DRAWHAIRS

the beginning of the ROM character generator

P}

B6

Appendix 4

Screenwars™ Pak Il Internal Entry Points
Y

SYSTEM

entry:

exit:
destroys:
description:

READBUF

entry:
exit:

destroys:
description:

GETBYTE

entry:

exit:
destroys:
description:

GETXCORD

entry:

exit:
destroys:
description:

GETYCORD

entry:

exit:
destroys:
description:

GETADDR

entry:

exit:
destroys:
description:

SENDBYTE

entry:

exit:
destroys:
description:

SENDCOORD

entry:

exit:
destroys:
description:

0098H

none

none

NA

call here to restart the system as it would be at cold start

01CCH

none

carry flag set if a byte is available, cleared otherwise; if carry set, ([A] = byte from
host

A, D E H, L

call here to read a byte from the host [via the interrupt buffered interface)] if a
byte is available

O058H

none

(A} = byte from host

none

call here to read a byte from the host; GETBYTE waits until a byte is available

0113H

none

[HL] = coordinate from host [sent high byte first)

H, L

call here to read a S-bit coordinate from the host; the high 7 bits of H are zeroed

003BH

none

[HL] = S-bit coordinate clipped to 4793
A

call here to read a 9-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

00638H
none

[HL] = 16-bit address from host [sent high byte first)
A

call here to get a 16-bit quantity from the host

035DH

[A] = byte
none

B

call here to send a byte to the host; SENDBYTE waits until the outbound buffer is
clear before sending

0358H

[HL] = 16-bit value to send to host

none

B

call here to send 16 bits [high order byte first] to the host

87

DPYLOC
entry:

exit:

destroys:
description:

SCREENC
entry:
exit:
destroys:
description:

POINT
entry:

exit:
destroys:
description:

VECTOR
entry:

exit:
destroys:
description:

REGION
entry:

exit:
destroys:
description:

031FH

[DE) = X coordinate [0-511]

(HL) = Y coordinate (0-479]

[A) = bit mask

(B) = bit mask

[C) = bit number [O leftmost, 7 rightmost)

[HL) = displey buffer address

D.E

call here to convert coordinates into a ZBO memory address (on the visible screen]
and bit mask: the bit mask [containing one ON bit] identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

0293H

(A) = mode [0, 1, 2,]

none

all

call here for SCREEN command, as described in the manual; do not call with mode
= 3, since this mode will try to read a byte from the host

02FFH

(B] = mode [0, 1, 2]

(DE) = X coordinate

[HL] = Y coordinate

[CX) = X coordinate

[CY] = Y coordinate

none

all

call here for POINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

0767H

[B] = mode

(DE) = x coordinate

[NEWCX] = x coordinate

[HL) = y coordinate

[NEWCY] = y coordinate

none

all

call here for the VECTOR commands, as described in the manual

049CH
enter via the following code seguence:

LXI H,RETURN
PUSH H

MVI B, (mode »
PUSH B

LXIH, (Y1)
PUSH H

LXIH, (X2
PUSH H

LXI D, (X1
LXIH, <Y2)
JMP REGION

RETURN: ...

none

all

call via the given sequence for the REGION commands, as described in the manual

88

RPOINT

entry:

exit:
destroys:
description:

RVECTOR

entry:

exit:
destroys:
description:

RREGION

entry:

ext:
destroys:
description:

CHAR

entry:

exit:
destroys:
description:

-GebeH-

[B] = mode [0, 1, 2]
(DE] = X coordinate
[HL] = Y coordinate
[CX] = X coordinate
[CY] = Y coordinate
enter via the following code sequence:

~CALEDRGEH - FFTEX

CALL O2FFH - > s . Yey ot foe Wlie

CAEEBRAH - > ~vdote b ST fraey G iarnd)
none ?

all
call here for RPOINT cormmand, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

07ABH

(B] = mode

[DE] = x coordinate
[NEWCX] = x coordinate
[HL] = y coordinate
[NEWCY] = y coordinate

enter via the following code sequence:
EAEFB2E3H—="F=T5=2
CALL O767H
CALL D24RHr—s——twnmmah oo Lol |

none '

all

call here for the RVECTOR commands, as described in manual

—O482H-

enter via the following code sequence:
LXI H,RETURN
PUSH H
MVI B,[mode)
PUSH B
LXI H,[Y1)
PUSH H
LXI H,[X2]
PUSH H
LXI D,[X1]
LXI H,[Y2]
JMP 049CH« iy oo T
RETURN: ...
“BAL PR
none
all
call via the given sequence for the RREGION command, as described in the manual

B e o Sy

0608H

[A] = character or character mode bits

[B] = command mode (O, 1, 2]

none

all

call here for the CHARACTER commands, as described in the manual; the com-
mand mode bits select plot character, set character mode, and define alternate
characters: character mode bits are as described in the manual

898

DRAWCROSS
entry:

exit:
destroys:
description:

DRAWHAIRS
entry:

exit:
destroys:
description:

ALPHINIT
entry:
exit:
destroys:
description:

TTYCHAR
entry:
exit:
destroys:
description:

entry:

exit:
destroys:
description:

SPLO
entry:
exit:
destroys:
description:

WTI

entry:
exit:
destroys:
description:

FLD
entry:

exit:
destroys:
description:

OE28H

[TX) = X coordinate
(TY] = Y coordinate
nane

all B2 |
call here to complement the bits on the tracking crtoss at (TX, TY], [i.e., if the iﬂ
cross is on at (TX, TY), turn it off, and vice versa)

11B4H

[HX] = X coordinate

[HY) = Y coordinate

none

all

call here to complement the bits on the crosshairs at (HX, HY] [i.e., if the
crosshairs are on, turn them off, and vice versa)

08CBH

none

none

all

call here to reset the alpha interface: [clears the screen and sets AX, AY to top
left of the alpha area]

091CH

[A) = ASCIl code
none

all

call here to print an ASCIl character at AX, AY [TTYCHAR does not advance AX,
AY)

OABSH

[A] = ASCIl code
none

all

call here to send an ASCII code to the ALPHA processor; control codes are
recognized as described in the manual, and AX, AY are advanced, possibly invoking
the scrolling mechanism

022EH RATT B2 = TN g
(A] = number of ALPHA lines e B e R)
none h

all

call here to split the screen into a graphic area and an alpha area

05C7H

none

none

all

call here to force a cold start to the software and send & byte <{AB) to the host

OC5AH

[A) = mode [0, 1)

(DE) = X coordinate

[HL] = Y coordinate

enter via the following code sequence:

PUSH PSW
JMP FLD

none é

all
call here to flood the bordered region around point X,Y

90

CIR OFOOH
entry: [A] = radius
(B) = mode (O, 1, 2]
exit: none
destroys: all
description: call here to draw a circle at current graphic cursor

INVOKE 1065H
entry: [A] = macro #
exit: none
destroys: all
description: call here to invoke the desired previously created macro

g9

Variables and Parameters:

VARIABLE

CX

CY

NEWCX
NEWCY

AX

AY

AR

AC
ALPHSCRL
ALPHMODE
CHARMODE
>

I

TSTAT

LPX
LPY
LPSTAT

HX

HY
HSTAT

ROMCHAR

ADDR

FFFB
FFFQ
FFEQ
FFE7
FFDO

" FFCE

FRCD
FFCC
FFCB
FFCA
FFCS
FFD4
FFD2
FFDB

FFFE
FFFF
FFFD

FFBF

FFC1
FFBE

1108

#8YTES DESCRIPTION

BN DG T (6 R R e i W A b

_ A

= nn

the current graphics X coordinate

the current graphics Y coordinate

(see the VECTOR entry point]

[see the VECTOR entry point]

the current ALPHA screen X coordinate

the current ALPHA screen Y coordinate

the current ALPHA row number

the current ALPHA column number

the current ALPHA scroll parameter

the current ALPHA mode bits

the current GRAPHICS character mode bits

the current tracking cross X coordinate

the current tracking cross Y coordinate

1 if the tracking cross is visible, O otherwise [The DRAWCROSS
entry point does not maintain this cell - you should do it manually
when calling DRAWCROSS)]

the [X coordinate/2) of the last light pen interrupt

the [Y coordinate/2) of the last light pen interrupt

0 if no light pen interrupt has occurred, 1 otherwise [you should
reset to O to aknowledge a light pen interrupt]

the current X coordinate of the crosshair

the current Y coordinate of the crosshair

1 if the crosshairs are visible, O otherwise (the DRAWHAIRS entry
point does not maintain this cell - you should do it manually when
calling DRAWHAIRS

the beginning of the ROM character generator

g2

Smng
amny

12 __v

110 A
<8y —AAA—d wee

PINg
8.23.21 28

s

Y

3 AR

—3 A1y

-FF -

) aip
Ay

Iih

—3A

P A4

L]

Jap

FECTYERIS

UMCONNECTED

woon.

SCION
12310 PINECREST

RP
nmm.c, RESTON VA 22001

SCHE

eep—

Ty

MATIC

MICROANGELO GRAPHICS BD

(7] T e

e

R [

Twer 116 Jrne

BT

37 0u 25% 93370 Do
)

UL

L
3y Ol Bly Xa My Mg

s-4% 93 92,91 a2 81,98 9%)

9726 5% 3425020 00
o Y

157

[T

NSRRI

X+ 4 X5 0 Wy % 06) 200

5-90 40,39 38 83,38 35 3&)

5-100 BUSS CONMN

'y

-tat

TALSSeT

i5-941

2

e
(5-9%

FES
L5155

arut

A7 ek HAY HAg
2 A21¢5-191%-30)

5-8%

SCION CORP
12310 PINECREST ROAD, RESTON, VA 22081

" SCHEMATIC

MICROANGELO GRAPHIC S 8D

.t.nl_”..nnaﬂ wEaT owa = was

*

<t Taarim 3atqt b "

Amng

VBLANE

5 Al
uls usa
TaLs 3Ny L}] Td L8393

TALSINE

Ve TSTETY] e |8 T T
vie &
viy & upm
it .
W=
it L) 8%
Ve o€ ‘ (uom vl
Ve € T
v € ﬁ +
Ve i
vs € \g
va — “BLANE
vy &
Vi€
L —
vo % "
i
T N ;T el b (VoRIVE)
" Ule
TALIITA T .
Tals v s i [n[w]s
8 Tglis
Y,
2 YRLAMK
\-llr|v«.r)..:
0
52 o.?:.r sof o b
STRG B
EIGLND
a7 8L G304 W GE @1 G
T SCION CORP
—— s ——— 12310 PINECREST ROAD, RESTON, VA 22091
= e - SCHEMATIC
MICROANGELQ GRAPHMICS gD
— -y Ll o e
- - - g
[Pepy— T [Ts Ten3i 60

R LR B - 2)

TALS 257
a3

P s

OF mawk g

us2

D7 LI

IvNAM
"gapy

SCION CORP
12310 PINECREST ROAD, RESTON, VA 22091

- -

P

SCHEMATIC a5l
MICROANGELO GRAPHIC'S BD

EECost ERTI [owa w0 e
1 1

AR NG

wKan [1cneen T4/ 6l et

LIDRESS
1 1|
1% [Aa_ u—o 5
! iy Bt [1
L LR | ! _
T T 4 ﬁ |
T T f
i * t
| - 1]
= I
' - t
BANK 2 ' |}
|
' | il ”
Yo fale [7]8 spofifapmfrls : Ll £ 3o pi |zl s slol e I 5 i liofn |26 |2 |
) a 4 b |
an 4 & 0 a 4 4 14 a4
. 13 .|L~ i@]wx 4l g - aié = die
u22 1 uzs u2s ue 18
is Hm s _u B H, ﬁ. 15 F_ s M. *l. 5 3
cas
|
|
|
1
i l
i i I
T _ ;
BANK |
3 hoju 2 k4 s Lol jrle 1 (s Stale e (Y |5 3ol (ne IS o rle |r |8 3l fn iz 7 |3 iy i | e |7 s iy o fi 2 ie [15
| " 4 - 4 a . 14 N " - -
2 416 B a6 S0 4k WE iiie 2 E d116 B die S LALE r=r=
- = & | -4 +-4] 2 g
iz uts L4 uis Uik vty u'a & TRL)
s ﬁ- 5 h» [Hv s hu 13 5 3 Pw i5 Hv B H_
-t _
i LI-21iN g
[} w2 ~PINA | c
L EN B
5 - Vikis
S0P N
3 ._\ur | o5 b4 o3 02 o1 =T
4 v e
a7 Ge as a4 o\u n;m a1 a0
e aeaa oredi SCION CORP
e m— — 12310 PINECREST ROAD, RESTON, VA 22091
2 e :
= = SCHEMATIC
e MICROANGELO GRAPHICS BD
o T ..IH.BI.!-.: ﬁ!! n_l.:
o -
oL a nom ad acarem | seanr 16 3

"y 3

—> GND

3+ 12V

3-izv

i T T-3
§+1 %81} | | LiHoT=
ol L* z 2
100 My .8 ur
n_g‘ e, n;‘ S ca gvﬂ,-o.u
a0 § euecr .
15-50 ,5-100)
ks Ve 3
W
40T-12
15=2) ks _ﬂ
. t L
6 | Lo uy
TANY
T, 00 TANT
L
1 RLE) 3
- ' :
LM 78T
S=511
(4]
By Cg |4 0y
TauT TanmT
s 10 uf
L3 129§ wary &2 TanT
- 1 ENER H
L—Ann .
ien
7 wATT

!

LP LP
STROBE | ENABLE

+5v
JB
! !
,Hmwo HDRIVE
VORIVE
Je

JA
!

p LU T

20MHT

TTL
VIDED

111)

VBLANK | HBLANK
FIELD VBLANK HBLANK

woon,

SCION CORP
12310 PINECREST ROAD, RESTON. VA 22091

——— -

SCHEMATIC

MICROANGELO GRAPHIC'S BD

i

rlﬁ'l LT Mil _..a

- canom

< an Tocmeen (s 51 6 ey

