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introduction

Are you bored with BASIC?
Do your photon torpedoes drift listlessly across your screen?
Does it take ages to age your accounts receivable?

Maybe you're ready to tackle assembly language programming. If so, this is
the place to start. This book assumes that you know a little bit about com-
puters and have done some programming in a higher level language like
BASIC or FORTRAN. It assumes familiarity with words like

VARIABLE
GOTO
LOOP

ARRAY

The approach is designed for the novice to assembly programming and is
intended to provide just about everything the applications programmer needs
to know to get the most out of his machine. Some topics are conspicuously
omitted, since they are really relevant only to someone designing a monitor
program or operating system. The emphasis here is to give the user all the
information needed to interact with his monitor.

Here are some of the features that make this book unique.

® Each concept and instruction is carefully explained.

® Numerous diagrams and examples are provided.

e Exercises designed to instruct and challenge you are included with each
chapter, and answers to each are provided.

* Programming techniques are presented along with the instructions.

There are eight chapters in this book. Each chapter gradually builds on the
work of preceding ones. The exercises are a part of the instructional material
as well. Do try them. They will help you quickly develop your skills as an
assembly language programmer, as most exercises ask you to write segments
of code. When you turn to the answers, however, please remember that what
you see is but one possible way of doing things. It is very unlikely that we will
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agree totally on the approach to take, so to check your work try it out on your
computer.

Assembly programming is really worth the effort it takes when you're
new at it. Later, when you become comfortable with the instructions, it is
only slightly more difficult than BASIC. In return it gives you

¢ complete control of your system

¢ flexibility in the management of your data
® speedier execution

® compact programs

Then, too, there’s that delicious sense of satisfaction when you can say: “No,
it's not in BASIC. I wrote it in assembly language.”

The programs we will write in assembly language are much different
than programs written in BASIC. Each line of a BASIC program is translated
by another program (called a BASIC interpreter) into several lines of assem-
bly level code. An example will serve to illustrate this one-to-many transla-
tion. Suppose we write an algebraic statement in BASIC: Z = X + Y. Lets
see the assembly level statements that could be used to accomplish this.

1. Go get the value of X and place it in the accumulator. (The ac-
cumulator is the spot where the addition will take place.)
. Set up a pointer to the location where the value of Y is stored.
3. Add the accumulator contents to the value the pointer locates. (The
sum will be left in the accumulator.)
4. Store the contents of the accumulator in the location belonging to Z.

0o

The assembly level statements are the closest to the actual computer actions
that a programmer may specify. Each statement written in assembly language
is translated by another program (called an assembler) into one machine
instruction.

All machine instructions are strings of #s and 1s. One example is

10111000

Now this may make perfect sense to a computer, but humans tend to think
better in words. This is where assembly language comes in. It allows the
programmer to refer to the instructions in word-like abbreviations called
mnemonics.

In this text we will be studying most of the instructions available to the
programmer of the Z-8f microprocessor. In each case we will learn

1. how the instruction works
2. the mnemonic
3. the machine code (OP code)
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The job of the assembly language programmer is to know how the in-
structions can do the job he needs done and to write the instruction
mnemonics. The job of the assembler program is to translate the mnemonics
into machine code. The job of the computer is to execute the machine code
instructions. Two other programs may be involved in this process. A text
editor program is usually used to write the mnemonics into a text file, usually
maintained on a tape or disk system. A load program (or loader) is used to
input the machine code (often called an object file) into the computer’s
memory for execution. The whole process can be summarized as follows.

4

-—
Programmer Programmer keys Assembler program
designs program and mnemonics in using translates mnemonics into
writes mnemonics. text editor program. machine code and creates
He creates a text file an object file in computer
in computer memory or memory or on tape or disk. |

on tape or disk.

Loader program brings Programmer runs
object file into program for testing
computer for execution. and debugging.

The emphasis in this text is on the steps of design and coding. Running
the text editor, assembler, and loader is just a matter of following the specific
instructions included with the particular versions running on your system.
Some specific help on how to debug your programs can be found in the final
chapter of this book.




bits, bytes, and
boolean operators

Binary and Hexadecimal Number Systems

The binary number system is the basis of computer operations. It requires the
use of only two digits: # and 1. These two possibilities can be easily
represented by a low and high voltage, respectively. The decimal numbers 0
through 5 appear below written in binary form.

0=29
1=1
10 =2
11=13
100 = 4
191 =5

It can be seen that the numbers rapidly become very long.
In the decimal system each digit represents a power of 10. For example

423 = 4 x 100 = 4 x 192
+2x 10 + 2 x 1¢!
+3x1 + 3 X 14°

(Any number raised to the @ poweris 1. So, 2° = 1, 10° = 1, and 16° = 1.)
In the binary system, each digit represents a power of 2.

1101= 1x2°= 1x8
+1x22 +1x4
+0 X2 +0x2
+1x20 +1x1

So 1161 in binary is the equivalent of 13 in decimal. Conversion between the
two number systems can be done using these rules, but it is not common to
have to convert numbers larger than 15 back and forth. Larger numbers are
generally first converted into the hexadecimal system.

In the hexadecimal, or base 16, number system, there are 16 different
digits. The digits -9 are borrowed from the decimal system, and letters of
the alphabet fill in for the other six.
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A=10 i
B =11
c=12
D=13
E=14
F =15

In the hexadecimal system, each digit represents a power of 16.

1B = 1Xx162= 1 x 256
+ B x 16! + 11 X 16
+3x16° + 3x1

So 1B3 (hexadecimal) is the equivalent of 435 in the decimal system.

With three number systems in use, some way to distinguish between them
is necessary. Whenever confusion could arise, we will use a subscripted letter
to distinguish between the systems.

18,; — Hexadecimal
10, — Decimal

10y — Binary
Converting Between the Systems
Conversions of small numbers can be done using the following chart.
Decimal Binary Hexadecimal
[} [/ ]
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 119 6
7 111 7
8 1000 8
9 1901 9
19 1010 A
11 1011 B
12 1100 Cc
13 1101 D
14 1110 E
15 1111 F
16 10000 10
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Hexadecimal-Decimal

Hexadecimal numbers can be converted into the decimal system most easily
by using the powers of 16. The following example shows how to convert
2AF3y, to decimal.

2 X 16 = 2 X 4996 = 8192 = 16,995,
+ A X 162 + 10 X 256 + 2560
+ Fix 16° +156x 16 + 2490
+ 3 x 16° + 38X 1 + 3

Conversions from decimal to hexadecimal can be done using division and
the following chart of powers of 16.
Powers of 16

16° = 1
16! = 16
162 = 256
16° = 4,096
16* = 65,536

Numbers larger than 16¢ are rarely encountered. We will always begin by
dividing by the largest power of 16 that will fit. Beginning with 10,995,
here’s how to get back to 2AF3,,.

2r 2803

4096 [10,995 2

10 r 243

956 [2803 A

15r3
16 l 243 F

3

IIS 3

Hexadecimal-Binary

Conversions between hexadecimal and binary are extremely easy. Every
hexadecimal digit can be translated into four binary digits using the con-
version chart. For example,

53D, = 181 @611 1101,

Binary numbers can be converted to hexadecimal by counting off groups
of four digits beginning from the right. Then each group is translated into a
hexadecimal digit. Thus,
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1411101101, = 16 1119 1181, =2EDy

Bits and Bytes
A bit is the unit of storage required to hold one binary digit. We will denote a
bit by enclosing the @ or 1 value in a box as shown.

(o] o [

Sometimes bits are important in themselves, but usually they are con-
sidered in groups. A group of eight bits is called a byte. We will denote a
byte as a string of eight boxes.

[1To[1To o1 o] 1]

Since four bits make one hexadecimal digit, it takes two hexadecimal digits to
describe the contents of a byte. Sometimes a group of four bits is called a
nibble.

The byte is the basic arithmetic unit of a microcomputer. If we only want
to count, the highest number we can count to in a byte is 255.

GafaTafae]1] = ¥E, = 255,

We also have the capability of adding two positive numbers, so long as they do
not total more than 255. But how can we subtract? Subtraction requires the
ability to express negative numbers.

2’s Complement Representation

We would like to have the ability to represent negative as well as positive
numbers. This is accomplished by reserving one of the eight bits as an in-
dicator of the sign of the number.

[o]x [ x[x [x[x[x[x] Positive (8 sign bic)
[1]x ] x[x [x[x [x[x] Negative (1 sign bit)

By tying up one of the eight bits to indicate the sign, we are left with only
seven bits for the magnitude of the number. So the highest number we can

count to is 127.
plafafafaf1]1]1] = 7F, =127,

So how would we represent — 1272 A first try might be to simply reverse the
sign bit and leave all the magnitude bits unchanged. Although this scheme is
easy to understand, it turns out to be very difficult to work with.

A second try might be to reverse all the bits. This is called 1's com-
plement.
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[o[eJo]t]1To[1]0] =25,
nnnnn =1’s complement of 26

If we used this method to represent negative numbers, let’s see where it would
lead. We would certainly want 26 and — 26 to add up to zero. But

[o[efe[1]1]o]1 0]
+ [1]1]1]eJeT1]e]1]
[IaTaTelafafiT1]
when we’d really like all @s. However, if we add 1 and ignore the carry, we get
just what we want:
+ [e]o]e]oTo]o[1]
carry [0]¢ToTooloT0]
Out of this reasoning came 2's complement representation of negative
numbers. 2’s complement is formed by adding 1 to the 1’s complement form.

1111 [AR
1
1 [} 1

[11]1]eTe]afe]1] =1 complement of 26

+[o]eJo oTo]oTo]1]
n.n.n.n = 2’s complement of 26

Converting a negative number back to positive can be done using the exact
same steps.
[1[1]1]eTo s 1]e]
[0]0J0]1]1[0[0]1] = 1'scomplement of —26
aannnnonn
[o[ofo[1]1]o]i o] =26,

-2,

Byte-Size Arithmetic

We are now equipped to perform addition and subtraction of binary num-
bers. Here are some examples.
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[oToToTol1To 1]1] 1 [oToTeloT1o [1]1]
+7 +[o]o]e[e[8 1 1]1] -7 - [e]eTeTeTe]a]1]
18 [6]o]e[1o]e]1]0] 4 [0ToloToTe1]o]o]

—
—

Arithmetic Flags

We have already seen one of the arithmetic flags, the carry flag. It is set
whenever the result of an addition is larger than eight bits.

1 [oToToToloToTol1]
+ (=D + [afafafafe]a]s]
0 carry [1] []0]0]0]0[0T0[0]

In addition the carry bit is most often just ignored. It is simply a by-product of
2’s complement representation.
In subtraction the carry bit has more meaning.

1 carry [1] [00]o]0TeT0]0]1]
-2 - [oTeTefeToTo 1]0]

-1

Here it is when a borrow is generated. Thus the carry bit tells us that we
subtracted a number from a smaller number.

The overflow flag is an indication that something’s gone wrong. We
know that an eight bit number with one sign bit and seven magnitude bits
cannot be larger than 127. The smallest it can be is — 128.

[1]eloTelolo[o]0] = —128,

Now suppose we try to add 75 and 80:

75 [o]1Te]o 101 ]1]
+ 80 + [e]1]eT1]0]0]0]0]
155 TeTel1]1T01]1]
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What has happened is that the magnitude bits have carried over into the sign
bit, making the result look like a negative number. The overflow flag is then
set to indicate that the answer is unreliable. This can also happen when two
large negative numbers are added. The overflow flag is again set to point up
the trouble.

(=175) [1feTa]ae 1T [1]
+ (-80) + [1]e]1]a]eTe]oT0]
- 155 NRANDANR

Again the sign bit was reversed. The carry flag was also set, but that is
unimportant.

If the two operands to be added are of opposite sign, no overflow can
occur.

Two other flags are very simple in their operation. The sign flag in-
dicates whether the result of an arithmetic operation is positive or negative. It
is an exact copy of the sign bit, so # means the result was positive and 1 in-
dicates a negative result. Since a zero result has a 8 sign bit, it is obviously
considered to be a positive number. A zero result, however, is so important
that it is reported in a flag all its own. The zero flag is set when the result is
zero.

Summary of Eight Bit Arithmetic Flags

Carry (C) - Carry out of the eight bits
1: occurred
0: did not occur

|

Overflow (V) Sign bit clobbered
1: occurred

#: did not occur

Sign (S) — Result was
1: negative
P: positive

Zero (Z) — Zero result
1: occurred
0: did not occur
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Boolean Operators

Arithmetic is not the only thing that can be done to pairs of eight bit values.
There is the whole class of logical, or Boolean, operators. Boolean operators
treat all eight bits alike, with no sign bit.

AND

The AND operator compares two bytes bit by bit. If a bit is set in both
operands, it is set to 1 in the result. Otherwise the bit is reset to 0 in the result.

This operation is summarized in the following table.

A B AAND B
1 1 1
1 0 0
[ 1 0
[ 0 [4

Usirg this table, each of the bits in a byte is set or reset in turn, as in the

following example.
[1Tiefole [oTa]1] A
anp [1]e[1]pTe]1]e]1] =
[ifoTeTe[ofeTes] A anD B

OR

The OR operator compares two bytes bit by bit. If a bit is set in either
operand, it is set in the result. Otherwise it is reset in the result.

A B AORB
1 1 1
1 ] 1
[ 1 1
] (] 0

[TiTeele]e 1] A
or [1[e[1eTe]1e[1] B
[[iT1feJefsT1]1] AoRB
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XOR

The XOR (exclusive OR) operator compares the two bytes bit by bit. If the
bit is set in either operand, but not in both, it is set in the result. Otherwise it
is reset in the result.

A B AXORB
1 1 0
1 [} 1
[ 1 1
[} [} ]

[1[1TeoTo o a]1] A
XOR [1]#[1]p[o1T0[1] B
[T1iJo]e[1Ta[#] A xor B

Flags and the Binary Operators

Carry —  Reset by AND, OR, and XOR
Zero —  Indicates that all bits of the result are zero
1: occurred

#: did not occur

Sign —  Set to the value in the uppermost bit (same as
arithmetic operation)

Logical operations affect the parity flag instead of the overflow flag. The
parity flag tells whether an even or an odd number of bits are set in the result.
The parity flag is set when an even number of bits are set in the result. The
flag is reset when an odd number of bits are set in the result.

Result [1]p[1]1]1]e]1]e] (five bits set)
P=9

Result  [1]0]p[0[0]00]1]  (twonbitsser)
P=1

Exercises

Convert the following numbers to decimal.

a. 101 e 10000000 i 00010010
b. 1101 f 11001010 j- 01116011
c. 11101 g 10901110 k. 111900108
d 191911 h 11111001 1. 10810191611




Bits, Bytes, and Boolean Operators 13

. Convert the following decimal numbers to hexadecimal and then from
hexadecimal to binary.

a. 6 e. 542 i. 15,430
b. 14 f. 1077 j. 43,751
c. 127 g 4095 - k. 65,552
d. 280 h. 8702 1. 70,980

. Give the eight-bit signed representation of the following positive numbers.
Then convert each to 2’s complement.

a, 7 c. 238 e 104

b. 17 d. 48 f. 127

. Given the following bytes with one sign bit and seven magnitude bits, give the
decimal equivalent of their contents.

a [ole]ofo]1]ofo]1] a. [o]e]1eTola]a]s]
b. [P[TT1[1]0]0]1] e. OTITITxT0 O Ti]0]
e, (a]afeTaTe]a]s] £ [([1]e]1]o[e]e]e]

. Perform the following arithmetic operations in binary form. For each, give
the result in binary, and tell whether the carry and/or overflow flags are set.

a. 11+ 15 d. 194 + 55
b. 17 + (- 21) e. (—67) - 107
c. 46— 12 £, (—67) + 107

. For each of the following pairs of bytes, find their AND, OR, and XOR.
Indicate what flags are set.

b. AL A Rnnnnnono:
c 5. BIPEIIF1T]
a. [T b, [P TTIAT1]

1]1 1

1
1

[1To[1Tolo]o[1]o] [i]ieToTua]a]1]




where is my variable?

The Higher Level Language Programmer

Whatever else the higher level language programmer may know about his
program, he probably has very little sense of where his variables are located.
Consider the following program:

X=3
Y=2
Z=X+Y
PRINT Z

Where is X? Where is Y? Where does the addition take place? The whole
“where” aspect is generally quite foreign to the new assembly language
programmer. Also missing is the language needed to talk about “where”
topics.

Registers

The registers are one of the most common answers to a “where” question.
Here is a diagram of the 8080 register set. (The Z-8 has these and more.)

A Flags
B C
D E
H L

Each of the registers is eight bits long. The bits are numbered from right to
left. All of the registers look alike. Here is a close-up of one of the registers.

Bitc # 76 543 2186

[1]6]1]8]17¢1]0] RegisterE

The A register is the answer to the question: “Where does the addition
take place?” Also called the accumulator, register A always holds one of the
two operands in an add, subtract, AND, OR, or XOR operation. The result
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is also left in register A. So every arithmetic and logical operation is of the
form

X+-=XAY
The register labeled “Flags” is where the carry, overflow, and other flag bits
are stored. It is usually accessed only one bit at a time.

Registers B and C, D and E, and H and L may be treated as register
pairs. Then the two eight bit registers may instead be regarded as one 16 bit
register. Besides being able to house a larger number, the main use of 16 bit
values in a microcomputer is to address memory.

Memory

Memory is the most likely answer to the question concerning the whereabouts
of any variable. It also answers the question “Where is my program?”

Memory is divided into individual bytes. Each byte in memory has a
unique address. Addresses in the 8080 and Z-80 are all two bytes in length.
How much memory can be addressed in two bytes? Consider the following
progression.

Highest Address

# of Bits Size of Memory in Hexadecimal
8 256 bytes (#-255) FF
9 512 bytes 1FF
10 1024 bytes = 1k 3FF
11 2048 bytes = 2k 7FF
12 4096 bytes = 4k FFF
13 8192 bytes = 8k 1FFF
14 16,384 bytes = 16k SFFF
15 32,768 bytes = 32k 7FFF
16 65,536 bytes = 64k FFFF

One byte addresses only allow for %k of memory. Since this is usually
inadequate, the logical choice was to go to two bytes for an address. A two
byte address allows the possibility of addressing 64k of memory.

We have already mentioned that the BC, DE, and HL register pairs may
be used to contain memory addresses. There are, in addition, two other 16
bit memory address registers common to the 8489 and Z-86 microprocessors.

Stack Pointer and Program Counter

The stack pointer (SP) is a 16 bit register whose only function is to point to a
location in memory.
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0000
3 C [] 3 0001
splefo[iTa[1T1Tolol0 0 0 T0]e 0] 1]1] 9002

3Ce2
3C03
3C04

In the Z-80 microprocessor, the stack is just a designated portion of regular
memory. The programmer sets the stack to the location of his choosing. With
the question “Where is the stack?” out of the way, a good question to consider
next is “What is the stack?”

A stack, in the general sense, is a collection of items where all additions
and all deletions occur at the top. A stack of dishes, for example, fits this

description.

— N— N
The stack Addition to Deletion from
the stack the stack

(

The characteristic of a stack is that only the top is accessible.

The stack in the Z-80 or 8888 sense is a region of memory where values
can be saved temporarily. Its most common use comes in relation to
subroutine calls, but it can be used to store intermediate results in a com-
putation, or any short-lived variable. Use of the stack for these purposes saves
having to use a separate, unique memory location for transient data.

The program counter is also a 16 bit register which points to an address
in memory. That address is located within the program that is currently
running, and contains the next instruction to be executed.
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Notation

Suppose we have a variable located in memory which we have called VAR-
BLE. Since VARBLE is located in memory, it has an address. It also has a
value. So when we use VARBLE, which do we mean, the address or the value?
To the higher level language programmer there can be no problem. He knows
nothing of the whereabouts of his variables. When he uses VARBLE he
means its value.

The assembly language programmer will deal with both values and
addresses. It is the instructions themselves which will clarify the usage. Some
instructions operate on values, others deal with addresses. But to talk about
the instructions requires a new notation. In this context, n will denote an
eight bit number, and nn a 16 bit number. So we will use

nn as the address, and
(nn) as the value

Mnemonics

To the microprocessor, an instruction is a bit pattern called an OP code. The
binary values are most often written in hexadecimal. To the human, a bunch
of numbers, hexadecimal or binary, are difficult to relate to. Mnemonics are
short, word-like abbreviations for the instructions which are translated into
their numeric equivalents by a program called an assembler.

For each of the instructions we will be studying the hexadecimal OP code
and mnemonic will be given. Mnemonics for the 8480 and Z-80 are not the
same even though the OP code and instruction execution are. So both
mnemonics will be given. In addition, note that the TDL Z-80 assembler uses
80680 mnemonics.

Eight Bit Load Instructions
Register-Register

The contents of any eight bit register can be moved to any other eight bit
register.

MOV  EA  (8080)
LD EA  (Z-80)

The contents of register A would then be moved into register E (to E from A).
The target is listed first. This class of load instructions is denoted

MOV rr’ (8080)
LD r,r’ (Z-80)
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where r and r’ can be any of A, B, C, D, E, H, and L, and the action is r -
r'.
The OP code for our sample instruction (E < A) is 5F,;. Here is a chart

which gives the OP codes for all register-register moves.

Source Register
A B C 12 E H L

SF | 58 | 59 | 5A [ 5B | 5C | 5D
67 | 60 | 61 [ 62 [ 63 | 64 | 65
6F | 68 | 69 | 6A | 6B | 6C | 6D

A|TF {781 79 17A | 7B | 7C [ 7D

B |47 | 40 | 41 [42 [ 43 | 44 | 45
Destination C | 4F | 48 | 49 | 4A | 4B | 4C | 4D
Register D| 57 | 50 | 51 [ 52 |53 |54 |55

E

H

L

Register-Memory

Eight bit values can be loaded from memory into the registers and from the
registers to memory. Movements between the accumulator (register A) and
memory can be accomplished in several different ways. Movements between
memory and any other register are very restricted.

We mentioned that the register pairs BC, DE, and HL can be used as
pointers to memory. The HL pair is by far the most commonly used for this
purpose. Suppose we have the following situation.

AF .
BC .
DE
HL[ 28 | 7B 287A
T 04 287B
287C
287D
287E

The HL register points to memory location 287B which contains the value
04,;. This value can be loaded into any of the eight bit registers using the
instruction

MOV r,m (8080)

LD r,(HL) (Z-80)
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In the 8088 mnemonic, M indicates a memory reference and always refers to
the memory location pointed to by the HL pair.
In this instruction, the movement can be depicted as

r- (HL)
Movement in the opposite direction is also possible:
(HL)=r
Here the contents of any eight bit register can be stored in the memory
location pointed to by the HL pair. The instructions are
MOV M,r (8080)
LD (HL),r  (Z-80)

Both of these instructions have separate OP codes for each eight bit register.
The OP codes are summarized in the following table.

A B C D E H L
r < (HL) 7E | 46 | 4E | 56 | SE | 66 | 6E
(HL) = r 77 (70| 71 724 73| 74175

Register A-Memory

Additional movements between the accumulator and memory are possible.
Four of them are just like the register-memory (HL) instructions just
described. They are summarized in the following table.

Action OP Code 808¢ Mnemonic Z-80 Mnemonic
A=(BC) PA LDAX B LD A, (BC)
A=~(DE) 1A LDAX D LD A, (DE)
(BC)=A 92 STAX B LD (BC), A
(DE)=A 12 STAX D LD (DE), A

Missing so far in all these register-memory movements is the ability to
load the value of a variable by name. That is,
A< (VARBLE)
or
(VARBLE) = A
Both of these actions are possible, but more information than just the OP
code is required. Besides telling the computer we want to load 2 variable from
memory, we have to tell it which one.
Before, when we wanted to load a location from memory, we answered the
question “Which one?” with “The one pointed to by the HL (or BC, or DE)
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4

4

pair.” So the location didn’t have to be contained in the instruction. This time
we will have to give the location.

LDA  VARBLE (8080)
LD A, (VARBLE)  (Z-80)

We give the assembler the name of the variable. The assembler translates the
name into its two byte address. (It keeps a symbol table for this purpose.)

Suppose VARBLE is stored at location 28F3. Then this address would
become part of the instruction. One byte would be used for the OP code and
two for the address, so the whole instruction would be three bytes long. Here
are the possibilities (nn stands for the variable name in the mnemonic and for
its address in the instruction).

Operation OP Code 8080 Mnemonic Z-8¢ Mnemonic
A=—(nn) 3Ann LDA nn LD A,(nn)
(nn)<-A 32nn STA nn LD (nn), A

Register-Immediate
Suppose we want to place a certain value into a register or memory location.
A-7
The number 7 is an absolute value, or an immediate. We can store any eight
bit absolute value into any of the eight bit registers or into the memory
location pointed to by the HL register pair.
The absolute value desired is written with the mnemonic and is

assembled directly into the instruction. The instruction then becomes two
bytes long.

MVI  C,-27  (3088)
LD C,-27  (Z-80)

After executing this instruction, register C would then contain

C nnnnn (=27 in 2’s complement form)

The possibilities are charted below. The letter n stands for the eight bit
absolute value.

Operation 8080 Mnemonic Z-8f Mnemonic

r-n MVI r,n LD rn
(HL)=+-n MVI Mn LD (HL),n

The OP codes for the immediate instructions are presented in the following
table.
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[aATB[cTPTE]HTL JHL
S<-n | 3En| 06n| ¥En| 16n | 1En| 26n| 2En| 36n |

Here s stands for r or (HL) and n is in 2’s complement form if negative.

Z-80 Indexed Eight Bit load and Store

Two other 16 bit registers exist in the Z-80 microprocessor. These are the IX

and IY index registers.
X
1y

Like the stack pointer and program counter, these registers are used exclu-
sively to point to memory locations. Like the HL pair, they are generally used
to point to variables in memory.

The index registers can, however, be used with a displacement. A
displacement is an eight bit signed number which is coded directly into the
instruction. Here is an illustration of how the index registers work.

:
3 IX
H (—— T 3443 (IX) i
d: 95 —ooaee i .
L]
IX+d .

............. S T F F 3448 (IX+d)

In this illustration the IX index register points to memory location 3443.
The value of the displacement is #5,;. So the location that would be affected
by the instruction would be 3443, + 05, = 3448y. Take for example the
following load instruction into the B register.

MOV B.5(X) (TDL Z-86)
LD B, (IX+5) (Z-80)
At the conclusion of the operation register B would contain FFy,, not #9.

The displacement is a signed eight bit number. So its values can range
from — 128 to +127.

Indexed instructions can be tricky to deal with, and much will be said
later about techniques for using them.
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Diagramatically, the load and store index instructions fall into one of
three categories. Here ii will mean the IX or 1Y index register. Note that an
immediate can be loaded into an indexed memory location.

r = (ii+d)
(i +d)=—r
(ii+d)=n

Since the displacement is coded into the instruction, the instruction must
be at least two bytes long. In fact, it is three bytes long. Two bytes are used for
the OP code. Most of the Z-8# instructions which are extensions of the 8480
instruction set are two bytes long. All of the IX index OP codes begin with DD
and the IY with FD. Index instructions which include an immediate are four
bytes long.

Here, then, are the OP codes for the Z-80 index instructions.

A B C D E H L

r - (IX+d) DD7Ed | DD46d | DD4Ed | DD56d | DD5Ed | DD66d | DD6Ed
r < (IY+d) FD7Ed | FD46d | FD4Ed | FD56d | FD5Ed | FD66d | FD6Ed
(IX+d) = DD77d | DD7¢d |DD71d |DD72d [ DD73d [ DD74d |DD75d
(IY+d) =r FD77d | FD7¢d | FD71d | FD72d | FD73d | FD74d | FD75d

(IX+d)<n  DD36dn

(IY+d) =-n  FD36dn

16 Bit Load and Store Instructions
Register Summary

Before going further, let’s take a moment to review the registers discussed so
far:

8080 Registers 7-80 Registers
AF AF
BC BC
DE DE
HL HL
SP | stack pointer 1X
PC | program counter 1Y
SP | stack pointer
PC | program counter

Register-Register

We saw that it was possible to move the contents of any eight bit register to
any other eight bit register. Movements between 16 bit registers are, by
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contrast, almost nonexistent. Only the stack pointer (SP) can receive a value
from another 16 bit register. Even then, there are only three possibilities.

TDL Z-868 &
Action OP Code 8080 Mnemonic Z-88 Mnemonic
SP<-HL F9 SPHL LD SP,HL
SP=IX* DDF9 SPIX LD SP,IX
SP+IY* FDF9 SPIY LD SP,IY

*Z-80 only.

Memory-Register

In the eight bit load instructions it was possible to load and store values from
memory locations pointed to by the HL pair, r<-(HL). This does not occur
for 16 bit registers at all. We also saw that the contents of a one byte variable
could be loaded into the accumulator by referencing its name. A two byte
variable can be loaded or stored in the HL pair by referencing its name.

LHLD BIGVAR (8080)
LD  HL, (BIGVAR) (Z-80)

Here, the contents of the address BIGVAR and the address BIGVAR + 1 are
loaded into the HL pair.

Swapped Format. A two byte variable is stored in memory in what is
known as swapped format. By this is meant that the low order byte is loaded
at the lower memory address. An example should make this clear. Suppose
BIGVAR is stored at location 1F23.

HL

(after loading
BIGVAR) 43 1F23 BIGVAR

56 1F24 BIGVAR + 1

Two byte variables are not the only numbers stored in swapped format. If an
8080 or Z-80 instruction contains within it a two byte address, that address is
stored in swapped format. Our example load instruction has OP code 2A and
the address of BIGVAR is contained within the instruction, so the instruction
in hexadecimal would be

2A 231F

This ability to load and store a named 16 bit variable exists in 8980 for the HL
register pair only. The Z-8 microprocessor possesses this capability for the
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BC, DE, HL, SP, IX, and 1Y registers. Here are the instructions and OP
codes (nn stands for the two byte address, and rr for the register name).

TDL Z-80 and
Operation OP Code 8080 Mnemonic Z-80 Mnemonic

8080 HL <—(nn) 2Ann LHLD nn LD HL,(nn)

& (nn)-—HL 22nn SHLD nn LD (nn),HL
Z-80

Z-80 BC <—(nn) ED4Bnn LBCDnn LD BC,(nn)

only (nn)-— BC ED43nn SBCD nn LD (nn),BC

DE <—(nn)  ED5Bmn LDED nn LD DE, (nn)

(nn)-— DE ED53nn SDED nn LD (nn),DE

SP <—(nn) ED7Bnn LSPD nn LD SP,(nn)

(nn)<— SP  ED73%nn SSPD nn LD (nn),SP

IX <—(nn) DD2Ann LIXD nn LD IX,(nn)

(nn)=— IX DD22nn SIXD nn LD (nn),IX

IY <—(nn) FD2Ann LIYD nn LD IY,(nn)

(nn)<e— 1Y FD22nn SIYD nn LD (nn),IY

Register-Immediate

Just as a one byte immediate could be loaded into any eight bit register, so can
a two byte immediate be loaded into any 16 bit (double eight bit) register.
Usually that value is an address.
LXI  H,BIGVAR (8088)
LD HL,BIGVBAR  (Z-80)
The above instruction has the effect of loading BIGVAR'S address (not its
value) into the HL pair. Diagrammatically,
IT < nn
A constant can also be loaded using these same instructions.
The 8080 possesses all of these immediate instructions except the two
that reference the IX and IY index registers. The OP codes are given below.

[ Bc [ pE [ HL | sp | Ix | 1¥
IT «—nn [ 01nn l 1lnn I 21nn | 31nn IDDZIImIFD?lnn

The mnemonics for these are
LXI IT,nn (8089)
LD T,nn (Z-80)

Note that the meaning of rr differs for the 8680 and Z-80. The Z-80 uses
any one of BC, DE, HL, SP, IX, or IY. The 8080 uses B for BC, D for DE, H
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for HL, and SP for SP. The TDL assembler uses the 8680 form and, in ad-
dition, X for IX and Y for IY.

PUSH and POP Instructions

PUSH and POP instructions transfer values back and forth between register
pairs and the stack. For this purpose the A register and the flag register are
treated as a pair.

In a PUSH instruction, the contents of a registered pair are stored on the
stack, and the stack pointer is adjusted. The stack always grows from high to
low addresses, so to add an item to the stack the stack pointer must be
decremented.

SP = 22 3FFD HL

53 3FFE
76 3FFF
]
.

The execution of a PUSH action has four distinct phases. Consider the action
of pushing the contents of the HL pair onto the stack:

1. The stack pointer is decremented.

SP - 3FFC HL

22 3FFD
53 3FFE
76 3FFF
.
.
.

2. The high order byte (register H) is stored.

SP - 1B 3FFC HL [1B [ 24 |

22 3FFD
53 3FFE
76 3FFF
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3. The siack pointer is decremented again.

SP — 3FFB HL

1B 3FFC
22 3FFD
53 3FFE
76 3FFF

4. The low order byte (register L) is stored.

SP — 24 3FFB
1B 3FFC
22 3FFD
53 3FFE
76 3FFF

The POP instruction is the exact opposite of PUSH. For both the 8080
and Z-80 the mnemonics are the same:

PUSH oy
POP r

Again 1T is expressed differently for the two mnemonic versions, as was
previously discussed. Also, the A-Flag register pair is referred to as PSW
(which stands for program status word) in 8680 mnemonics and AF in Z-86
mnemonics. Note that the stack pointer itself cannot be pushed or popped.
The relevant OP codes are

8080 & Z-8¢ Z-8¢ only
AF | BC |DE [HL | IX Iy
PUSH | Fb [ C5 | D5 | E5 | DDE5 | FDES
POP F1 | Cl | D1 | El | DDEl [ FDE1

Exchange Instructions

Exchange instructions swap register contents, or contents of sets of registers.
The 8088 instruction set includes only two such instructions. The Z-80 has six.
The two common to both perform the following actions.
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HL<+— DE

HH <— (SP)
So the contents of the HL register can be exchanged with the contents of the
DE register or with the contents of the top of the stack.

HL <— DE
DE |39 | 97
AL [07 104
Before After
HL-<—(SP)
Sp 04F¢ G4EF
Before \ 30 04F¢
27 $4F1
#4F2
HL 27 | 36
SP 04F9 @4EF
After FE 04F¢
DC $4F1
94F2
Mnemonics and OP codes for these are
Exchange OP Code 8080 Mnemonic Z-80 Mnemonic
HL=-—DE EB XCHG EX DE,HL
HL<—>(SP) E3 XTHL EX (SP),HL

The Z-80 has the capability to exchange either the IX or 1Y index
register with the top of the stack as well.

Action OP Code TDL Z-808 Mnemonic Z-80 Mnemonic

(SP)=—=IX DDES XTIX EX (SP)IX
(SP)=—=TY FDE3 XTIY EX (SP).IY
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The two other Z-80 exchange instructions swap sets of registers. Besides all the
7-80 registers given so far, the Z-80 has a duplicate set of the A and flag
registers, and of registers BC, DE, and HL. Exchange instructions swap either
AF and AF’ or BC, DE, HL and BC', DE ’, HL'. The swaps appear as

AF [ Je—s T ] ar

BC BC’
DE | DE’
HL HL’

The prime set cannot be addressed or acted on in any way except to swap with
the current set, which then becomes dormant.

Action OP Code TDL Z-80 Mnemonic Z-8¢ Mnemonic
AF <«—AF’ 98 EXAF EX AF,AF'
BCDEHL«—=BCDEHL' D9 EXX EXX

The main purpose for these exchange instructions is to provide a very fast
way of saving contents of all the registers. It is important to note that the only
way to access the saved register is to swap back. No values may be exchanged
directly between the two sets of registers.

Exercises

- Write a sequence of instructions that will swap the contents of the D and
E registers.
- What will the B register contain after execution of this instruction? (The — 12
is decimal.)

MVI  B,-12  (8080)
LD B,-12  (Z-86)

- Suppose the HL pair and the given memory locations contain the values
illustrated below.

HL 00 2039

42 203A
[ 2038
F3 203C
39 263D

27 203E
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|
What will register A contain after the following sequence of instructions? i
|

8080 Z-80
MOV LM LDL, (HL)
MOV AM LD A, (HL)

4, Using swapped format, give the hexadecimal instruction that loads the value
of MYVAR (address = 34F3) into the A register.
5. Give the effect of

MOV E,12(X) (TDL Z-80)
LD E(IX+12)  (Z-80)
6. Explain the difference between the following pair of instructions.
8080 Z-80
LHLD SPOT LD HL(SPOT)
LXI H,SPOT LD HL,SPOT
7. Given the initial register contents
AF: 0402,
BC: 4020,
what will these registers contain after the following sequence of instructions?
8080 Z-80
PUSH PSW PUSH AF
PUSHB PUSH BC
POP PSW POP AF
POP B POP BC
8. Would you expect to get the same number back if you tried this sequence of
instructions?
8080 Z-80
PUSHH PUSH HL
SPHL LD SPHL
POP H POP HL

9. Given the memory locations

02 6F32
93 6F33
94 6F34

05 6F35
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a. What instruction will set the stack to 6F527?

b. What will register pair BC and the stack pointer contain after execution of
the following instruction?

POPB  (3080) |
POPBC  (Z-89) [

- What does the Z-80 register C contain after execution of the following se- |
quence of instructions? J

TDL Z-80 ) Z-80
MVI A,3 LD A,3
STA SPOT LD (SPOT), A
LIXD SPOT LD IX, (SPOT)
MOV C, -5 (X) LD C,(IX-5)
21 23FE
22 23FF
SPOT 23 2400
24 2491
25 2402
26 2403
L ] *
[ ] L]
L]




a method to our logic

In the first chapter we discussed the form used to store numbers in the
microprocessor, the method by which addition and subtraction are per-
formed, and the actions of various logical operators. Now we must discuss the
actual instructions which direct these operations. Like the load instructions,
we will have two main groups: eight bit and 16 bit instructions.

Eight Bit Arithmetic and Logical Instructions

The accumulator (register A) is the center of activity for most of the eight bit
arithmetic and logical instructions. In any two-operand instruction, one of
the operands will always be located in the A register. The other operand will
always be contained in one of the registers listed below.

8080 Source Z-80

r Any eight bit register r

M The memory location pointed (HL)
to by the HL pair

n An immediate (eight bit n
absolute value)

d(X)* An indexed memory location (IX+4d)

d(y)* (1Y +d)

*TDL Z-89.

We will refer to any one of these collectively with the letter s.

A=A +s
will describe adding any one of these locations to the accumulator. The 8080
version provides a separate mnemonic for use when one of the operands is an
immediate.

It will be extremely important to consider the effect on the flags of each
of these operations, since the flags provide the programmer with the means of
monitoring the run-time execution of his program. The flags pertinent to our
work now are

31
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C: Set on a carry out of the register.
Reset otherwise.
Z: Set on a zero result,
Reset otherwise.
V: Set on overflow into the sign bit.
Reset otherwise.
: Set to a copy of the sign bit.
P: Parity flag set if result is even, reset if odd.

w

Addition

The contents of the accumulator are added to the second operand and the
results are left in the accumulator.

Action* Flags 8088 Mnemonic Z-80 Mnemonic
A=A +s CZVSsS ADDs ADD A,s
ADIn
8080 and Z-8¢ Z-89 only

[abp [aTB[cID[E[H]LBD] n | x| avea
OPcode | 87 [ 89 [ 81 | 82 | 83 | 84 | 85 | 86 | Con| DD86d | FD86d

Addition with Carry

The contents of the accumulator, the second operand, and the carry flag are
all added together and the result is left in the accumulator.

Action Flags 8080 Mnemonic Z-80 Mnemonic
A+=A+s+C CZVS ADC s ADCA,s
ACI n
8080 and Z-89 Z-80 only

ApD | A B JC[DJEJTH] L@ n [ X+ [ av+a
OPcode | 8F | 88 | 89 | 8A | 8B | 8C | 8D | 8E | CEn | DDSEd | FDSEd

Let’s consider for a moment the purpose of an addition with carry.
Suppose we are dealing with two very long binary numbers. Each is so long
that it takes three bytes to hold the number: 23 magnitude bits and one sign
bit. Byte 3 Byte 2 Bytel
BIGA | [ [ J

BIGB [ ] [ J
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The two numbers can be added using the accumulator and the following
game plan.

1. Load byte 1 of BIGA into the accumulator. Add byte 1 of BIGB. Store
the result.

2. Load byte 2 of BIGA into the accumulator. Perform an add-with-carry
with byte 2 of BIGB. Store the result.

3. Repeat step 2 using byte 3. Check for overflow. Store the result.

We could ignore the overflow flag when adding bytes 1 and 2. Overflow tells
us the sign bit is no longer reliable and bytes 1 and 2 have no sign bit.

Subtract and Subtract with Carry

In a subtract operation the value of the second operand is subtracted from the
contents of the accumulator and the result is left in the accumulator.

Action Flags 8080 Mnemonic Z-88 Mnemonic
A+A-s CZVS SUB s SUBs
SUIn

In a subtract with carry, the second operand and the carry flag are subtracted
from the accumulator and the result is left in the accumulator.

Action Flags 8080 Mnemonic Z-8¢ Mnemonic
AeA-s-C CZVS SBB s SBCA,s
SBIn
8080 and Z-89 Z-8) only

A B C D E H L [(HL)| n | dX+d) | (AY+d)

Subtract | 97 | 99 | 91 ] 92| 93 | 94 | 95 | 96 | D6n | DD96d FD96d

Subtract
with carry 9F | 98 99 | 9A| 9B | 9C | 9D | 9E | DEn | DD9Ed | FD9Ed

AND, OR, and XOR

The action of these logical operators has already been discussed in detail in
“Bits, Bytes, and Boolean Operators.” In each case the result is left in the
accumulator. The mnemonics and OP codes are summarized in the following
table.
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Action Flags 8680 Mnemonic Z-8¢ Mnemonic
AND C*ZPS ANA s AND s
ANI n
OR C*ZPS ORA s OR s
ORI n
XOR C*ZPS XRA s XOR s
XRI n
*The carry flag is reset by all logical operations.
8080 and Z-8¢ Z-8p only
A B C D E H L |HL)| n | (dX+d) | AY+d)
AND | A7 | Ap | A1 | A2 [ A3 | A4 | AS | A6 | E6n | DDA6d | FDAGd
OR B7 | B9 | B1 | B2 | B3| B4 | B5 | B6 | Fén | DDB6D | FDB6d
XOR | AF | A8 | A9 | AA | AB | AC | AD | AE | EEn| DDAEd| FDAEd
Compare Instruction

The compare operation is a subtraction with the answer thrown away. The
second operand is subtracted from the contents of the accumulator, but the
accumulator is left unchanged. Only the flags are affected.

Compare A: 17
st 7
A [oJe]ol1]o]0] Flag settings:
C: @, no carry
- s ﬂﬂﬂﬂﬂ Z: 9, not a zero result
V: 8, no overflow
nnnnnn S: @, positive result
result
discarded
Compare A: 7
s: 17
A [o]o]o]e[e]1]1T1] Flag settings:

- s [o]eJe[1]eJoTo]1]
[1]1]1]1]e]1]aTo]

result
discarded

C: 1, borrow generated
Z: 9, not a zero result
V: 8, no overflow

S: 1, negative result
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The above examples illustrate that if we know for sure that the numbers
compared are both positive and both less than 128, then we know

A < sif S = 1 (negative result)
A = sif Z = 1(zero result)
A >sifS = Pand Z = 1 (positive nonzero result)

Similarly, the flag setting for <, 2, and # can easily be determined.
Now suppose we interject the possibility of negative numbers in the
compare.
A: -7
st 7

a [iifia1]eTe]1} Flag settings:

C: @, no borrow generated

- s ﬂﬂﬂﬂﬂ Z: @, not a zero result

V: @, no overflow
nﬂﬂ S: 1, negative result

result
discarded

A 7
s —7

alole]ele]e 1 1]1] Flag settings:

C: 1, borrow occurred

_ s n Z: B, not a zero result

V: @, no overflow
[6To]e]e[2]11]0] S: @, positive result
result

discarded

Again it appears that the flag settings discussed for positive numbers will
work. But suppose we try to compare 127 and — 127. This certainly makes

sense.
127 [e[afa[aTaf1]a]1] Flag settings:
C: 1, borrow occurred
- 127 ﬂﬂﬂﬂﬂ Z: @, not a zero result
V: 1, overflow occurred
nnnﬂ S: 1, negative result
Now if we try to say that 127 < —127 because the sign bit indicates a
negative, we are obviously talking nonsense. Does this mean then that we

cannot compare two numbers that we cannot subtract? If so, that would
impose a serious restriction on our ability to perform comparisons.
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A little analysis reveals the answer. The overflow flag is set when the sign
bit is clobbered. If the sign bit has been clobbered, it’s just the opposite of
what we want for our test.

If V = 0 then
S=90=>A25s
S=1=>A<s
If V = 1then
S = @ =>>Sshould reallybe 1s0 A < s
S = 1=>>Sshouldreallybe #so A > s

That’s a lot of testing and it looks like it could turn into a lot of code. Now
suppose we perform an XOR (exclusive OR) between the overflow and sign
flags and compare the result to the chart above.

v S vV XOR S Results from Chart Above
1 1 0 A 25
1 /] 1 A< s
[} 1 1 A< s
[/} [} [} A 25

‘We can now see that

(V XOR § = §) => A>s
(V XOR $ = 1) => A<s

Weknow we canget A > s by taking A > s and weeding out the case where A
= s. So now we can relate all the relationships between A and s to the
corresponding flag settings. Flag settings for a comparison of eight bit signed
numbers are:

Relationship Holds if Comment
A< s VXORS =1
AS s VXORS =1 A<s
or or
Z=1 A=
A=s Z=1
A+*s Z=29
A>s VXORS =0 A2s
and and
Z=9 A*+s
A 25 VXORS =90

We're still not through discussing the compare operation. What if the
values in A and s are not signed numbers? Instead of — 128 < A < 127, we
have § < A < 255. That would certainly be a valid interpretation of the eight
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bits. Such a representation would be especially useful for counting. If, say, we
wanted to repeat a certain sequence of instructions 150 times, we may want to
compare our current count to this limit. How then shall we interpret the flag
settings?

Clearly the zero flag will still work for us. But now the sign and overflow flags
have no significance. It is the carry flag that will fill the gap. The carry flag is
set whenever a subtraction generates a borrow out of the register.

C=0)=>A2s
(C=1)=>A<s

No sign bit means no overflow worries, so this chart is easy. The flag settings
for a comparison of eight bit unsigned numbers are

Relationship Holds if Comment
A<s c=1
A< c=1 A<s
or or
zZ=1 A=s
A=s Z=1
A #s =9
A cC=90 AZs
and and
Z=9 A#s
A2s c=9

With the compare operation fully analyzed, it’s time to consider the
compare instruction. The action of a compare is described as (A — s) since it
is based on a subtraction operation. The fact that neither operand is affected
in the process is reflected in the absence of an arrow.

Action Flags 8480 Mnemonic Z-88 Mnemonic
(A —s) CZVS CMPs CPs
CPI n
8080 and Z-89 Z-8¢ only

AJBJ]C|D[E]H[LIHD] a |ax+d) ]| av+)
[Compare] BF | B8 | B9 | BA | BB | BC | BD | BE | FEn | DDBEd | FDBEd

Increment and Decrement Instructions

All of the arithmetic and logical instructions we have seen so far have dealt
with two operands, at least one of which was in the accumulator. By contrast,
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increment and decrement instructions have one operand and it can be con-
tained in one of the following registers.

8080 Source Z-80

r Any eight bit register r

M The memory location (HL)
pointed to by the
HL pair

d(X)* An indexed memory (IX+4d)
location

d(Y)* (IY +d)

*TDL Z-88

Again, any one of these will be referred to ass.
An increment adds one to the operand. A decrement subtracts one.

Action Flags 8080 Mnemonic Z-8¢ Mnemonic

ses+1 ZVS INR s INCs

ses—1 ZVs$s DCR s DECs
8080 and Z-80 Z-89 only

AlBJc[D[E[H][L L] x+d)]ay+)
Increment | 3C [ ¢4 | 6C | 14 | 1C | 24 | 2C | 34 |DD34d| FD34d
Decrement | 3D {65 | @D | 15| ID| 25 | 2D | 35 | DD35d] FD35d

Operationson A and F

C ;1 tA lai

Complement is another logical operation. It differs from AND, OR, and
XOR in that it has only one operand. The complement operation is a 1's
complement of the value, so every zero bit is changed to a one, and every one
to a zero. Often called a NOT operation, the complement can be summarized
in the following truth table.

A ] NOTA
1 [
0 1

The NOT operation is repeated bit by bit for every bit in the accumulator.
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A [aJel]1Teele]1]
nNotA [e[1]eTef1Ti]1]0]

Complementing the accumulator does not affect any of the flags we have
discussed so far. The OP code is 2F. The mnemonics are.

CMA  (8080)
CPL  (Z-80)

Negate Accumulator

The Z-89 has an instruction which allows the accumulator to be negated (2’s
complement).

Action OP Code Flags TDL Z-80 and Z-80

A+ —-A ED 44 CZVS NEG

8080 programmers can substitute for NEG, since 2's complement is 1's

complement plus 1.
CMA
INR A

Complement and Set Carry Flag

The carry flag is the only flag which can be directly manipulated. Choices
include

Action OP Code 8080 Mnemonic Z-80 Mnemonic
C NOTC 3F CMC CCF
c 1 87 STC SCF

Missing is the ability to reset the carry. The easiest way to reset the carry is to
set it and then complement it. But there is a method which is twice as fast.
You will recall that any logical operation (except NOT) clears the carry, but
the logical operations affect the accumulator’s contents unless the second
operand is also the accumulator. Clearly, two operations exist which clear the
carry and leave the accumulator intact. These are

8080 Z-80
ANA A AND A
ORA A OR A

Either of them makes a fine “clear carry flag” instruction.
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NOP Instruction

An oddity in the 8680 and Z-80 instruction repertoire is the NOP. With an
OP code of 88, the NOP has the distinction of being the instruction that does
nothing. The ability to “do nothing” with a particular byte of code can prove
very valuable at times, especially during the debugging process.

16 Bit Arithmetic Instructions

There are no 16 bit logical instructions, and only a limited number of
arithmetic operations possible. 8880 programmers are limited to increment,
decrement, and addition. Increment and decrement can be performed on 16
bit registers BC, DE, HL, and SP. In 16 bit addition, register pair HL acts as
the accumulator. The other operand in the addition operation may be
registers BC, DE, HL, or SP.

The Z-80 programmer has more choices. The increment and decrement
instructions can be applied also to the IX and 1Y index registers, and other
add and subtract operations are possible. It is not possible, however, to add
the IX or 1Y index register to the HL pair. So, before we discuss the Z-80
extensions, let’s summarize the instructions the two microprocessors have in
common.

To the 8080 programmer rr will mean any one of B for the BC register
pair, D for the DE pair, H for HL, or SP for the stack pointer. TDL Z-80 will
also include X for the IX index register and Y for the IY register.

To the Z-80 programmer rr will mean any one of BC, DE, HL, SP, IX, or IY.

Action Flags 8080 Mnemonic Z-80 Mnemonic
HL<-HL+rr C DAD rr ADD HL,rr
rrerr+1 none INX rr INC rr
Irerr—1 none DCX rr DEC rr

Note that since the overflow and sign flags are not set, 16 bit operations
must be handled carefully.

8080 and Z-89 Z-8¢ only
BC | DE | HL | SP X Y
ADD 9 1 19 | 29| 39 — -

Increment 93 { 13 | 23 | 33 | DD23 | FD23
Decrement 9B | 1B | 2B | 3B | DD2B | FD2B

Z-84 Extensions

The Z-80 instruction set also includes an add with carry and subtract with
carry that treat the HL as an accumulator. Again, the second operand may
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be in registers BC, DE, HL, or SP. No pure subtract for 16 bit registers exists,
though the carry may first be cleared to achieve the equivalent of a pure

subtract.

Action Flags TDL Z-88 Mnemonic Z-8¢ Mnemonic
HL<-HL+rmr+c¢ CZVS DADC rr ADC HL,r
HL<HL+rr—C CZVS DSBC rr SBC HL,rr

Z-89 only
BC DE HL SP
Add with
carry ED4A | ED5A | ED6A | ED7A
Subtract
with carry ED42 | ED52 | ED62 | ED72

There are also Z-80 extensions which allow the IX and IY registers to act in
the role of accumulator.

Action Flags OP Code TDL Z-80 Mnemonic Z-80 Mnemonic
IX<IX+BC C DD#9 DADX B ADD IX,BC
IX<+1X+DE C DD19 DADX D ADD IX,DE
IX<IX +SP C DD39 DADX SP ADD IX,SP
IX<+IX +1IX C DD29 DADX X ADD IX,IX
IY<IY+BC C FD@9 DADY B ADD 1Y,BC
IY<+1Y+DE C FD19 DADY D ADD IY,DE
IY<IY + SP C FD39 DADY SP ADD 1Y,SP
IY=IY +1Y C FD29 DADY Y ADD IY,IY
Exercises

. Write a sequence of instructions that will sum a small array of three numbers.
The first number is pointed to by the HL pair, and the other two occupy the
following two bytes of memory. (You may assume no overflow will occur.)

HL }\
#1

#2
#3
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- Write a sequence of instructions that would add BC and HL, leaving the
result in HL. (Assume 16 bit addition is not possible.)

. A talent agency has discovered it can keep all the information needed about
the abilities of its clients in a single byte according to the following scheme.

Bit7 — 1Candance
# Can’t dance

Bit6 — 1Cansing,
0 Can’t sing

Bit5 — CanAct

@ Can’t act

Bit4 — 1 Does dramatic roles
0 Does not

Bit3 — 1 Does comic roles
0 Does not

Bit2 — 1Isexceptionally attractive
@ Is not

Bit1 — 1 Hasexperience
@ Has none

Bit@ — 1Female
0 Male

One such byte is in the accumulator. Tell what instruction will determine if
the person involved is a male, singer-dancer, who can act, does both comic
and dramatic roles, is experienced, but not exceptionally attractive. What
flag will contain the answer?

. What flags will tell you if A < sand A is

a. asigned eight bit number
b. anunsigned eight bit number

. There is no 16 bit compare instruction. Suppose two 16 bit signed variables
BIGA and BIGB must be compared. Describe in words a method to ac-
complish this.

. The 8080 programmer has no 16 bit subtract. Write a sequence of in-
structions that will accomplish the subtraction (if overflow can be ignored) of
register pairs BC and HL. Leave the result in HL.




jumps, loops, and
modular programming

In the previous chapter we spent a good deal of time talking about the in-
terpretation of the flag settings after a compare. As yet, however, we have
said nothing about how to access the flags and read their values. Flag settings
are accessed by means of conditional statement. That is, a command to do
something if and only if a flag has a certain value. The instruction to be
performed can be a jump or a subroutine call.

Jump Instructions

The normal sequence of program execution is to perform each instruction in
turn from top to bottom. The following pattern is continuously repeated.

1. Fetch the instruction.
2. Increment the program counter.
3. Execute the instruction.

A jump instruction alters the normal top-down flow. During execution of the
jump instruction (step 3) the address in the program counter is altered. Now,
when the next instruction is fetched, it is taken from a different place in the
program. So, the instruction to jump to location nn can be diagrammed as

PC=nn
The mnemonics and OP code are
OP Code 8080 Mnemonic Z-80 Mnemonic
C3 nn JMP nn JP nn
Consider the following sequence of instructions.
8080 Z-80
SUB A SUB A
LXI H,ARRAY LD HL,ARRAY
SPOT: ADDM SPOT: ADD A, (HL)
INX H INC HL
JMP SPOT Jp SPOT

43
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The accumulator is cleared and register pair HL is set to point to the starting
address of an array in memory. This is the initialization phase of the loop.
The contents of the array location pointed to by the HL pair is added to the
accumulator. This is the body of the loop. The HL register pair is increased
by one. This is the increment phase of the loop. A jump back to spot closes the
loop.

However, something is dreadfully wrong here. There is no means of
terminating the loop. Left to its own, it would go on forever. When a con-
dition arises to terminate the loop, the jump back should no longer occur.
Suppose in our example we decide that we should only repeat the loop five
times. What we now need is a conditional jump. Here’s the game plan.

1. Set up in some eight bit register the number as a counter.
2. Every time the loop is repeated, decrement that register.
3. When that register goes to zero, don’t jump back again.

So what we need is an instruction that performs the following action.
IfZ = @, PC = nn (jump on nonzero)
The instruction that will do this for us is

OP Code 8080 Mnemonic Z-8¢ Mnemonic

C2 nn JNZ nn JP NZ,nn

Now we can rewrite the sequence of instructions to add the first five
elements in the array.

8080 Z-80
SUB A SUB A
LXI H,ARRAY LD HL,ARRAY
MVI B,5 LD B,5
SPOT: ADDM SPOT: ADD A, (HL)
INX H INC HL
DCR B DEC B

JNZ SPOT JP  NZ,SPOT

This loop can be broken up into four distinct phases. These four phases will
be present in every properly constructed loop:

1. Initialization
2. Body
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3. Increment
4. Test

If the four phases appear in the code in the above order, the loop is called a
post-test loop. A pre-test loop will contain these phases in the following order.

1. Initialization
2. Test

3. Body

4. Increment

A loop of this form to perform our array sum would be more difficult to
construct, since we cannot rely on our decrement to set the zero flag on the
first pass. In fact, most pre-test loops will be harder to code in a lower level
language. There is, though, a reason for their existence. Consider the
following diagrams.

Post-Test Pre-Test

Iniﬁa{izaﬁon

| BOdy
Increment ‘

Now consider the shortest route to Done for each:

Post-Test Pre-Test
1. Initialization 1. Initialization
2. Body 2. Test
3. Increment 3. Done
4. Test
5. Done
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Notice that in the post-test loop the body of the loop is always performed at
least once. In the pre-test loop, it is possible to avoid performing the loop at
all. This then will be the criterion for selecting between the two:

If there is ever a case where the loop should not be performed at all, use
pre-test.

Here is an example of a pre-test loop to add the first five elements of an
array: |

8080 Z-80
- Initialization -

SUB A SUB A

LXI H,ARRAY LD H,ARRAY

MVI B,5 LD B.,5

Test

SPOT: MOV C,A - SPOT: LD CA

MOV A,B LD AB

CMP 9 CP o

MOV A,C LD A,C

JZ DONE Jp Z,DONE

Body
ADD M - ADD A,(HL)
Increment

INX H - INC HL

DCR B DEC B

JMP SPOT Jp SPOT
DONE: DONE: :

. .

L] L[]

Some comments about the test phase are in order. We first save the
contents of the accumulator in register C. Then we move the count into the
accumulator to compare it to #. Now, before our conditional jump, we
restore the accumulator to the sum of the array. The move operation doesn’t
affect the flags, so our jump on zero is still valid.

‘We now have two loops, one pre-test and one post-test, that sum the first
five elements of an array. Both terminate properly, but are the results ac-
curate? We have made no test to see if overflow occurred at any point in the
series of additions. What we obviously need is a jump on overflow. Recall,
however, that the overflow flag is a dual purpose flag. It also serves as the
parity flag. Thus there is only one OP code for both. The 8080 assembler
provides two different mnemonics for the same OP code, the Z-80 only one, so
the programmer must himself keep track of the dual use. We can now
summarize the jump instructions.
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Action OP Code 8080 Mnemonic Z-8§ Mnemonic
PCenn C3 nn JMP nn JP nn
IFZ=1, CA nn JZ nn JP Znn
PCenn

IFZ=0, C2 nn JNZ nn JP NZ,nn
PCenn

IFC=1, DA nn JC on JP C,nn
PC<-nn

IFC=90, D2 nn JNCnn JP NC,nn
PCe-nn

IFS=1, FA nn M nn JP M,nn
PC<+nn

IFS=0, F2 nn JP nn JP P,nn
PC<nn

IFP/V=1, EA nn JPE nn JP PE,nn
PCe-nn JO nn

IFP/V=6, E2 nn JPO nn JP PO,nn
PC<nn JNO nn

We could then make our loop to sum the array more accurate by inserting
after the addition

JO  OVFLOW 8080
] PE,OVFLOW  Z-80

where OVFLOW would be an address in our program that does something
about the overflow problem. It may just print an error message and terminate
the program.

Z-80 Relative Jumps
Let’s take another look at the OP code of the jump instruction.
C3nn

We can see that it takes three bytes to store this instruction. Since an address
is two bytes long, it would seem to be impossible to shorten this instruction.
Yet it can be done. Remember that the program counter points to the address
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of the next instruction to be executed. Suppose that instruction will be a
jump. It is very likely that the jump will be to an address near where we are
currently. If that address is no farther away than — 128 to + 127 bytes, we can
express that address as a distance relative to the current location of the
program counter. That relative distance will fit in one byte.

PC 128
*
L]
L]
PC ——m3 Range of a
(next : relative jump
.instruction) M
L4
PC + 127

The whole point of the relative jump instructions is this savings in space.
Take, for example, our original program rewritten with a relative jump.

TDL Z-80 7-80
SUB A SUB A
LXI H,ARRAY LD HL,ARRAY
SPOT: ADD M SPOT: ADD A,(HL)
INX H INC HL
JMPR SPOT JR  SPOT

The OP code for the relative jump instruction is
18e

where e is the magnitude of the relative jump as a signed number one byte in
length.

Ignoring for the moment the fact that this is an infinite loop, let’s hand
assemble these instructions. Assume ARRAY is located at 3Ff@ and assume
that the program begins at 2000.

Address Instruction Action
2000 97 A+ A-A
2001 21003F HL=3F00
2004 86 A<A+(HL)
2005 23 PC+PC +e¢
2006 18e

2008 .
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What should we use for e? Remember that the sequence of program execution
is

1. Fetch the instruction (get 18e).
2. Increment the program counter (PC = 2008).
3. Execute the instruction.

We want to jump to SPOT. SPOT is at location 2004, so we want to solve this
little equation:

2004 = 2008 + e

Clearly e must be -4. In 2’s complement:

4+ [e]0]o[o]o[1]0[0] o4,
-4 [iaaiTa]afaTefe] rc,

Thus, at location 2066 in our program we would find
2006: 18FC

Fortunately, all this arithmetic is done for us by the assembler. We need only
use the relative jump instruction with the name of the location we want to
branch to.

Here, then, are the available relative jump instructions. Only the ab-
solute relative jump, relative jump on carry, and relative jump on zero are

provided.

Action OP Code TDL Z-8¢ Mnemonic Z-86 Mnemonic
PC+PC+e 18e JMPR nn* JR nn
IFZ=1, 28e JRZ nn JR Z,nn
PC<PC+e

IFZ=0, 20e JRNZ nn JR NZ,nn
PC+PC+e

IFC=1 38e JRC nn JR C,nn
PC+PC+e

IFC=4, 30e JRNC nn JR NC,nn
PC+PC+e

*Here the use of nn indicates the name of the destination.
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Z-86 Loop Instruction

There is another relative jump instruction available on the Z-86 that does
more than just jump or test and jump. The DJNZ provides the capability of a
built-in loop. Its action may be summarized as

B+B -1
ifB# @, PC*+PC + e

The B register must first be set to the number of repetitions desired. Choices
range from 1 to 256 repetitions. By setting B to 1-255, the corresponding
number of repetitions are achieved. If B is initially set to @, the first
decrement will leave B set to 255, so a total of 256 repetitions will occur before
B gets back to # again.

Let’s repeat the loop that will sum the first five array elements.

TDL Z-80 Z-80
SUB A SUB A
LXI H,ARRAY LD HL,ARRAY
MVI B,5 LD B
SPOT: ADD M SPOT: ADD A,(HL)
INX H INC HL
DJNZ SPOT DJNZ SPOT

The OP code for the decrement-jump-nonzero instruction 14 e.

Register Indirect Jumps

The register indirect jump which the 8680 and Z-80 have in common can be
diagrammed as

PC< HL

That is, the address in the HL register pair becomes the address where the
next instruction will come from. The OP code and mnemonics are

OP Code 8080 Mnemonic Z-80 Mnemonic
E9 PCHL JP(HL)
So the following instruction sequences are equivalent
8080 Z-80
. .
A. ° .
SPOT: SPOT:

JMP SPOT JP SPOT
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) L]
B. . .
SPOT: SPOT:
LXI H,SPOT LD HL,SPOT
PCHL JP (HL)

At first sight the E9 one byte OP code would seem to be a great one byte
jump. These examples indicate, however, that its true cost is four bytes.
Three bytes are taken up by getting the address into the HL register.

Needless to say, this is not the most common form of a jump. Its main
value lies in code that must be capable of running at any address whatsoever
without requiring any modification. Such code is called self-relocating code.
Besides the use of the HL register pair for this purpose, Z-84 programmers
may also use the IX or IY registers.

Action OP Code TDL Z-80 Mnemonic Z-80 Mnemonic
PC+IX DDE9 PCIX JP (IX)
PC+I1Y FDE9 PCIY JP (1Y)

Subroutines and Modular Programming

When a programmer is faced with any nontrivial task, he is well advised to
divide the task into individual modules or subroutines. In this regard we can
honestly say that no programming assignment is ever difficult. If a task seems
formidable break it down into smaller tasks, each of which can be easily
handled.

§ 0

If a task seems too big . . .

A LESS just breakitup. . .

®  FORMIDABLE TASK
K_ m

and deal with the pieces one by one.
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This is modular programming or structured programming. Besides
making your life easier when you code the program, it makes the program far
easier to understand. Modularity can save space and programming effort if
sequences of instructions that must be repeated are written as subroutines
(program modules).

Subroutine calls are so easy on the 8080 and Z-8¢ that we can recom-
mend their use wholeheartedly to the earliest beginner to assembly language
programming. The basic instruction used to transfer control to a subroutine
is

CALL nn 8080 and Z-80
To get back, the basic instruction is

RET 8080 and Z-80

We can diagram the flow of control as follows.

MAIN
* MYSUB .
b .
* [ ]
d [ ]
CALL MYSUB )
o RET

A CALL is like a jump with one difference. The return address is saved on the
stack. The return instruction pops the stack and jumps back to the address
left there.

That's all there is to it. CALL to get there. RET to get back. Everything
needed is done automatically.

You can also nest subroutine CALLs. That is, a subroutine can call a
subroutine of its own, and that subroutine can call another subroutine, and so
on. The nature of the stack is such that the return addresses will never get
mixed up. The program can always find its way back.

MAIN: o
CALL SUBA empty stack SP
SUBA: o
L]
L]
CALL SUBB SP main’s

SUBB: e address
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RET

RET

SP
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SUBA’s
address

main’s
address

POPs SUBA’s
return address
POPs main
return address

Calls to subroutines and returns from subroutines can be made con-
ditional on the setting of a flag. The instructions are nearly identical to the

conditional jumps. They are

Action OP Code 8088 Mnemonic Z-8¢ Mnemonic
CALL nn CD nn CALLnn CALL nn
Ifz=1, CCnn CZnn CALLZ,nn
CALL nn

IfZ=0, C4nn CNZ nn CALL NZ,nn
CALL nn

IFC=1, DCnn CCnn CALLC,nn
CALL nn

IfC=40, D4 nn CNC nn CALL NC,nn
CALL nn

Ifs=1, FCnn CM nn CALL M,nn
CALL nn

IFS=0, F4nn CP nn CALL P,nn
CALL nn

IFP/V=1, ECnn CPE nn CALL PE,nn
CALL nn

IfP/V=0, E4 nn CPO nn CALL PO,nn
CALL nn CNO nn
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RET C9 RET RET

Ifz=1, Cc8 RZ RETZ

RET

IfZ=9, Cco RNZ RET NZ

RET !
|

Ifc=1, D8 RC RETC

RET

IfC=g, D¢ RNC RET NC

RET

IfS=1, F8 RM RETM

RET

IfS=g, Fo RP RETP

RET

IfP/v=1, E8 RPE RET PE

RET RO

IfP/V=9, E0 RPO RET PO

RET RNO

The only complication possible in modular programming involves the
use of the registers. Most times both the main program and the subroutine
would like full use of the registers. How can the subroutine use all of the
registers without messing up their contents for the main program? The answer
is simple. The subroutine need only PUSH all of the register values onto a
stack, do its thing, and then POP the original contents back in before
returning to the main program.

Exercises
. Suppose VARA and VARB are two unsigned, one byte variables, and the
following instruction sequence is executed.

8080 7-80
LDA VARA LD A,(VARA)
LXI H,VARB LD HL,VARB

CMP M CP (HL)
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Write a sequence of instructions that will branch to SPOT if

. VARA < VARB
VARA £ VARB
. VARA = VARB
. VARA # VARB
. VARA 2 VARB
. VARA > VARB

-

. Repeat exercise 1 if VARA and VARB are signed numbers.
. Write a subroutine which accepts as inputs

a. the address of an array in a variable named ARYADR
b. the number of elements in the array in a variable named SIZE

and produces the following outputs.

a. The sum of all of the array elements left in the accumulator, if no
overflow is produced

b. if overflow occurs, the value 1 left in the variable named OVFLAG. The
value returned in the accumulator may be assumed to be meaningless.

No registers except the AF pair may be altered upon return to the main
program.

. Two 16 bit unsigned variables occupy memory locations BIGA and BIGB.
Write a sequence of instructions that will call a routine named ABIGR if
BIGA > BIGB, and BBIGR if BIGA < BIGB.

. Repeat exercise 4 if BIGA and BIGB are 16 bit signed variables.

. For this exercise refer to exercise 3 in the section “A Method To Our Logic.”
In addition to the assumptions made in that exercise, assume further that the
agency keeps the information about its clients in the following form.

Location Descriptive ~ Jump
byte address
PEOPLE 1 1
PEOPLE + 3 2 2
PEOPLE + 6 3 3
PEOPLE+9 4 4
L Y 0
* ) [ ]
L Y )

The array is named PEOPLE. For each client in the array, there is a
descriptive byte and the address of a segment of code that prints out that
person’s name, address, phone number, etc. The variable named COUNT
contains the number of clients currently being serviced. Write a segment of
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code that will look for the type of person described in the previously men-
tioned exercise 3. If such a person is found, control should pass to the jump
address for the person. If no such person is contained in PEOPLE, the sub-
routine named NOSUCH should be called.




bit fiddling and
message making

How can the Z-8f programmer manipulate single bits of data? How do you
rotate registers and why would you want to? How are alphabetic characters
stored in computer memory? How do you get data into and out of the
computer? These are just some of the questions that will be answered in this

chapter.

Z-80 Bit Manipulation Instructions

The Z-80 has the capability of testing, setting, or resetting individual bits
within a byte. The bits are numbered from low order to high order.

76543218

The byte whose bits are being manipulated may be located in any one of the
following areas, any one of which will be referred to ass.

TDL Z-80 Location Z-80

r Any eight bit register r

M The memory location (HL)
pointed to by the
HL pair

d(X) An indexed memory (IX+4d)
location

d(Y) (IY+d)

The bits in byte s will be referred to by number. The letter b will be used to
stand for any bit number #-7. Thus,

s {o}

refers to any bit in any of the above locations.

57
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The bit test instruction sets the zero flag to the opposite of the bit value.
Worded differently, the bit test instruction sets the zero flag if the bit has a
zero value and resets it otherwise. Diagrammatically,

Ze~ 5 {b }
The mnemonics for both TDL Z-80 and Z-80 are the same.
BIT b,s
The chart of OP codes is large.
Bit Test
Bit A B C D E H L] HL)] (1x+d) (1Y +d)
9 | CB47 | CB46 | CB41 | CB42 | CB43 | CB44 | CB45 | CB46 | DDCBd46| FDCBA46
1 | CB4F | CB48 | CB49 | CB4A | CB4B | CB4C | CB4D | CB4E | DDCBA4E| FDCBA4E
2 | CB57 | CB50 | CB51 | CB52 | CB53 | CB54 | CB55 | CB56 | DDCBA56 | FDCBA56
3 | CB5F | CB58 | CB59 | CB5A | CB5B | CB5C | CB5D| CBSE | DDCBASE| FDCBASE
4 | cB67 | CB6@ | CB61 | CB62 | CB63 | CB64 | CB56 | CB66 | DDCBA66 | FDCBA66
5 | CB6F | CB68 | CB69 | CB6A | CB6B | CB6C | CB6D | CB6E | DDCBAGE| FDCBAGE
6 | cB77]| CB70 | CB71 | CB72 | CB73 | CB74 | CB75 | CB76 | DDCBA76| FDCBA76
7 | cB7F | CB78 | CB79 | CB7A| CB7B| CB7C| CB7D| CB7E |DDCBA7E[ FDGBA7E

The bit set instruction sets the indicated bit.
5 {b }<—1
The mnemonics for both TDL Z-80 and Z-80 are again the same.
SET b,s

Again, there are many OP codes involved.

Bit Set
Bit A B C D E H L] (HL) | (IX+d) | (Y+d)
9 | CBC7 | GBCY | CBCI | CBC2 | CBC3 | CBC4 | CBC5 | GBG6 | DDCBAC6| FDCBAC6
1 | CBCF | CBCS | CBC9 | CBCA | CBCB | CBCC | CBCD| GBCE | DDGBACE| FDCBACE
2 | CBD7 | CBD$ | CBDI | CBD2 | CBD3 | CBD4 | CBD5 | CBD6 | DDCBAdD6| FDCBdD6
3 | CBDF | CBDS | CBDY | CBDA| CBDB| CBDC| CBDD| CBDE | DDCBJDE| FDCBADE
4 | CBE7 | CBE® | CBE1 | CBE2 | CBE3 | CBE4 | CBE5 | CBE6 | DDCBAE6] FDCBAEG
5 | CBEF | CBES | CBE9 | CBEA | CBEB | CBEC | CBED| CBEE | DDCBJEE| FDCBEE
6 | CBF7 | CBFG | CBF1 | CBF2 | CBF3 | CBF4 | CBF5 | GBF6 | DDCBAF6] FDCBAF6
7 | CBFF | CBF8 | CBF9 | CBFA | CBFB | CBFC | CBFD| CBFE | DDCBAFE| FDCBAFE

This bit reset instruction resets the indicated bit.
s {b}ﬂ-ﬂ
Once again TDL Z-80 and Z-80¢ mnemonics are the same.

RES b,s
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The OP codes are
Bit Reset

Bit A B C D E H L] ®L) [ (X+d) | (1Y+d)
9 | cB87 | CBSG | CB81 | CB82 | CB83 | CB84 | CB85 | CB86 | DDCBA86 | FDCBA8E
CBSF | CB88 | CB89 | CBSA | CB8B | CBSC | CBSD | CBSE | DDCBASE; FDCBASE
CB97 | CB99 | CB91 | CB92 | CB93 | CB94 | CB95 | CB96 | DDCBA96 | FDCBAI6
CBOF | CB98 | CB99 | CB9A | CB9B | CBIC | CBID | CBYE | DDCBA9E | FDCBAIE
CBA7 | CBA® | CBAL | CBA2 | GBAS | CBA4| CBA5 | CBA6|DDCBJA6| FDGBAAG
CBAF | CBAS | CBA9 | CBAA | CBAB| CBAC| CBAD| CBAE|DDCBJAE| FDCBJAE
CBB7 | CBB@ | CBB1 | CBB2 | CBBS | CBB4 | CBB5 | CBB6 | DDCBAB6 | FDGBAB6
CBBF | CBBS | CBBY | CBBA | CBBB | CBBG| GCBBD| CBBE | DDCBABE[FDCBABE

< o o [ [ ro |

Rotate and Shift Instructions

Rotate instructions common to the 8080 and Z-80 microprocessor all involve
the accumulator. There are four basic types.

Rotate left circular . 7 1) .

Rotate right circular II.

Rotate left 7 [

Rotate right 7 ¢
Action OP Code 8088 Mnemonic Z-80 Mnemonic
Rotate left a7 RLC RLCA
circular
Rotate right oF RRC RRCA
circular
Rotate left 17 RAL RLA
Rotate right IF RAR RRA

Before we go into those rotate and shift instructions which are exclusively Z-
8@, let’s spend a moment discussing why you might want to rotate a register.
Suppose the accumulator has the following value.
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Then suppose we clear the carry and rotate the accumulator left. It will then

contain
[0]e[1[0]0]1]0]6] =36 = 18x 2

Suppose instead we had rotated right. The accumulator would have had

[016]oTe]1]8[0f1]=9=18~+2

So shift and rotate instructions give us the capability to multiply and divide by
powers of two. We are now ready for a generalized algorithm that can be used
for multiplication and division in the 8480 and Z-80.

Multiplication and Division

The 8088 and Z-80 microprocessors possess no built-in multiply or divide
instructions, so subroutines must be written to provide this capability. We will
discuss here algorithms that can be used for positive integers.

The multiplication table for binary numbers isn’t long.

dxp=29
ax1=29
1x8=260
Ix1=1

Multiplication of longer numbers is done in the same way as in the decimal
system.
1100111
X 101
60111
000
1

-

0
1

—_

1
1090

L= W]
L= R-~IR-—W

=

]

=
—
—

Notice that every line in forming the product is either a copy of the
multiplicand or all zeroes. The pattern of shifting each row one place to the
left is common to decimal multiplication.

Multiplication is notorious for generating large numbers. Assuming both
multiplier and multiplicand are one byte signed numbers, how large can the
product become? Obviously it’s 127 = 16,129. We are way over one byte in
length, but well within two bytes. In fact, if we assume multiplier and
multiplicand are one byte unsigned numbers the product will still fit in a 16
bit unsigned result. The multiply routine will therefore accept as inputs two
one byte signed or unsigned positive integers and produce as output a two
byte product of the two.
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The method to be used parallels the approach used above. We will need
three registers for this operation. One will contain the multiplier, one the
multiplicand, and one we will clear for use as a work area.

122 [0 0090090 9 @] multiplier 1
;

Registers 1 and 2 will be used to contain the result. Register 3 will be left
unchanged.
So our example above would begin as

12 [0 p 0000000009 e o 1]
3

The following two steps will then be repeated eight times.

A. Check bit # of register 2 (the multiplier). If it is set, add the contents of
register 3 (the multiplicand) to register 1. If the bit is #, do not add in
the multiplicand. After this step we would have

142 (0119001 11]pp 000101

3

B. Shift registers 1 and 2 right one bit. At the end of the first iteration we
have

fPo1 190111 0000901 0]
Continuing this sequence for our sample case gives, on iterations 2-8,
2.A.) No addition
B.) Shift giving: [09 91 100 1]t 100029009 1]

3.A.) Add multiplicand +
[Toooooo0e[t106000091]

B.) Shift giving: [0 1opo0opo0oe0o1100000]
4.A.) No addition

B.) Shift giving: bo1oooo0ploo1too009
5.A.) No addition

B.)|Shift giving [Poo10000[0ppo11998]

6.A.) No addition
B.) Shift giving [00 909010 00[poeo110]




62 Z-80 and 8080 Assembly Language Programming

7.A.) No addition

B.) Shift giving (000001 0p0[009091 19
8.A)) No addition
B.) Shift giving [00000010[0000001 1]

Thus we can see that the result agrees with the long-hand computation.
Division is also extremely simple when the dividend and divisor are in
binary. Consider the following example.

1000111 r 1000
1191 ' 1119190611
1191
T 11pep
m
10111
o1
19101
191
1000

We knew that in multiplication if we allowed two bytes for a product and
restricted inputs to one byte, we could never run into difficulties with over-
flow. Following that lead, we might decide to use a two byte dividend, a one
byte divisor, and expect quotient and remainder to each remain within one
byte. But here we are not so lucky. In the above case the dividend will fit
within two bytes, but if we divide it by one the quotient will certainly not fit
within a byte. So in our division algorithm we will have to be on the lookout
for a means of deducing that our result is inaccurate. Again, all inputs will be
assumed to be positive integers. We will again need three registers. Registers 1
and 2 will contain the two byte dividend. Register 3 will contain the divisor.
Our example above would begin as

152 [0 oo o001 1]1 010001 1]

3 (00091191

The following three steps will be repeated eight times.

A Registers 1 and 2 are shifted left one bit.
[0 000011 1]01009011 9
B.The contents of register 3 (the divisor) is subtracted from register 1.

12 [0 0 00011 1[0 1060011 0

3 (00991101

182 [1 1111 010fo1 00090119
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C.If the result of the subtraction causes a negative number to result in
register 1, the divisor is added back. If not, bit @ of register 2 is changed
to A 1. In this case, a negative result occurred, so we add the divisor
back getting: the same contents as after step A.
Following our example through to the end gives

[Poopi1110[tpoo1100

2.A.) Shift left:

B.) Subtract:

C.) Set bit 8:
3.A.) Shift left:

B.) Subtract:

C.) Add back:

4.A.) Shift left:

B.) Subtract:

C.) Add back:

5.A.) Shift left:

B.) Subtract:

C.) Add back:

6.A.) Shift left:

B.) Subtract:

C.) Set bit 0:

-p 09091191

[

]

9 1]

[

19|

-0 9 091101

1

19

= S = FE
| |- s || |[=
| - S| | |
S| = e |® |S
S| S S| (e |
| |= S| |®| S
Ll B L L A A
-] | | =] =
Is] [<] st [=] [=]

[]

1 9]

[0 000011 0f0

[

-0 0901161

=]
-
-
-
-

-

-
-

-

99

+[p 000011 pf0

9 0]

foope 11000

[

-0 001101

[tTr111 11 1]e

9]

+[0ope 11000

)|

[poo1190090[1

X))

-(p9p01191

[oo00101 1]1

9 9l

[0 0900101 11

0 1]
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7.A.) Shift left: [0 po1901 111019001 0]

B.) Subtract: -0 00011901

[0 009 19010[1t 0100901 p)

C.) Set bit #: [0 000101 0[to1pp01 1

8.A.) Shift left: [0 0010101010001 109

B.) Subtract: -0 9P P11
[0 0001 000[01009p01 19|

C.) Set bit 8: [popo01000[0 100011 1]

At the conclusion of the division operation we have

1&2 | Remainder [ Quotient |

A check of our original example shows that we obtained the correct answer.

But what about our potential overflow? If we had begun with the
dividend used in the previous example, but made the divisor the number 1,
we know the result would overflow. But how would we know this happened?

A complicated chain of reasoning will reveal an extremely simple test.
We want to trap the quotients that won't fit in one byte. The largest signed
number that will fit is +127. So we want to know about it whenever

Dividend > 1gg

“Divisor
or

Dividend 2 128 X Divisor
or

Dividend > pivisor
128
So a first try might be to divide the dividend by 128 and compare. Fortunately
128 = 27 so we can do this by shifting right seven bits. Let’s try this on our
sample case and see what we get.

Before: [ 0 0 0 00 1 1]1 0 19 ¢ 0 1 1]

Atter: [0 0 00 0 0000000011 1]
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We lost all the contents of the high order byte. This will always be true
whenever a positive number is input. So we only have one byte left. Compare
it to the contents of the high order byte, if we shift one bit to the left.

(Poooo1 1101990119

We can see that they match. What has this gotten us?
In the first step of the division algorithm, we shift one bit to the left. We
have seen that the high order byte then contains
128

In the second step of the algorithm we subtract the divisor from the high
order byte.
Dividend
128

2> Divisor

Here is our compare. It is done in the normal course of the algorithm!

Now notice that the third step of the algorithm has us setting bit # if the
result of the subtraction was not a negative number. So if the bit is set it
means

Dividend Dividend

Divisor or ————— > Divisor [/}
128 128

This is exactly the overflow we were looking for.

Now a second try emerges. Simply check the first iteration. If the sub-
tract step doesn’t produce a negative result, we're headed for overflow. Before
we decide on this method, though, let’s see what happens to this bit. At the
end of the first iteration it is set, so the result contains

1&2 [ xooxxxx | xooooxd |

Seven more iterations remain. With each iteration that bit will be shifted one
place to the left. Thus at the end of the algorithm it will appear as

1&2 | XXXXXXXX l 1XXXXXXX l

Right in the sign bit itselfl
The final result of all this analysis couldn’t be simpler:

A negative result indicates overflow.

We know that if dividend and divisor are both positive the result will always
be positive. So this gives us an unfailing check.
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Z-88 Rotate and Shift Instructions

In all of the rotate instructions we have discussed so far, the location of the
operand was always the accumulator. The Z-88, however, permits rotation
and shifts of operands located in any of the following areas

TDL Z-80 Location Z-80
r Any eight bit register r
M The memory location pointed (HL)
to by the HL. pair
d(X) An indexed memory location (IX +d)
d(Y) (IY +d)

Any of these locations will be referred to as s. The possible types of rotations
are the same as those for the accumulator.

Action TDL Z-8¢ Mnemonic Z-80 Mnemonic
Rotate left RLCR s RLC s
circular

Rotate right RRCR ] RRC s
circular

Rotate left RALR s RL s
Rotate right RARR s RR s

OP codes are as follows.

A B c D E H L] (|G| (%) av+d)
cRi:::lt:rlcn CB7 | CBOG | CB#1 | CBU2 | CBUS | CBU4 | CBUS | CBU6 { DDCBAYG | FDCBAWE
e CBOF | CBUS | CB#9 | CBUA | CBOB | CBYC | CBUD | CBGE | DDCBAYE | FDCBAGE
Rotate left CB17 | CB1 | CB11 | CB12 | CB13 | CB14 | CB15 | CB16 |DDCBd16 | FDCBA16
Rotate right CBIF | CB18 | CB19 | CB1A | CB1B| CBIC| CBID{ CBIE|DDCBdIE|FDCBdIE

Besides these extended rotate instructions, the Z-88 possesses the
capability to perform shifts on any of the locations s described above. The
possible shift instructions are
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Shift left arithmetic ]
9

Notice that in the shift right arithmetic a zero does not shift in on the left.
Instead, the sign bit is repeated to preserve the sign of the number. A pair of
examples should make this clear. In each assume that the carry flag was

initially cleared.
ABefore [0 1 91 9191
Effects of the shift
right arithmetic: After 9901010190 m
B. Before 19101010
Afer

Shift right logical: )

Notice that no shift left logical is needed, since it would not be any different
than a shift left arithmetic.

Shift right arithmetic ] 7

The mnemonics are

Action TDL Z-88 Mnemonic Z-8¢ Mnemonic
Shift left SLAR s SLA s
arithmetic
Shift right SRAR s SRA s
arithmetic
Shift right SRLR s SRL s
logical
The OP codes are

A B c D E H L] (an) | (X+d) | (v+d
Shift left
arithmetic cB27 | cB20 | cB21 | cB22 | cB23 | CB24 | CB25 | CB26 |DDCBA26 | FDCRA26
Shift right
arithmetic CB2F | CB28 | CB29 | CB2A | CB2B | CB2C | CB2D | CB2E |DDCBA2F [ FDCBAZE
Shift right
logical CBSF | CB38 | CB39 | CB3A | cB3B | CBSC | CBSD | CB3E |DDCBASE |FDCBA3E

Two final rotate instructions available in the Z-80 are of great use in
binary coded decimal (BCD) arithmetic. Although this forms the subject of a
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later chapter, the instructions will be presented here for completeness. The
TDL Z-80 and Z-80 mnemonics are identical. The operands are always the
contents of the accumulator and the memory location pointed to by the HL
pair.

Rotate left OP code
digit (RLD) ED6F
Rotate right OP code
digit (RRD) ED67

Character Representation Using the ASCII Code

We have already seen that a byte of memory may have many uses. It can
contain an instruction OP code or a piece of data, part of an address or an
immediate within an instruction. We will see now that a byte may also
contain the coded representation for a character.

What if a programmer wishes to store customer names in memory? Since
he has only numbers to deal with, some type of correspondence between
letters and numbers must arbitrarily be made. The ASCII code is the most
common code used in microcomputers. It is basically a seven bit code, though
many systems use the high order bit to signal a graphics character. A com-
plete chart of ASCII is included for reference in Appendix B. Notice that
there is a character 1 which in ASCII is hexadecimal 31.

All input from the keyboard and output to screen or printer is usually
done in ASCII code. Once in the machine, characters can be stored in ASCII
or converted to some other convenient form. For example, suppose we read in
the number 123. In character form this is 313233, and occupies three bytes.
To use this as a value within our program we will have to convert it to binary.
After conversion it will fit into a byte.

Notice that ASCII contains representations for both A and a.

A =41
a =61
Many printers can only handle upper case. Any lower case letter can be

converted to upper case by subtracting 2@,;. This is often referred to as
folding to upper case.
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Whether the programmer will have to write little utility routines to
convert to binary and back again or to fold characters to upper case will
depend on the kind of work he is doing. Nearly all programs, however,
require some sort of I/O (input/output).

A check of the instruction repertoire of the 8080 will reveal some nice
input and output instructions, but the casual programmer will never use
them: The monitor generally performs all 1/O for the user. Although this
arrangement is a tremendous convenience for the user, it is a tremendous
headache for the instructor and for the novice programmer. There is no
standard, set way of doing I/0. Monitors differ in both techniques of use and
range of options. The simplest output technique requires the user to place a
single character in a given eight bit register and call a routine that displays or
prints it. Input under such a system is also a call to a fixed routine. Upon
return, the character input can be found in a given eight bit register.

Exercises

. Write a subroutine that will accept as inputs two eight bit positive numbers
located in variables named MLTPLR and MLTCND. The routine should
multiply them and output a two byte result in a variable named PRODCT.
Save any registers used by the subroutine.

. Repeat exercise 1 if MLTPLR and MLTCND cannot be assumed to be
positive. (Hint: Test first. Complement each if necessary. Complement result
if necessary. For the multiply itself, call the routine in exercise 1.)

. Write a routine which will accept as inputs a two byte variable named
DIVDND and a one byte variable named DIVSOR. (Both may be assumed to
be positive.) The routine should divide DIVDND by DIVSOR and output the
one byte quotient and remainder in variables named QOTENT and
RMANDR, respectively. If an overflow occurs, set RMANDR to a flag value
of — 1.

. For this exercise, refer to exercise 6 in “Jumps, Loops, and Modular
Programming.” Write a subroutine that will sort the array PEOPLE into two
arrays called WOMEN and MEN. Keep track of how many elements are in
each array and store those values in suitably named variables.

. Write a subroutine that will accept as inputs the two byte address of an array
of characters in a variable named WHERE and the number of characters in a
variable named DIGITS. All of the characters should be the ASCII code of
binary digits, i.e.,

9 = 30,
1=31y

The subroutine should convert the character string into a single binary
number and leave its value in a two byte memory location named RESULT.
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6. Repeat exercise 5 using

a. all characters hexadecimal digits
b. all characters decimal digits

(Hint: You may want to call the multiply or divide routines already written.)
7. Repeat exercises 5 and 6, going the other way. That is, accept a two byte
RESULT in binary, output the characters in the array, and store the number
of digits required in DIGITS.
8. Learn how I/0 is handled through the monitor on your system.




a casual introduction
to data structures

Up to now we have referred to variables as things which somehow already
were in existence. We blithely said things like “Assume BIGA and BIGB are
16 byte variables in memory.” Yet we have never hinted at how they got there.
By now we are used to writing instructions in mnémonic form and letting the
assembler convert them to OP codes and addresses. We will do basically the
same thing for variable declaration, but the mnemonics used to reserve space
for variables depend on the individual assembler you are using. The most
common choices are to

1. Declare a one byte storage area and assign it an initial value.
LILVAR: .BYTE 77

2. Declare a two byte storage area and assign an initial value.
BIGVAR: .WORD 777

3. Reserve a stated number of bytes of storage with no initial values
assigned to them.

ARRAY: .BLKD7

(In this example we get 7 bytes of storage reserved. Only the first byte
has a name.)

1t would be a good idea for you to take the time right now to find out what key
words your assembler wants you to use in reserving space for your variables.

Using the Single Variable

A single variable, whether one byte or two bytes in length, can be accessed
directly through its name.

8080 Z-80
LDA LILVAR LD A,(LILVAR)
LHLD BIGVAR LD HL,(BIGVAR)

71
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The Array

We have already made several references to arrays, drawing on previous
experience and the context to provide meaning. Basically, whenever there was
more than one of anything, we called it an array. To be more accurate, an
array is a collection of like items. Usually only the first element of the array is
named. So our sample array from example C above would appear as

ARRAY (1) 1023
(2) 1924
(3) 1925
(4) 1026
(5) 1027
(6) 1628
(7) 1029

In higher level languages, we would typically access the elements by sub-
scripting.

ARRAY(3)
But in assembly language we would have to write

ARRAY + 2

to get the correct address in memory. The trick is getting used to counting:

Typical arrays are dealt with in loops. For example, we can add one to the
value of every element in an array. If the individual elements are single bytes,
this probably only requires setting up the start address in the HL pair and
looping through the array.

Multi-Dimensional Arrays

Suppose we wish to represent in computer memory an array that is, say, 4 X
5. It is convenient for us to think of our storage as a block
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Columns
p1234

Rows

0
1
2
3

even though the bytes are arranged linearly in memory, what must be done
before this can be accomplished is to decide on what order the elements
should appear in memory. There are two most likely choices.

0 1 2 3 4 0 1 2 3 4

0] ¢ 1 2 3 4 o[ © 4 8 |12 ] 16

115 6 7 8 9 171 5 9 {131 17

210 f11[12] 13| 14 21 2| 6 | 10| 14| 18

3|15 ]| 16 | 17 | 18| 19 313 7 {11 ]15] 19
A. Row major order B. Column major order

Locating a specific box will depend on the choice of representation used.

Row major order
Box # = col. # + (row #) * (total # of cols.)

Column major order
Box # = row # + (col. #) * (total # of rows)

This whole concept can be extended to three- and four-dimensional arrays
when needed.

The Structure

Closely allied to the concept of the array is the structure. Where an array is a
collection of like items, a structure is a collection of items which are not
necessarily alike.

For example, consider a collection of customer entries:

CUSTNO NAME ADDRSS PHONE

F—— 7 bytes——+— 20 bytes + 30 bytes ———*— 7 bytes -ﬁ|
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Here a whole customer entry is 64 bytes long. (This turns out to be a very
convenient size.) So if we have a pointer to the start of one entry and we want
to get to the next we need only add 64. The individual fields of the entries are
all fixed displacements from the start of the entry.

Field Displacement
CUSTNO [
NAME 7
ADDRSS 27
PHONE 57

Most assemblers allow the programmer to write an equate statement.
That is, to create a word that can be used in place of a number. Again, the
key word to do this varies from assembler to assembler.

TWO = 2
or
TWOEQU 2

Once an equate has been written, the assembler will translate all references to
it to the appropriate value. The use of equates adds greatly to the readability
of the program.

Getting around in a structure always involves using these displacements,
so it is a prime candidate for the indexed instructions which the Z-80 offers.
Suppose the IX index register points to one of the customer entries. We can
put the first letter of the customer’s name into the C register with

TDL Z-86 Z-80

MOV C,NAME(X) LD C,(IX + NAME)

(Assuming, of course, that we first wrote an equate statement telling the
assembler that by the word “NAME” we really mean the number 7).

Do you see how much clearer the above instruction is than the following?
MOV C,7(X) LD C(IX + 7)

This is the beauty of an equate.

8080 programmers must perform an addition to achieve the desired
result. Suppose the HL pair points to one of the customer entries. We can put
the first letter of the customer’s name into the C register with

PUSH H Save original pointer

LXI D,NAME Displacement value in DE
DAD D Add in displacement
MOV C,M Get first letter of name

The task takes a little longer without the indexing capability.
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Achieving Variable Displacement in the Index Instructions

The Z-80 index instructions always involve a fixed, signed displacement d.
Oftentimes a programmer may desire to have the displacement vary. Variable
displacement can be achieved as follows.

(IX)
x T [

Effective address — (IX+d)

Suppose we wish to access locations of varying displacement from a table
which begins at hexadecimal location 137B. We know that the effective
address of an index instruction is the contents of the IX index register plus the
fixed displacement. If, for example, the displacement were 5

X 13 7B X [ Addrhigh | Addr. low |

v ] +a
Effective E -

e L1388 [ ffective address ]

Now we know we always want the same starting location for the table,
but we want to vary the displacement. So let’s switch things around a little.
First, notice that we get the same effective address with

X X [ Addrhigh | Displacement |

13 8p [ Same effective address ]

But here the variable part is in the IX index register where we can get at it to
change it, while the table address that never changes anyway is in the fixed d.
We will shortly summarize the program steps that will accomplish this
goal, but first we have to take a close look at what we have here. Remember
that the displacement d is a signed number (—128 < d < 127), but the low
order byte of an address is an unsigned number (§ < addr. low < 256). So
suppose we tried the same switch using a table that starts at 18FF and a

desired displacement of 5.
*

13 ™
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The FFy = —1, 50 1365—1 = 1304 would be used as the effective address,
though it is hardly the desired result.

The solution centers around the concept of boundary alignment and
the 256 byte page. The first address in any microcomputer is 0960, ; the last is
FFFF,. Memory can be considered to be divided into 256 byte pages as
follows.

0909
: Page @ The start address of any page of memory is of the
OOFF form
0109 XX00
: Page 1
P1FF So the high order address byte can be anything, but
the low order address byte is always 86, for any
0200 address that is aligned on an even page boundry.
Page 2
02FF
etc.

Forcing this boundary alignment is sometimes essential. The means by which
this is accomplished is the origination or location statement. The key word
used is again dependent on the assembler, but ORG and LOC are common.

.LOC 1000,

This would set the next location declared to hexadecimal address 1000.

If we wish to use variable displacement to access an array named
TABLE, we need to make use of a reference location we call TBASE, which is
aligned on an even page boundary. TABLE itself may lie anywhere in the
range TBASE —128 to TBASE + 127. The distance between TABLE and
TBASE will then be a one byte signed number. We use this d as the fixed dis-
placement called for in the index instruction. We use the high order byte of
TBASE as the high order portion of the index register. The variable displace-
ment forms the low order portion of the index register. This variable displace-
ment will now be an unsigned number in the range # to 255.

X | XX [ Variabledispl. | TABLE
t
L« 7] d
L TBASE
(XX09)
where —128 < d < 127, § < var. displ. < 255,
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With the object clearly in mind, there remains only one question. How
do we get a one byte variable displacement into the low order half of the index
register? The answer is that we plan ahead and reserve for ourselves a two byte
area to which we have given the value TBASE (XX08).

INDEX: .\WORD TBASE

Now the value of TBASE will be stored in memory in swapped form.

INDEX—> 09
XX

Then suppose our variable displacement is contained in the one byte memory
location named DISPL. The following sequence of instructions will set up the
IX index register.

TDL Z-80 Z-80
LDA DISPL LD A, (DISPL)
STA INDEX LD (INDEX),A
LIXD INDEX LD IX,(INDEX)
Linked Structures

All other data structures we have discussed so far have been sequential in
nature. That is, the elements have been located physically one after the other
in memory. Now we will briefly introduce a type of data structure where the
elements may be physically scattered. The individual elements in such a
structure are often called nodes. In such a data structure each element will
contain the address where the next element can be found. This is often
referred to as the link field. If our customer structure were organized this way,
it might look like

[[No | NAME | ADDRESS | PHONE | LINK Node 1
[[No | NAME | ADDRESS | PHONE | LINK Node 2
o

In this case it would no longer be necessary to add 64 to get the next customer.
We need only load the value of the link. Typically a link value like #690 could
be used to indicate the end of the list.

One obvious advantage of using a linked structure comes when the in-
dividual structure elements must be arranged in a certain order. For
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example, suppose our customer structure is alphabetized by customer name.
(For convenience, only the name field is used.)

Sequential Linked
: X
ALBERT \->| ALBERT 1.1
ALVARADO
AMBROSE
AMES ALVARADO [ .1

C{  AMEs [ 1
/

Immediately we can see that the linked representation takes more room, but
not much more. An address in an 8488 or Z-80 is two bytes long. So our link
fields will add two bytes to every node. But the nodes were already 64 bytes
long, so as a percentage the increase is not great.

Suppose, though, that we now acquire a new customer named AMBLE.
Using the sequential method, we will have to move every entry down to make
room for the new one. With the linked representation we need only change
ALVARADQO’s link to point to AMBLE and have AMBLE’s link point to
AMBROSE.

Available Nodes List

When linked structures are used, it is convenient to keep a separate list of
unused nodes.

Empty ——{ [ ]
e | |
*/J

Then when a new entry is needed, we can take the node from this list.
Similarly, when we wish to delete an existing node from the linked structure,
we can return it to this list to be reused at a later time.
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Z-86 Block Handling Instructions

The Z-80 instruction set contains eight operations that act on blocks of data.
Whole arrays can be moved or searched using a single command. We will
outline the effects of the instructions and then discuss how these instructions
might influence the way we chose to store arrays using the Z-80.

Z-80 Block Transfer Group
The Z-80 Block transfer instructions make use of three register pairs:

BC: Holds the count telling how many bytes are to be moved.

DE: Points to the destination location to which the next byte will be
moved.

HL: Points to the source location from which the next byte will be fetched.

The load and increment instruction LDI moves one byte from (DE) to
(HL) and then increments both DE and HL and decrements register pair BC.
The dual purpose flag parity/overflow is set if BC ~ @ and it is cleared if BC
= 0. The carry flag is unaffected, but the zero and sign flags are messed up.
The OP code for this instruction is EDAS.

The load, increment, and repeat instruction LDIR performs the same
action as the LDI, but continues transferring bytes one by one until the count
in the BC register pair reaches zero. It's OP code is EDB#.

The load and decrement instruction LDD moves one byte from (DE) to
(HL) and then decrements all three register pairs. Flag settings are the same
as for the LDI. The OP code is EDAS.

The load, decrement, and repeat instruction LDDR performs the LDD
until the BC pair goes to #. Its OP code is EDB8.

Z-88 Block Search Group

The Z-89 block search instructions make use of two register pairs and the
accumulator.

A: Holds the value to be searched for.
BC: Holds the count telling how many bytes are to be searched.
HL: Points to the location of the next byte to be searched.

The flag settings for these instructions are all the same.

CARRY: Unaffected.
ZERO: Setif A = (HL). Cleared if A # (HL).
PARITY/

OVERFLOW: Setif BC # 0. Cleared if BC = 0.
SIGN: Messed up.
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The compare and increment instruction CPI performs a compare
[A—(HL)]; then increments the HL pair and decrements the BC pair. The
OP code is EDAI.

The compare, increment, and repeat instruction CPIR performs the
action of the CPI instruction until either BC # 0, or A = (HL). Its OP code is
EDBI.

The compare and decrement instruction CPD performs a compare
[A—(HL)], then decrements both the HL and BC register pairs. The OP code
is EDA9.

The compare, decrement, and repeat instruction CPDR performs the
action of the CPD instruction until either BC = for A = (HL). Its OP code
is EDB9Y.

Z-88 Array Arrangement

Suppose we are writing a program that requires a large array of two byte
signed variables which are not sorted in any particular order.

BIGARY 1L 1H 2092
2L 2H 2004
3L 8H 2006

Further, suppose that we frequently have to determine whether or not a
certain two byte variable, called TSTVAL, is contained within BIGARY. If
all of these variables were one byte in length, there would be no problem. We
would simply use the search instruction. However, there is no two byte search.
We can still use the built-in search, though, if we split up the array into two
arrays of one byte variables.

Low order High order
ARYLO — 1L ARYHI ——p] 1H
2L 2H
3L 3H
. L]
. L]
L] .

We would also conceptually divide TSTVAL into a high and low order byte.
Now we can search just the low order byte for a match with TSTVAL/low. If
we find one, we check the corresponding high order byte for a match with
TSTVAL/high. If they match, we're done, if not, we just go on checking the
low order byte array.
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Many times it will turn out to be simpler to split the fields of a structure
in this manner as well. In our customer structure, for example, it may be
more convenient to keep several parallel arrays.

CUSTNO - NAME -+

Exercises

. When an array contains a string of characters that is being input or output a
character at a time, it is usually called a buffer. Using the keywords that your
assembler requires to reserve storage, define a buffer large enough to hold 36
characters. Write a subroutine that will accept a string of characters from the
keyboard and place them in successive buffer locations. The input should be
terminated by a carriage return, but do not include that character in the
buffer. Clear any unused buffer locations by inserting the ASCII character for
a space. Do not allow the buffer to overflow. Each character input should be
echoed on the screen or printer.

. Write a subroutine which will display a message on the screen or printer. The
routine should be passed a starting location of the message and the number of
characters.

. Write a driver routine that calls the subroutines written in exercises 1 and 2
above. It should display the following three questions in turn, and accept a
response for each.

NAME?
ADDRESS?
PHONE NUMBER?

The driver should have storage areas reserved for the answers and should
transfer the information from the buffer after each question. The area
reserved for phone number should be eight characters long. Name and
address may be any suitable length up to 30 characters.

. When using a linked structure, the available nodes list keeps the track of
unused nodes. Suppose we have a linked structure where the nodes are 64
bytes long, and where the first two bytes contain the link field.

T — o
} I ;l

C.
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Reserve an area of storage which is Ik (408,,) in length. Force boundary align-
ment so that it begins on an even page boundary.

a. Write a subroutine that will link up all of the storage space into one big
available nodes list. Leave a pointer to the first node in a two byte
variable named AVAIL. The last node should have a zero link value.

b. Write a subroutine that will get a node off from the available list and
return a pointer to it in the HL pair.

Before After

AVAIL (HL) )

AVAIL

Your routine should check to see if the available nodes list is empty and
should call a routine called OVFLOW if it is.

c. Write a subroutine that will accept a pointer to a node in the HL pair

and return that node to the available nodes list. That is, reverse
“before” and “after” pictures of part b.




binary coded
decimal arithmetic

From previous exercises, we have gained experience writing conversion
subroutines that accept as input ASCII characters of digits and produce as
output the binary equivalent of the number. For example, an input in
characters of 11 would be converted to a binary 1011, since

11, = 1611,

Then, if we were to store that number in an eight bit register, it would appear
as

[6p oot ot 1]

If we were to store the decimal number 11 in binary coded decimal, however,
it would appear in a register as

In binary coded decimal arithmetic, each decimal digit is translated into
binary and stored in half a byte (one nibble). So only the following binary
values are used.

0000
0001
0010
0011
0100
9101
0110
g111
1000
1061

U} o
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The binary numbers below are not used.

1019 = A
1011 = B
1100 = C
1101 = D
1116 = E
1111 = F

So if we now consider the largest number that will fit in the accumulator, we

see that it is
scp = 99

CD D

Now 99 isn’t a very large number, especially in light of financial applications
which use an implied decimal point. If dollars and cents are the units, our 99
becomes 99¢. — this is terribly limiting. Nor does use of a 16 bit register help
much —with it we can only go up to $99.99.

The desired size range for BCD numbers can only be achieved by storing
the numbers in memory and manipulating them in memory as well. Thus, a
BCD number will appear as an array of bytes in memory, each byte con-
taining two digits.

1,256,748.27 = 01
25
67
43
27

Notice that only the digits themselves appear in memory, not the decimal
point. The fact that two digits follow the decimal point will be contained in a
descriptor block which will also give the size of the number in bytes and the
sign of the number, whether positive or negative.

Decimal Adjust Instruction

Suppose we decided to add two BCD numbers. For convenience, let’s suppose
each number is exactly two digits long.

19
+ 23
42

Now let’s see what we would get in the accumulator if we performed addition
on these two numbers in BCD.
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+[(0p10f00 11

[0 9 1 1]
=3C

Whoops! The result of this addition left us with one of the unused binary
numbers, namely C = 1100. So we added two BCD numbers, but the result
was not a BCD number.

We would have a similar problem upon performing the following
subtraction:

57
- 19

38
[o 170 1o 11 1]

9 01 1j1 11 0] =3E

So how can we add or subtract BCD numbers? The answer comes in the form
of an additional instruction. The decimal adjust instruction DAA, OP code
27, takes a result in the accumulator, such as the 3C from the above addition,
and automatically corrects it to the value 42. The same instruction also
corrects the outcome of a subtraction operation.

Multi-byte addition and subtraction algorithms will be given later. Now
that we know we can successfully add and subtract BCD numbers, let us turn
our attention to conversions between character and BCD forms of the
numbers.

Input and Output of BCD Numbers

We know that BCD numbers will be stored in memory with two digits per
byte, but the same numbers will be input and output in character form. For
example, if the number 1234 were input from the keyboard it would appear
in the input buffer in character form. Then it would have to be “packed” into
BCD form as illustrated below.
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Let’s consider how this conversion might be done. From character to

BCD

1. Load the first digit into the accumulator. A[9 9 1 1]p 9 9 1]= 31, .i

2. Subtract 30,,. Alp 9 o9 = 01,

3. Rotate the accumulator four times to A 000 pi=10,
the left.

4. Save this value in a temporary storage B0 oo i[ooopoe
location.

5. Load the second digit into the Al9 0 1 1]0 9 1 o|=32,
accumulator.

6. Subtract 38,,.

> >
-
-
-
-
I
=
£
o

s|le
s|ls
s||ls
s||s
e
s
-
]
=
)
S

!
n
—
[
S

7. Addin the value from the temporary
storage location,

8. Save the result as the first byteofthe +B[9 ¢ ¢ 1
BCD number.

-
-
-
Al

I
—_
(=

x

[N

The above steps would be repeated for each pair of characters input.

Converting from BCD to character

1. Load the first byte of the BCD

number into the accumulator.

2. Perform an “AND” operation with Alp 1
a mask whose value is Ff,,.

901

Ad
—
b
[
e
-
-
id
]
o
=2
B

-
-
=
-
-
A
Il
o
=)
o

AND mask

)
-
-
-
[}
)
=
o

S
-
-
[N
A
A3
=
A
]
o
=
T

3. Rotate the accumulator to the

right four times. A0 0 0 0|01 0 1|= 05,
4. Addin 36y Alo o 1 1o 1 9 1]=35,
5. Output the result as the first
digit in character form.
6. Load the first byte of the BCD = 56
number into the accumulator again.
7. Perform an “AND” operation A = 56y |

with a mask whose value is OFy.

ANDmask[0 @ 0 O]1 1 1 1]=0F,
p909 = 06y
8. Add 80, and output the result

as the second character of the result. P11 =36y

is




Binary Coded Decimal Arithmetic 87

Again, all eight steps would have to be repeated for each pair of characters
output.

RLD and RRD in Character-BCD Conversions

The 8080 programmer has no choice but to use the above algorithm or one
equivalent to it. The Z-80 programmer can make use of the RLD and RRD
instructions to simplify the conversion routines. These two instructions have
been discussed before, but they are diagrammed again here for reference.

Let’s trace how the algorithms would go using these instructions for
conversion from character to BCD. Assume the following register pairs are
used as pointers.

HL: points to the first character in the input buffer
DE: points to the first byte of the BCD

1. Clear the accumulator and RRD the first digit into the accumulator.

Al ooopleo e 0]=00, Alo oo o[0 00 1]=01,
HL) [P 9 1 1[0 90 1)=31, (HU[P P 0 0[0 91 1]=03

Before After
2. Store the contents of the accumulator into the location pointed to by the
DE pair.
3. Increment the HL pair to point to the next character, and repeat step 1.

Ao oo oloo 1o

4. Now exchange the contents of the DE and HL registers (DE <—>HL)
so the HL pair points to the first byte of the BCD number. Then RLD
second digit into the byte.

A0 oo ofoe1o]=02 Alpoooalono of=00,
HL [P ooe[eee 1]=0, HU[0001]00 1 p]=12

Before After
These four steps can then be repeated for each pair of digits input.
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Storing the BCD Number in Memory

We have already stated that a BCD number generally occupies several bytes
and requires some type of descriptor block telling

1. size
2. number of digits to the right of the decimal point
3. sign

The method presented below is by no means the only possible way to store this
information. Its main advantage is simplicity. The maximum size of the
number to be dealt with is completely up to the programmer and will depend
on the application. The storage area to be reserved, however, will be three
bytes larger than the space required to hold the longest possible number.
Those three bytes will then hold the descriptor data for the number.

1234.56
would appear in memory as
96 The number is 6 digits long,
02 two digits to the right of the decimal point, and
09 the number is positive (§1 indicates negative).
12
34 This is the number itself.
56

Alignment of the BCD Number

We have still not completely characterized the BCD number. Suppose the
following number is input.

123.45

This number has five digits in it, and we pack two to a byte, so there will be an
odd digit left over. Should we store the number as

91 or 12
23 34
45 59

The first method will turn out to be the simplest to deal with, because in this
representation the decimal point lies between two bytes and not in the middle
of a byte. This will turn out to be extremely useful in addition and subtraction
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of numbers with decimal points in different places. In fact, we will make it a
rule always to have the decimal point on a byte boundary.

123.456
would appear in memory as

]
23
45
60

But now what should we put in the descriptor block? We have just
changed both the number of digits in the number and the number to the right
of the decimal point. The answer is that we will want to use the descriptor
block to tell us the total number of bytes to the right of the decimal point.

Number of bytes
in number
Number of bytes
to the right

- of the decimal
point
Sign
Value

Now what about our input routines? We designed them as though the
number would simply be read from left to right in the buffer. Now we want to
work outward from the decimal point in both directions. Does this mean the
whole set of routines will have to be discarded? Fortunately, this will not be
necessary if we are careful in the design of our data areas. The algorithm to
be used will be outlined, but at this time let us also discuss how to set up the
descriptive block and how to deal with extraneous character inputs such as “,”
or“.”or“+".

We will begin by allowing an extra byte of storage whose value is 30y,.
This byte will be located just before the buffer area.

SPARE: .BYTE 30,
BUFFER: .BLKB 120
SPRFLG: .BLKB 1

NUMBER: .BLKB 65
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We will then assume that the number is input into the buffer area beginning
at BUFFER + . Examination of the buffer contents will thus begin at that
address. Each character in the buffer will be examined in turn.

Initialization: Zero the space flag (SPRFLG) and the entire data area
reserved for NUMBER. Set the HL and DE register pairs so that both point to
BUFFER + 0. Zero registers B + C to be used for counts.

Presignificance loop (repeat 1 and 2 until a jump out of the loop oc-
curs):

1. Fetch a character from the buffer location pointed to by the DE pair.
2. Test for one of the following and perform the corresponding action
upon a match:
a. Space — Increment the DE register pair.
$
+
b. —  — Move a 1 to the sign descriptor byte. Increment the DE register
pair.

8o

. Digit — Move the character to the location pointed to by the HL pair.
(9-9) Increment both the DE and-HL registers. Increment the B
register. Jump to the post-significance loop.
e. Any — Jump to the termination segment.
other
Post-significance loop (repeat 1 and 2 until a jump out of the loop oc-
curs):
1. Fetch a character from the buffer location pointed to by the DE pair.
2. Test for one of the following and perform the corresponding action
upon a match:

a., ~— Increment the DE register pair.

b. — — Move a 1 to the sign desciptor byte. Jump to the termination
segment.

c. . — Increment the DE register pair and jump to the post-decimal
loop.

d. Digit — Move the character to the location pointed to by the HL pair.
(8-9) Increment both the DE and HL registers. Increment the B

register.

Jump to the termination segment.

e. Any
other
Post-decimal loop (perform 1 and then repeat 2 and 3 until a jump
out of the loop occurs):
1. Check the digit count in register B. If it is an odd number (bit @ is set),
increment register B and set the spare flag (SPRFLG = 1).
2. Fetch a character from the buffer location pointed to by the DE pair.

— Increment the DE register pair and jump to the post-decimal loop.
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3. Test for one of the following and perform the corresponding action
upon a match:
a. — — Move a 1 to the sign descriptor byte. Jump to the termination
segment.
b. Digit — Move the character to the location pointed to by the HL pair.
(8-9)  Increment both the DE and HL registers. Increment both the B
and C registers.
c. Any — Jump to the termination segment.
other

Termination segment:

1. Check the digit count in register B. If it is an odd number (bit @ is set)
increment both the B & C registers and move the value 38 to the
location pointed to by the HL pair.

2. Divide the contents of register B by 2 by shifting to the right and store
this value in size.

3. Repeat for register C, store in number of digits to the right of the
decimal point.

4. Set the HL register pair to point to

a. BUFFER + @§ — if SPRFLG = 0
b. SPARE — if SPRFLG =1

5. Use the previously described translation routine to convert the input
characters to BCD. The number of repetitions for the loop is the value
in SIZE.

Although this routine may seem to be long and complex, it is really
worth the effort to encode and debug it. Once written, it becomes a highly
portable utility routine that can be used in any application requiring BCD
arithmetic.

Fixed Point Addition and Subtraction

We have already seen how the use of the decimal adjust instruction DAA can
greatly simplify addition and subtraction of BCD numbers. Now it is time to
consider the subleties of decimal point alignment and discuss how a BCD
routine to add and subtract fixed point numbers might be structured.

First consider the following addition operation.

1.023 + 7.7
A routine that performs this addition must take into account the need to
properly align the decimal point.

1.023
+ 7.7
8.723
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It is also necessary to decide on the location for the result of the operation. If
it is decided to leave the result in either the first or the second operands, the
fact that the result may be larger than the inputs must be taken into account
in the algorithm design. Lastly, the routines must take into account the sign
of the inputs, since the numbers themselves are not stored in any fashion such
as 2's complement which allows them to be dealt with directly.

The routines described below will extend zeroes to the right of the
decimal point of the shorter number to solve the alignment problem. For
example,

1.823 + 7.7
will become

1.023
+ 7.708
8.723

The location of the result will be a totally separate result area. This area will
act as a buffer in the sense that a second call to the addition routine will
destroy the result of the previous addition. So the calling program will have to
move the result to the location of its choice.

The sign of the inputs will be taken into account in the following
manner.

Addition:

Operands of the same sign: Perform addition on the two
operands. Attach their common
sign to the result.

Operands of opposite sign: Subtract the smaller from the
larger. Attach the sign of the
larger to the result.

Subtraction:

Given operand 1 minus operand 2, change the sign of operand 2 and
add. Restore the sign of operand 2 before returning from the
subroutine.

The whole subject of attaching the proper sign to the result apparently
depends on the ability to compare two BCD numbers. Since these numbers
can be extremely long, such a comparison may seem difficult. In fact, it is not
terribly hard to do this. Before a comparison is made, the two numbers will
first be adjusted so they have the same number of bytes to the right of the




Binary Coded Decimal Arithmetic 93

decimal point. At this time the size of the two numbers can be compared. If
one is longer, it is larger. Numbers of the same length can be subjected to a
byte-by-byte unsigned compare.

The routines themselves make use of two length indicators. These are the
lengths of the two operands after decimal point adjustment has taken place.
The basic loops merely involve a straight add (or subtract) of the lowest order
byte and an add (or subtract) with carry of every higher order byte until the
shorter number is exhausted. After that point has been reached, the routine
continues to add (or subtract) with carry using a “dummy” operand with a
zero value until the longer number is exhausted. After each and every ad-
dition (or subtraction) the decimal adjust operation is performed.

Floating Point Multiplication

The method to be used in floating point multiplication parallels that used in
long-hand computation.

7.032

X .42

14064
28128

2.95344

The size of the result will be, at most, the sum of the sizes of the two operands.
The number of bytes to the right of the decimal point will be exactly the sum
of the numbers of bytes to the right of the decimal point in the two operands.

To outline the method to be used, consider the two BCD operands as
strings in memory. The smaller operand will be used as the multiplier and
will have a pointer to its least significant digit’s byte

[T T T T T T ] Motplicand
T T T T 1 Mutplier
W Least significant digit

The digit in the multiplier will be read, and the multiplicand will be
added into the result that many times. The addition will ignore the decimal
point in the multiplicand. Then the multiplicand will be shifted to the left
four bits (i.e., multiplied by 10), and the next digit in the multiplier will be
considered. This process will be repeated until all of the digits of the
multiplier have been used up. In the process of left shifting the multiplicand,
the RLD instruction will prove invaluable.
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The sign of the resulting product can easily be determined by comparing the
signs of the operands:

Operands Result
+ + +
+ - _
-— + -
- - +

Floating Point Division

Again the technique utilized will parallel that used in long division. To trace
the method, however, we will have to analyze the thought processes used in
division very carefully. Consider first the approach taken in performing the
following long division.

6.347 | 10.4

The first step in performing this division by hand would be to shift the
decimal point three places to the right in both the divisor and the dividend.

6.347. [ 10.400. = 6347 [ 10400.

Once this step has been performed, the decimal point is fixed in the result.
But in our algorithm it will be the number of bytes to the left of the decimal
point that we will want to keep track of, since the number of bytes to the right
will depend on the accuracy with which the calculation is performed. The
desired number of bytes of accuracy would have to be input to the subroutine
as a parameter.

An outline of the algorithm follows.

1. Check the number of bytes to the right of the decimal point in the
divisor. If this is nonzero, multiply both dividend and divisor by 108 by using
an eighth bit left shift. Repeat this step until the divisor has no digits to the
right of the decimal point. The eight bit shift can be accomplished by simply
adding the digits #0 to the end of the number and adjusting the decimal
point.

2. Subtract the number of bytes to the right of the decimal point from
the total number of bytes to obtain the number of bytes to the left of the
decimal point in the dividend.

8. Now create the quotient by performing the following loop the number
of times equal to the desired accuracy as input. Note that using this system
leading zeroes will be counted as digits of accuracy. The number of bytes of
accuracy would be obtained by adding to the end of the dividend the required
number of 88 bytes to make its total length equal to the desired accuracy.
Begin the loop by left shifting the dividend four bits and taking only the first
byte as the assumed size of the dividend.
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a. Subtract the divisor from the assumed size of the dividend. Keeping a
count of the number of subtractions performed, repeat until the result
goes negative. At that point, add the divisor back and decrement the
subtraction count. Output the count as a digit of the quotient.

b. Left shift the dividend four bits, but maintain the same assumed size of
the dividend. Repeat step a.

c. Left shift the dividend four bits and increase the assumed size of the
dividend by one byte. Repeat steps a-c until the desired number of bytes
of accuracy have been obtained.

4. When the entire quotient has been formed, delete leading 88 bytes
and adjust the decimal point accordingly.

Exercises

. Write a subroutine which will take as input a number in character form in a
buffer and produce as output the BCD value of the number.

. Write a subroutine which will perform a fixed point addition of two BCD
numbers.

. Write a subroutine which will perform a fixed point subtraction of two BCD
numbers.
Write a subroutine which will perform a floating point multiplication of two
BCD numbers.
Write a subroutine which will perform a floating point division of two BCD
numbers.




when time is important

In this chapter we will be dealing with two totally separate types of time. On
the one hand, we will discuss how to optimize program development time.
That is, how to get the most from the human hours that go into program
design, coding, testing, and debugging. On the other hand, we will consider
how to minimize machine execution time in applications where run speed is
critical.

An Approach to Program Development

George has just been given a job contract to develop a complete
microcomputer program for a talent agency. He talks to the owner and she
spends an hour and half telling him all the things she wants the program to
do. The task seems frightening, but he will make enough money to pay for his
complete computer system five times over.

At home, perched at his desk and ready to work, he drags out all the
notes he took at his interview. The first thing he will want to do is (1) begin
with a clear idea of what the program is to accomplish. George determines
that the talent agency wants the program to maintain a complete, up-to-date
file containing name, address, phone number, and abilities profile for each of
its clients. The agency would like to give an casting director an immediate yes
or no answer as to whether they have a client on file with a given abilities
profile. If the director wants to make an interview appointment, the agency
will need to get a display of the names, addresses, and phone numbers of all
clients who fit the profile. With the total task summarized, George’s thoughts
are already turning to the second step: (2) divide the total task into any
isolatable sub-tasks.

He can identify three clearly distinguishable sub-tasks in the talent
agency program:

a. keeping the client file current
b. performing a search for a given profile
c. listing name, address, phone on matches

Now George is really clicking, ideas are starting to pour in. He jots down on
scratch paper a few ideas he doesn’t want to forget. For instance, the thought

96
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just occurred to him that all the information the agency needs to know about
its people can be contained in a single byte. But George doesn’t get carried
away from his planning. He moves right into the third step: (3) concentrating
on a single one of the sub-tasks, repeat step 2. Repeat 2 and 3 until all of the
program modules have been designed.

George zeroes in on the problem of keeping the client file current. He
divides it as follows.

A. adding new clients and their profiles
B. updating a field in a client record
C. deleting former clients and their profiles

The problem of adding new clients and their profiles becomes the next series
of tasks.

i. getting a new node area
ii. filling in name, address, and phone fields
iii. collecting employee profile information and organizing it into a descrip-
tive byte

Getting a new node is no problem. George can easily adapt a subroutine he
wrote long ago to do this. Filling in name, address, and phone fields he had
also done before. George has a collection of message input and output
subroutines to draw on. So the only problem George faces right now is
collecting and organizing profile information. Deeply absorbed in his work,
George has completely forgotten how awesome the task appeared at first. The
profile task still needs narrowing down. He refers to his notes and decides that
he can use his standard I/O subroutines to collect the answers to a series of
questions. He'll convert a yes to a 1 and a no to a #. Going into the routine
he’ll clear the accumulator. Then he’ll set the low order bit accordingly and
shift one to the left before the next question.

Before too long, and well before the design deadline, George has the
complete program design. He knows what his data will look like in memory.
He knows what routines and subroutines are needed for the job and has a
good idea of what machine capabilities he will utilize in the performance of
each task. He has a complete block diagram of his program showing which
routines call what subroutines. A portion of George’s block diagram is shown
on the following page.

Through all this design effort, George has not written a single line of
assembly language code. With the design complete, though, he’s ready to
begin coding. It's no haphazard guess as to what to code first. George is
following the fourth step: (4) code the main driver first, then all first level
subroutines and so on, coding from the top down to the lowest level
subroutine. Coding takes a long time. A few problems arise for George, but
he discovers that even though he has to adjust his design a little, he never
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seems to have to make many changes to code he has already written. That'’s
the top-down approach working for him. If he’'d begun coding from the
lowest level subroutine up, he would be spending half his time erasing code
and tracking down the repercussions of minor changes.

main update client — get

program driver addition node
driver
L name/ output
address message
phone
input
message
| client output
profile message
record ____ ... input
change message
client
T deletion T
search
for J—
profile
listing —

matches

George is doing more than just writing code right now. He is
documenting every routine he writes. Long ago he formed the habit of
commenting every line of assembly code. SET 5,D won’t give you any clues as
to what you were up to when you wrote it two weeks ago. But line comments
aren’t enough for a project of this size. George keeps a whole block of com-
ments as a header to each subroutine. He always includes

NAME: The complete name of the routine with acronyms
expanded in full.

FUNCTION: A brief description of the purpose of the routine.

CALLED BY: The names of all the routines that call this routine.

CALLS: The names of all the routines that this routine calls.

ARGUMENTS: Any data that is passed to this routine in a register
or returned from this routine in a register is clearly
spelled out.
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George never omits any of these items. For instance, in his main program
driver he has the line

CALLED BY: NONE

Then he knows that no item was forgotten. George also carefully documents
the data structufes he is using. The name, the size, the function, and the
alignment of all variables and tables are included.

Finally the job of coding is finished and George surveys the job with
satisfaction. The program fills a three ring binder. He has sections separated
by dividers for all his documentation and for each subroutine. Now he is
ready to begin to assemble the code and test it. George is quite excited about
the project. He’s itching to enter all the code, assemble it, and let it rip. But
he knows that method would only give him a big letdown. Even the smallest
subroutine isn’t guaranteed to run the first time. It has to be debugged, and
with a project of any size, that can be either a nightmare or a smooth, orderly
procedure, depending on the way it is approached. So George won't let his
enthusiasm run away with him. Instead he'll follow the fifth step: (5) assemble
and test the lowest level subroutines first, working from the bottom up.

George begins with the utility routines he’s adapting from previous
programs. His basic 1/0 routines really get the once-over. Every time George
tests a routine, he uses the same basic plan. He is always careful to include test
cases that will exercise every branch. He wants to be sure that every line of
code is executed during the test phase. When he feels confident that the
jumps are jumping properly and the loops are looping, George is still not
ready to certify the routine as fully debugged. What if bad data comes
through? What if a clerk types a name where a number should have been
entered? Will the whole program come to a crashing halt? George has in-
cluded data validation checks in his subroutine designs wherever a problem
could cause a crash. Now, during debug, he will try out the weirdest of the
weird data inputs to see what effects they have on the system. If an empty
array is passed, will the loop droop? If the program runs out of space for more
clients, will it ignore the problem and wipe out anything in its way?

If George discovers that he’s done a “jump on zero” when he wanted a
“jump on a nonzero” or some such error, he can alter the program.

LOC 204E = CA 4323 (jump on zero to 2343)
George can simply change one instruction by TE at 204E to a D2, so
LOC 204E = D24323 (jump on nonzero)

Such changes are very simple when the corrected instruction is the same
length as the original instruction.

If George discovers that he’s got an instruction in the program that he
doesn’t want, he can just substitute NOP instructions in its place. For
example, to remove
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LOC 214B = CD3758 (call loc. 5037)
replace it with three NOPs:

LOC 214B = 00
214C = 090
214D = 08

Now what if George discovers he’s forgotten an instruction that should be
there? He could stop his debugging in midstream while he corrects the
program and reassembles, or he could simply make a “patch.” A patch is a
program repair that involves making an unconditional jump out to an unused
location in memory (called the patch area). There, any omitted instructions
can be hand assembled and listed directly in machine code before making an
unconditional jump back to program area. There are four steps involved.

1. Create a jump out to the patch area “C3 _ __" by replacing three bytes
in the program. [If you replace only part of an instruction, be sure to
replace the rest of it with NOP(s).]

2. In the patch area replace the instruction(s) removed for the jump.

3. Enter the missing instruction(s) in machine code.

4. Code a jump back to the program area at the end of the patch.

A patch log which shows all changes to the program made during debug can
prove to be invaluable.

Only when he’s convinced that the routine is uncrashable does George
certify it complete and go on to the next. As new routines are debugged, they
are combined with the previous ones, gradually building toward the complete
system. When at last the day comes that the driver takes off and drives,
George knows he’s got a winner. He takes a well-earned couple of days off
before the final work on the system.

Yes, there's more. George wants to be sure the program will work under
field conditions, so he copies names from the phone book and invents profiles
randomly until he has as many “clients” on his system as the agency will have.
Will searches slow to unbearable waits under a heavy load? Will an agency
clerk give a yes to a casting director only to discover that there’s only one
client with that profile, and his address and phone number are garbled?
George needs to know the answers. Can he do the search if a director says, “I
don’t care if it's a man, woman, or goat — just send me someone who can act!”

Fortunately, George did his work well and his system responds gracefully
to the most outlandish inputs. It's time for a party! But soon after, he’s back to
work. Still? Yes, George has to write his user documentation. Complete, clear,
easy-to-follow directions must be prepared for each type of entry or inquiry to
the system. George doesn’t assume any knowledge on the part of the operator.
He makes the documentation complete enough for the first-time user, but at
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the same time, concise enough to provide quick reference for the experienced
user.
Needless to say, now that George has delivered the completed system to
the talent agency, he feels confident that it will serve them well. And George
. . well, he’s vacationing in Bermuda.

Optimizing Run Time

It is in pursuit of speed that most programmers turn to assembly language
code. The interpretive nature of BASIC slows execution to the point where
complex programs run at an intolerably slow pace. For most applications,
merely switching to assembly language provides the needed speed up. Oc-
casionally, however, the application is so demanding and so time-critical that
the use of assembly code in itself is not enough. In such applications it is
necessary to identify those segments of code which must be executed
repeatedly within a short time frame, perhaps thousands of repetitions must
be made within a minute or so. Once the real bottlenecks have been isolated,
these routines can be optimized.

Optimization of code requires an awareness of the time the computer
spends in executing a particular type of instruction. The time is not so much
the absolute time required for each, but more important, is the relative
execution times of the various instructions. We will measure relative
execution times in terms of a “T-state.” A T-state corresponds to a single
clock pulse in the central processing unit. The actual time required foraT-
state depends on the clock speed of the individual microprecessor. For in-
stance, if the microprocessor is running at 1 MHz (one megahertz), then there
are one million T-states per second. A 4 MHz clock rate produces four million
T-states per second.

When trying to decide whether optimization is worthwhile, remember
that T-states must be saved by the millions to cut seconds off execution time.

The instruction times for each instruction as measured in T-states are
included in the instruction summary appendix. The execution times fall into
basic groups depending on the location of the operands. The fastest type of
instruction, for instance, operates on two operands which are both located in
eight bit registers. The chart on page 102 summarizes the instruction times
for eight bit operands based on operand location.

Here we see the characteristic longer execution times for the indexed
instructions which typically take 2.5 to nearly 6 times longer than the
corresponding instruction in an eight bit register. To show how optimization
can take place, suppose the code you were trying to speed up used an indexed
storage location to hold a temporary result in a computation. To put the
value out in memory would require 19 T-states. To retrieve it, another 19, for
a total of 38. Saving the same value in an eight bit register takes four T-states
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and four to retrieve it, for a total cost of eight T-states. If that register is free,
we’ve found a way to save 30 T-states.

Operation r (HL) n (IY+d) (nn)
(IX+d)
LOAD 4 7 7 19 15+
ADD
SUBTRACT
AND

OR

XOR
COMPARE
INCREMENT 4 11 = 23 —
DECREMENT
ROTATE 8+t 15 — 23 —
SHIFT
SET BIT
RESET BIT 4
BIT TEST 8 12 — 20 —
*LOAD only.

+Except accumulator.

Exercise

1. As a programmer, you have now had numerous examples of tode written by
and for you. You should by now have investigated the I/0 techniques used in
your monitor and learned the key words your assembler needs to see to locate
a program at a fixed spot in memory and to reserve and name storage
locations. If you have not already done so, it’s time to learn how to create a
text file on your system and how to assemble and load a program. We have
just finished discussing techniques for organizing an approach to large
programming projects. In short, you should now have all the tools necessary
to tackle a programming project of your own design.




S¥MBOL

ii

zz
nn

r

q

cY
F

tt

uu

PC

b{n}

APPENDIX A
80¢3¢/2IL0G MNEMONICS CONVERSION
SYMBOLS USED
OPERATTON
one of the 8-bit registers A,B,C,D,E,N,L
any B8-bit absolute value
an index register reference, either X or Y
an 8-bit index displacement, where -128< d< 127
B for the BC register pair, D for the DE pair
any 16-bit value, absolute or relocatable

B for the BC register pair, D for the DE pair, W for the HL pair,
SP for the stack pointer

B for the BC register pair, D for the DE pair, H for the HL pair,
TSW for the A/Flag pair

any of r (defined above), M, or d{ii)
interrupt flip-flop

carry flip-flop

zero flag

B for the BC register pair, D for the DE pair, SP for the stack
pointer, X for index register IX

B for the BC register pair, D for the DE pair, SP for the stack
pointer, Y for index register IY

a bit position in an 8-bit byte, where the bits are numbered from
right to left @ to 7

program counter

bit n of the 8-bit value or register v

the most significant byte of the 16-bit value or register vv
the least significant byte of the 16-bit value or register vv
an input operation on port v

an output operation on port v

the value of w is réplaced by the value of v

the value of w is exchanged with the value of v
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8@8¢
MNEMONIC

MOV r,x'
MOV r,M
MOV r,d(ii)
MOV M,r
MOV d(i1),r

MVI r,n

LDA nn
STA nn
LDAX 2z
STAX zz
LDAL
LDAR
STAT

STAR

8p8g
MNEMONIC

LXI rr,nn
LXI ii,nn

LBCD nn

LDED nn

LHLD nn

LIXD on

8 BIT LOAD GROUP

ZIL0G
OPERATION MNEMONIC
r+r' 1D r,r'
r « (HL) LD r, (HL)
r « (it+d) LD r{Iii+d)
(HL) « r LD (HL),r
(ii4d) « r LD (Iii+d),r
r+n LD r,n
(HL) « n LD (HL),n
(114+d) « n LD (Iii+d),n
A+ (on) LD A, (nn)
(nn) « A LD (nn),A
A < (zz2) LD A, (zz)
(zz) + A 1D (zz),A
A+ LD A,T
A<+R 1D A,R
I <A LD I,A
R <A LD R,A

16 BIT LOAD GROUP

ZIL0G
OPERATION MNEMONTC
rr + nn LD rr,nn
ii « nn LD ii,nn
B « (nn+l) LD BC, (nn)
€ « (nn)
D « (nn+l) LD DE, (nn)
E « (nn)
B « (nn+l) LD HL, (nn)
L <« (nn)
IX/H + (nn+l) LD IX, (nn)

IX/L + (nm)
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# oF
BYTES

1
1

# OF
BYTES

3

4

# OF

T STATES

4
7

19

19

16

19

13

13

# oF

T_STATES

16
14

20

20

16

2¢




LIYD nn

LSPD nn

SBCD nn

SDED nn

SHLD nn

SIXD nn

STYD nn

SSPD nn

SPHL
SPIX
SPIY

PUSH qq

PUSH ii

POP qq

POP ii

8080
MNEMONIC

XCHG
EXAF

EXX

IY/H « (nmtl)
IY/L « (nn)

SP/H « (nntl)
SP/L « (nn)

(nntl) « B
(mm) «C

(nn+l) « D
(nn) <« E

(nut+l) « H
(on) <« L

(nn+l) « IX/H
(nmn) <« IX/L

(nn+l) * IY/H
(nn) /L

3

(nn+1) < SP/H
(nn) SP/L

4

SP * HL
SP * IX
SP « 1Y

(SP-1) « qq/H
(sP-2) + qq/L
SP + SP-2

(sp-1) « 11/H
(sP-2) « 1i/L
SP « SP-2

qq/H + (SP-1)
qq/L + (SP)
SP « SP-2

+

11/0 + (SP+1)
11/1 « (SP)
SP <« SP+2

1D IY, (nn) 4
LD SP, (nn) 4
LD (nn),BC 4
LD - (nn) ,DE 4
LD (nn),HL 3
LD (nn),IX 4
LD (mn),IY 4
1D (nn),SP 4
LD SP,HL 1
LD SP,IX 2
LD SP,IY 2
PUSH qq 1
PUSH ii 2
POP qq 1
POP 1i 2

EXCHANGE, BLOCK TRANSFER, AND SEARCH GROUP

OPERATION

HL «+>DE
PSW «>PSW'

BCDEHL <«—BCDEHL'
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ZILOG # OF
MNEMONIC BYTES
EX DE,HL 1
EX AF,AF' 1
EXX 1

20

20

20

29

16

20

20

2¢

14

14

11

15

10

14

# OF

T STATES




XTHL

XTIX

XTIY

LpI

LDIR

LDD

LDDR

ccl

CCIR

ccD

CCDR

8089
MNEMONIC

ADD r
ADD M
ADD d(ii)
ADI n

ADC s

ACI n

SUB s

H > (SP+1) EX (SP),HL 1 19
L «»(SP)
IX/H «(SP+1) EX (SP),IX 2 23
IX/L «>(SP)
TY/H «>(SP+1) EX (SP),IY 2 23
IY/L «+(SP)
(DE) « (HL) LDI 2 16
DE <« DE+1

HL <« HL+1

BC « BC-1
repeat LDI until BC=§ LDIR 2 21/16
(DE) « (HL) LDD 2 16
DE <« DE-1

HL <« HL-1

BC <« BC-1
repeat LDD until BC=§ LDDR 2 21/16
A -~ (HL) CPL 2 16
HL « HL+1
BC + BC-1
repeat CCI until A=(HL) CPIR 2 21/16

or BC=§
A - (HL) CPD 2 16
HL + HL-1
BC + BC-1
repeat CCD until A=(HL) CPDR 2 21/16

or BC=

8 BIT ARITHMETIC AND LOGICAL
Z110G # OF # oF
OPERATION MNEMONIC BYTES T STATES
A<“A+r ADD A,r 1 4
A+ A+ (HL) ADD A, (HL) 1 7
A <A+ (11Hd) ADD A, (11i+d) 3 19
A<+A+n ADD A,n 2 7
A <“A+s+CY ADC A,s As showvn for ADD
instruction

A<+A+n+CY ADC A,n
A+A-s SUB s
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SUI n A<A-n SUB n

SBB s A+A-s~-CY SBC A,s {
SBI n A“A-n-CY SBC A,n ;
ANA s A+Ahs AND s

ANI n A+Ahn AND n i
ORA s A*AvVvs OR s |
ORI n A<Avn OR n
XRA s A+ABs XOR s

¥RI n A+A®n XOR n

CMP s A-s CP s

CPI n A-n CP n

INR r r«r+1 INC

INR M (HL) « (HL) + 1 INC (HL) !
INR d(11) (11+d) « (1i+d) + 1 INC (T1i+d) |
DCR T r+r-1 DEC r |
DCR M (HL) « (HL) - 1 DEC (HL)
DCR d{(11) (11+d) « (14+d) - 1 DEC (Iii+d)

GENERAL PURPOSE ARITHMETIC AND CONTROL GROUP

8psp ZILOG # OF # OF
MNEMONIC OPERATION MNEMONIC BYTES T STATES
DAA convert A to packed BCD DAA 1 4

after an add or subtract
of packed BCD operands

CMA A ¢ VA CPL 1 4
NEG A <« -A NEG 2 8
CcMC CY + ~CY CCF 1 4
STC cY « 1 SCF 1 4
NOP no operation NOP 1 4
HLT halt HALT 1 4
DI IFF « § DI 1 4
EL IFF « 1 EI 1 4
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™9 interrupt mode @ m™é
M1 interrupt mode 1 ™M1
™2 interrupt mode 2 ™ 2
16 BIT ARITHMETIC GROUP
8080 ZIL0G
MNEMONIC OPERATION MNEMONIC
DAD rr HL « HL + rr ADD HL,xr
DADC rr HL « HL + rr + CY ADC HL,rr
DSBC rr HL « HL - rr - CY SBC HL,rr
DADX tt IX « IX + tt ADD IX,tt
DADY uu IV « IY + uu ADD IY,uu
INX rr rr +rr +1 INC rr
INX {11 il + 41 + 1 INC 14
DCX rr rr «+ rr - 1 DEC rr
DCX 411 ii « 44 - 1 DEC {1
ROTATE AND SHIFT GROUP
8@se ZILOG
MNEMONIC OPERATION MNEMONIC
RLC RLCA
@l
A
RAL RLA
CY)«[7__« 9]
A
RRC RRCA
7 >
RAR RRA
T 3~
RLCR r Same diagram as RLC r
for RLC
RLCR M " RLC (HL)
RLCR d(ii) " RLC (Iii+d)
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# OF
BYTES

# OF
BYTES

#

OF

T _STATES

oS

11
15
15
15
15

6
14

6
14

OF

STATES

15

23




RALR s Same diagram as RL s Same as for RLCR
for RAL instruction
RRCR s Same diagram as RRC s
for RRC
RARR s Same diagram as RR s
for RAR
SLAR s Y]« < fl« ¢ SLA s
8
SRAR s +[EY] SRA s
8
SRLR s SRL s
RLD RLD 2 18
RRD A RRD 2 18
+
) [7_4]3 ¢l
BIT SET, RESET, AND TEST GROUP
8980 ZILOG # OF # OF
MNEMONIC OPERATION MNEMONIC BYTES T STATES
BIT b,r ZF « ~r{b} BIT b,r 2 8
BIT b,M ZF <« ~(HL){b} BIT b, (HL) 2 12
BIT b,d(ii) 2ZF < ~(Iii+d){b} BIT b, (I1it+d) 4 2¢
SET b,r b+ 1 SET b,r 2 8
SET b,m L) {p} # 1 SET b, (HL) 2 15
SET b,d(i1) (11i4d){p} + 1 SET b, (1ii+d) 4 23
RES b,s s{b} « ¢ RES b,s Same as for SET
instruction
JUMP GROUP
8¢8¢ ZILOG ‘# OF # OF
MNEMONIC OPERATION MNEMONIC BYTES T STATES
JMP nn PC « nn JP nn 3 16
JZ nn if zero, then JMP JP Z,nn 3 19
else continue
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JNZ nn if not zero JP NZ,nn 3 14

JC nn if carry JP C,nn 3 1¢
JNC nn if not carry JP NC,nn 3 1¢ {
JPO nn 1if parity odd JP PO,nn 3 19
JPE nn 1f parity even JP PE,nn 3 1¢
JP nn if sign positive JP P,nn 3 19
JM nn if sign negative JP M,nn 3 19
JO nn if overflow JP PE,nn 3 14
JNO nn 1f no overflow JP PO,nn 3 10
JMPR nn PC < PC + e JR e 2 12

where e = nn - PC

~-126< e< 129
JRZ nn if zero, then JMPR JR Z,e 2 7/12

else continue
JRNZ nn 1if not zero JR NZ,e 2 7/12
JRC nn if carry JR C,e 2 7/12
JRNC nn 1f not carry JR NC,e 2 7/12
DJNZ nn B+B-1 DINZ e 2 8/13

if B=@ then continue
else JMPR

PCHL PC « HL JP (HL) 1 4
PCIX PC + IX JP (IX) 2 8
PCIY PC « IY JP (1Y) 2 8

CALL AND RETURN GROUP

8@8¢ ZILOG # OF # CF
MNEMONIC OPERATION MNEMONIC BYTES
CALL nn (SP-1) « PC/H CALL nn 3 17

(SP-2) « PC/L

sP + SP-2

PC + nn
CZ nn if zero, then CALL CALL Z,nn 3 18/17

else continue

CNZ nn if not zero CALL NZ,nn 3 14/17
cC nn if carry CALL C,nn 3 16/17 |
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CNC nn
CPO nn
CPE nn
CP nn
CM nn
CO nn
CNO nn

RET

RZ

RNZ

RC

RNO
RETIL

RETN

RST n

8080
MNEMONIC
IN n

INP r

1f not carry

1if parity odd
if parity even
if sign positive
if sign negative
if overflow

if no overflow
PC/H « (SP+1)
PC/L « (SP)

SP « SPH2

if zero, then RET
else continue

if not zero

if carry

if not carry

if parity odd

1if parity even

if sign positive

1f sign negative

1f overflow

if no overflow
return from interrupt

return from non-
maskable interrupt

(SP-1) * PC/H

(SP-2) * PC/L
PC “8*n
where 05X n< 8

CALL NC,nn
CALL PO,nn
CALL PE,nn
CALL P,nn
CALL M,nn
CALL PE,nn
CALL PO,nn

RET

RET 2

RET NZ
RET C
RET NC
RET PO
RET PE
RET P
RET M
RET PE
RET PO
RETY

RETN

RST n

INPUT AND OUTPUT GROUP

OPERATION
A< In

r + I(C)
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ZILOG
MNEMONIC

IN A,(n)

IN r,(C)

# OF
BYTES

2

2

1$/17
19/17
19/17
18/17
10/17
1¢/17
18/17

19

5/11

5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
14

14

# OoF
T STATES

1n

12




INI

INIR

IND

INDR

OUT n

OUTP

OoUTI

OUTIR

OUTD

OUTDR

(HL) « I(C)

B «B-1

HL +« HL +1

repeat INI until B=@

(HL) « I(C)

repeat IND until B=@
On « A

0(Cc) < r

0(¢) + (HL)

B + B-~1

HL <« HL +1
repeat OUTI until B=@
0(C) « (HL)

B « B-~1

HL + HL -1

repeat OUTD until B=f
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INI

INIR

IND

INDR
OUT (n),A
ouT (C),r

OUTI

OTIR

OUTD

OTDR

16

16/21
16

16/21
11
12

16

16/21
16

16/21




(1]
g1
g2
93
.13
p5
86
87
98
89
gA
g8
gc
(1]
13
#F
8
1
12
13
14
15
16
V7
18
19
1A
18
ic
1D
1E
1F

ctri1-@
Ctrl-A
Ctri-8
ctri-C
Ctrl-D
ctrl-E
Ctri-F
Ctrl-G
Ctrl-H
ctri-|
ctri-J
Ctri-K
Ctri-L
Ctri-M
Ctri=N
ctrl1-0
Ctri-pP
Ctri-Q
Ctri-R
Ctrl-§
Ctri-T
Ctri-u
ctri-v
ctri-w
Ctri1-X
ctrl-y
Ctri-Z
ceri-[
ctrl-N
ctri-]
ctr1-"
ctrl--

(NUL)
(sO0H)
(sTX)
(ETX)
(E0T)
(ENQ)
(ACK)
(BEL)
(Bs )
(HT )
(LF )
(v )
(FF )
(CR )
(s0 )
(st )
(DLE)
(pc1)
(pc2)
(pc3)
(DCh)
(NAK)
(sYN)
(ETB)
(CAN)
(EM )
(sus)
(£sC)
(Fs )
(6s )
(RS )
(us )

APPENDIX B
ASCI] CHARACTER SET

28 space L4y @ 68 ~
21 ! 41 A 61 a
22 v 42 B 62 b
23 # 43 ¢ 63 ¢
24 44 D 64 d
25 % 45 E 65 e
26 & 46 F 66 f
27 ¢ 47 6 67 g
28 ( 48 H 68 h
29 ) 49 1 69 i
2A * (YN} 6A ]
2B + 48 K 6B k
2¢ , [T 6c 1
20 - 4D M 6D m
2E . LE N 6E n
2F / 4F 0 6F o
38 8 58 P 78 p
311 51 Q 71 q
32 2 52 R 72 r
33 3 53 s 73 s
34 4 54 T 74 t
35 5 55U 75 u
36 6 56 V 76 v
37 7 57 W 77 w
38 8 58 X 78 x
39 9 59 ¥ 79 v
3A 5A Z 7A z
3B 58 [ 78 {
3C < 5C \ 7¢ |
3D = 5D } 70}
3€ > SE " 7€ ~
3F 7 5F 7F DEL
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APPENDIX C
8@8¢ Disassembler

(Including Single Byte Z-8¢ Instructions)

EXTENDED
HEX OP__CODE MNEMONIC
[ NOP
28 nn LXI B,nn
p2 STAX B
#3 INX B
P4 INR B
#5 DCR B
$6 n MVI B,n
97 RLC
[ EXAF
[ DAD B
oA LDAX B
[} DCX B
pc INR C
2D DCR C
PE N MWVI C,n
PF RRC
19 e DJNZ nn
11 nn LXI D,nn
12 STAX D
13 INX D
14 INR D
15 DCR D
16 n MVI D,n
17 RAL
18 e~2 JMPR nn
19 DAD D
1A LDAX D
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EXTENDED
HEX OP_CODE MNEMONIC
1B DCX D
1C INR E
1D DCR D
1E N MVI E,n
1F RAR
20 e? JRNZ nn
21 nn LXI H,nn
22 nn SHLD nn
23 INX H
24 INR H
25 DCR H
26 n MVI H,n
27 DAA
28 2 JRZ nn
29 DAD H
2A nn LHLD nn
2B DCX H
2C INR L
2D DCR L
2E n MVI L,n
2F CMA
3p o2 JRNC nn
31 nn LXI SP,nn
32 nn STA nn
33 INX SP
34 INR M
35 DCR M




EXTENDED EXTENDED

HEX _ OP CODE___ MNEMONIC HEX __ OP CODE___ MNEMONIC
36 n MVI M,n 54 MOV D,H
37 sTC 55 MOV D,L
38 2 JRC 1 56 MOV D,M
39 DAD SP 57 MOV D,A
3A nn LDA nn 58 MOV E,B
3B DCX SP 59 MOV E,C
3C INR A 5A MOV E,D
3D DCR A 5B MOV E,E
3E n MVI A,n sc MOV E,H
3F oMe D MOV E,L
4 MOV B,B SE MOV E,M
a1 MOV B,C SF MOV E,A
42 MOV B,D 6p MOV H,B
43 MOV B,E 61 MOV H,C
4 MOV B,H 62 MOV H,D
45 MOV B,L 63 MOVH, E
46 MOV B,M 64 MOV H,H
47 MOV B,A 65 MOV H,L
48 MOV C,B 66 MOV H,M
49 MOV C,C 67 MOV H,A
A MOV C,D 68 MOV L,B
4B MOV C,E 69 MOV L,C
4 MOV C,H 6A MOV L,D
4D MOV C,L 6B MOV L,E
4E MOV C,M 6C MOV L,H
4F MOV C,A 6D MOV L,L
5p MOV D,B 6E MOV LM
51 MOV D,C 6F MOV L,A |
52 MOV D,D 78 MOV M, B
53 MOV D,E 71 MOV M,C |
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EXTENDED EXTENDED

HEX OP _CODE MNEMONIC HEX OP__CODE MNEMONIC

72 MOV M,D 99 SUB B E
73 MOV M,E 91 SUB C k
74 MOV M,H 92 SUB D 1
75 MOV M,L 93 SUB E !
76 HLT 94 SUB H i
77 MOV M,A 95 SUB L

78 MOV A,B 96 SUB M

79 MOV A,C 97 SUB A

7A MOV A,D 98 SBB B

7B MOV A,E 99 SBB C

7 MOV A,H 9A SBB D

7D MOV A,L 9B SBB E

7E MOV A,M 9C SBB H

7F MOV A,A 9D SBB L

8p ADD B 9E SBB M

81 ADD C 9F SBB A

82 ADD D AD ANA B

83 ADD E Al ANA C

84 ADD H A2 ANA D

85 ADD L A3 ANA E

86 ADD M A4 ANA H

87 ADD A AS ANA L

88 ADC B A6 ANA M

89 ADC C A7 ANA A

8A ADC D A8 XRA B

8B ADC E A9 XRA C

8C ADC H AA XRA D |
8D ADC L AB XRA D !
8E ADC M AB XRA E '
8F ADC A AC XRA H
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EXTENDED EXTENDED
HEX OP CODE MNEMONIC HEX OP CODE MNEMONIC
AD XRA L cc nn CZ nn
AE XRA M CD nn CALL nn
AF XRA A CE n ACI n
BY ORA B CF RST 1
Bl ORA C Dg RNC
B2 ORA D D1 POP D
B3 ORA E D2 nn JNC nn
B4 ORA H D3 n OUT n
BS ORA L D4 nn CNC nn
B6 ORA M D5 PUSH D
B7 ORA A D6 n SUI n
B8 CMP B D7 RST 2
B9 CMP C D8 RC
BA CMP D D9 EXX
BB CMP E DA nn JC mn
BC CMP H DB LDAX B
BD CMP L DC nn CC mn
BE CMP M DE n SBB n
BF CMP A DF RST 3
cp RNZ Ep RPO
Cl POP B El POP H
c2 nn JNZ NN E2 nn JPO nn
C3 nn JMP nn E3 XTHL
c4 nn CNZ nn E4 nn CPO nn
c5 PUSH B E5 PUSH H
cé n ADI n E6 n ANI n
Cc7 RST § E7 RST 4
c8 RZ E8 RPE
c9 RET E9 PCHL
CA nn JZ mn EA nn JPE nn
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EXTENDED EXTENDED |

HEX OP CODE MNEMONIC HEX 0P CODE MNEMONIC
EB XCHG F6 n ORI n

EC nn CPE nn F7 RST 6 |
EE n XRI n F8 RM

EF RST 5 F9 SPHL

Fp RP FA nn JM nn

F1 POP PSW FB EI

F2 nn JP mn FC nn CM nn
F3 DI FE n CPI n

F4 nn CP nn FF RST 7

F5 PUSH PSW
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EXTENDED

HEX OP CODE MNEMONIC
cB 7] RLC B
cB g1 RLC C
cB 92 RLC D
CcB 93 RLC E
cB 94 RLC H
CB 95 RLC L
cB p6 RLC (HL)
cB 97 RLC A
cB P8 RRC B
cB p9 RRC C
cB PA RRC D
cB [} RRC E
CB 19 RRC H
cB gD RRC L
cB PE RRC (HL)
CB #F RRC A
cB 19 RL B

cB 11 RL C

CcB 12 RL D

CB 13 RL E

cB 14 RL H

CB 15 RL L

cB 16 RL (HL)
CB 17 RL A

cB 18 RR B

cB 19 RR C

CB 1A RR D

cB 1B RR E

APPENDIX D
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Z-8¢ Extension Disassembler

EXTENDED

HEX OP__CODE MNEMONIC
cB 1c RR H

cB 1D RR L

cB 1E RR (HL)
cB 1F RR A

cB 2¢ SLA B
cB 21 SLA C
CB 22 SLA D
cB 23 SLA E
cB 24 SLA H
cB 25 SLA L
cB 26 SLA (HL)
cB 27 SLA A
CcB 28 SRA B
cB 29 SRA C
cB 28 SRA D
cB 2B SRA E
cB 2 SRA H
CB 20 SRA L
cB 2E SRA (HL)
cB 2F SRA A
cB 38 SRL_B
cB 39 SRL C
cB 3A SRL D
cB 3B SRL E
cB 3C SRL H
cB 3D SRL L
cB 3E SRL (HL)
cB 3F SRL A




HEX
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

CB

EXTENDED
OP CODE

49
41
42
43
44
45
46
47
48
49
4A
4B
4c
4D
4E
4F
59
51
52
53
54
55
56
57
58
59
5A
5B
5C

5D

MNEMONIC

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT

9,B
g,C
#,D
#,E
p,H
g,L
#, (HL)
9,A
1,B
1,C
1,D
1,E
1,H
1,L
1, (HL)
1,A
2,B
2,C
2,D
2,E
2,H
2,L
2, (HL)
2,A
3,B
3,C
3,D
3,E
3,H

3,L
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EXTENDED

HEX _ OP_ CODE MNEMONIC
CB SE BIT 3, (HL)
CB SF BIT 3,A
CB 7] BIT 4,B
CB 61 BIT 4,C
cB 62 BIT 4,D
CB 63 BIT 4,E
CB 64 BIT 4,H
cB 65 BIT 4,L
CB 66 BIT 4, (HL)
CB 67 BIT 4,A
CB 68 BIT 5,B
CB 69 BIT 5,C
CB 6A BIT 5,D
CB 6B BIT 5,E
CB 6C BIT 5,H
CB 6D BIT 5,L
CB 6E BIT 5, (HL)
cB 6F BIT 5,A
CB 79 BIT 6,B
CB 71 BIT 6,C
cB 72 BIT 6,D
cB 73 BIT 6,E
CcB 74 BIT 6,H
cB 75 BIT 6,L
CB 76 BIT 6, (HL)
CB 77 BIT 6,A
CB 78 BIT 7,B
cB 79 BIT 7,C
CB 7A BIT 7,D
CB 7B BIT 7,E




HEX
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CcB
CB
CB
CB
9:]
CB

CB

EXTENDED
OP _CODE

7C
7D
7E
7F
8
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
op
91
92
93
94
95
96
97
98

99

MNEMONIC

BIT
BIT
BIT
BIT
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES

7,0
7,L
7, (HL)
7,A
9,8
8,C
9,0
,E
g,H
g,L
9, (HL)
9,4

1, (HL)
1,A
2,8
2,C
2,D
2,E
2,H
2,L
2, (HL)
2,A
3,B

3,C

EXTENDED

HEX _ OP CODE MNEMONIC
cB 9A RES 3,D
cB 9B RES 3,E
cB 9C RES 3,H
cB 9D RES 3,L
CB 9E RES 3, (HL)
CB 9F RES 3,A
CB AP RES 4,B
CB Al RES 4,C
cB A2 RES 4,D
CB A3 RES 4,E
CB A4 RES 4,H
CB AS RES 4,L
CB A6 RES 4, (HL)
CB A7 RES 4,A
CB A8 RES 5,B
CB A9 RES §,C
CB AA RES 5,D
CB AB RES 5,E
CB AC RES 5,H
cB AD RES 5,L
cB AE RES 5, (HL)
cB AF RES 5,A
CB BY RES 6,B
CB Bl RES 6,C
cB B2 RES 6,D
cB B3 RES 6,E
CB B4 RES 6,H
cB BS RES 6,L
CB B6 RES 6, (HL)
CB B7 RES 6,A




HEX
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

CB

EXTENDED
OP_ CODE

B8
B9

BA
BB
BC
BD
BE
BF
cp
c1

c2
c3
c4
cs
[
c7
c8
c9
cA
CB
cc
cp
CE
CF
Dg
D1
D2
D3
D4
D5

MNEMONIC

RES
RES
RES
RES
RES
RES
RES
RES
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET

7,B
7,C
7,D
7,E

7,H

g,L
8, (HL)

8,4

1, (HL)

1,A

2,C
2,D
2,E
2,H

2,L
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HEX
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CcB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
cB

EXTENDED
OP__CODE

D6
p7
D8
D9
DA
DB
DC
DD
DE
DF
Ef
El
E2
E3
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
Fp
F1
F2

F3

MNEMONIC

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET

2, (HL)
2,A
3,8
3,C
3,0
3,E
3,H
3,L
3, (HL)
3,A
4,8
4,C
4,0
4,E
4,H
4,L
4, (HL)
4,4
5,B
5,C
5,D
5,E
5,H
5,L
s, (HL)
5,A
6,8
6,C
6,0

6,E




HEX
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

bb

EXTENDED
OP__ CODE

F4
F5
F6
F7

F8

FA
EB

EC

FE
FF
[
19
21
22
23
29
2A
2B
34
35
36
39
46
4E
56
SE
66

GE

nn

nn

(=N - Y

d

MNEMONIC
SET 6,H
SET 6,L
SET 6, (HL)
SET 6,A
SET 7,B
SET 7,C
SET 7,D
SET 7,E
SET 7,H
SET 7,L
SET 7, (HL)
SET 7,A
DAD IX,BC
DAD IX,DE
LD IX,nn
LD (nn),IX
INC IX

DAD IX,IX
LD IX, (nn)
DEC IX

INC (IX+d)
DEC (IX+d)
LD (IX+d),n
DAD IX,SP
LD B, (IX+d)
LD C, (IX+d)
LD D, (IX+d)
LD E, (IX+d)
LD H, (IX+d)

LD L, (IX+d)
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HEX

DD

DD

DD

Db

DD

pD

)

bD

b

DD

oD

bp

DD

bn

DD

Do

Db

bD

np

DD

nD

nn

DD

DD

DD

DD

oD

DD

DD

DD

EXTENDED
QP CODE

70 d
71 d
72 d
73 d
74 d
75 d
77 d
7E d
86 d
SE d
96 d
9E d

A6 d

AE d

B6 d

BE d

CB d p6
CB d gE
CB d 16
C8 d 1FE
CB d 26
CB d 2C
CB d 3E
CB d 46
CB d 4E
CB d 56
CB d SE
CB d 66
CB d 6E
CB d 76

MNEMONIC
LD (IX+d),B

LD (IX+d),C

LD (IX+d),D

LD (IX+d),E

LD (IX+d),H

D (1X+d) L

LD (IX+d),A
LD A, (IX+d)
ADD A, (IX+d)
ADC A, (IX+d)
SUB (IX+d)
SBC A, (IX+d)
AND (IX+d)
XOR (IX+d)
OR (IX+d)

CP (IX+d)
RLC (IX+d)
RRC (IX+d)
RL (IX+d)

RR (IX+d)
SLA (IX+d)
SRA (IX+d)
SRLR (IX+d)
BIT ¢, (IX+d)
BIT 1, (IX+d)
BIT 2, (IX+d)
BIT 3, (IX+d)
BIT 4, (IX+d)
BIT 5, (IX+d)

BIT 6, (IX+d)




DD

DD

DD

DD

DD

DD

)

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

ED

ED

ED

ED

ED

ED

ED

EXTENDED
OP__CODE
CB d 7E
CB d 86
CB d 8E
CB d 96
CB d 9E
CB d A6
CB d AE
CB d B6
CB d BE
CB d C6
CB d CE
CB d D6
CB d DE
CB d E6
CB d EE
CB d F6
CB d FE
El

E3

ES

E9

F9

42

43 nn
44

45

47

4A

4B nn

MNEMONIC

BIT

RES

RE:

©

RE!

[

SET

SET

SE

3

SET

3

SET
SET
SET
SET

POP

7, (IX+d)
#, (IX+d)
1, (I1X+d)
2, (IX+d)
3, (IX+d)
4, (IX+d)
5, (IX+d)
6, (I1X+d)
7, (IX+d)
9, (IX+d)
1, (IX+d)
2, (1x+d)
3, (IX+d)
4, (IX+d)
5, (IX+d)
6, (IX+d)
7, (IX+d)

IX

EX (SP),IX

PUSH IX

JP (IX)

LD SP,IX

SBC

HL,BC

LD (nn),BC

NEG

RETN

LD 1,A

ADC

HL,BC

LD BC, (nn)
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HEX
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED
ED

ED

FD

EXTENDED
OP_ CODE

4D
4F
52
53
57
5A
SB
SF
62
67
6A
6F
72
73
7A
7B
Ap
Al
A8
A9
Bp
Bl
B8

B9

MNEMONIC
RETI

LD R,A
SBC DE

LD (nn),DE
LD A,I
ADC HL,DE
LD DE, (nn)
LD A,R
SBC HL,HL
RRD

ADC HL,HL
RLD

SBC HL,SP
LD (nn),SP
ADC HL,SP
LD SP, (nn)
LDI
CPI

LDD

CPD

LDIR

CPIR

LDDR

CPDR

See DD instruction,

Substitute "Y" for every

"X - e,g, ADD IX,IX

becomes ADD IY,IY
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+8 X 2

683

a) 6y = 6H = ﬂllﬂB

2

I4D = EH = IllﬂB

b)

ﬂlHIIIlB

77, =

7r15

16 Y127

I27D =

<)

pap10081 1200,

r24 = IISH

256 Y258

d) ZGﬂD =

= ZIEH = ﬂlﬂlﬂlllm)lllmB

= 2r3p
256 ) 542

e) 54ZD

I ri4

3

16

4 r 53 = 435 = (10888118181
677 H 8

256

Iﬂ77D =

f)

126




g) 4095D = 15 r 255 = FFF,

256 Y4095 H

i5r 15

16 Y255

= IIlIIIlIIIIIB

h) 8782 = 2r5ip = ZIFEH

D 4po6 yETRZ

| r254 = N’IﬂﬂﬂﬂllllllllﬂB
256 )51

14

15r
16 y254

D] I5,43ﬂD = 3 r 3142 = 3C46

4996 YT5435 H

12r 78 = P011110801880118
256 Y3142

4r6
16 J78

J) 43,75!D = 18 r 2791 = AAE7H
4496 43751

10 r 231 = IﬂlﬂlﬂlﬂlllﬂﬂlllB
256 2791

14r7
16 231

k) 65,5520 = Ll ris = IﬂﬂmH
65536 65552

ls
5
5

#

2001 00000000000 1 9080,
4996 16
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3a)

b

c)

d)

e)

f)

4a)

D] 7¢,98ﬂD

2808111

20016801

20818111

20116000

| r 5444 = 1544

65536 78988 H

23

48

DLIBIBE = 104

Bririn

00001081

127

9

4996 5444

| r1348 = Dﬂﬂlﬂﬂﬂlﬂlﬂlﬂlﬂﬂﬂlﬂﬂs

[ARRRY /)
+ 1

1iggr = -7

11ging
+ 1
gt = =17

11181000
+ 1

Hgiggl = -23

HIggrin
+

11010088 = -48

192191t t
+ 1

18811868 = -104

10000808
+ |

10000081 = -127
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b) P@BIIBPL = 25
<) 1HHgh Po000 | 00

N N

ppoegI8l = 5, so 111HIBI = -5
) epiegite = 27, = 39

@) 11118818 20701191
=+l
gopglIIg = 14, so 11118010 = -14

£) 118160008 gABILLY
—*1
@01100886 = 38, = 48, so |Igigegd = -48

H
Sa) @@@sigll =t No Carry
+ 0poB1 1t + 15 No Overflow
00011019 26
b) oegigesr = 17 No Carry
+ 11LIpIgH +{-21)  No Overflow
[RRRRRY] -4
c) @ggiginig = 46 No Carry
- poosI 108 - 12 No Overflow
06100010 34

- d) giigiges # 184 No Carry
+ @piigli + 55 Overflow
18811111 159
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e) I1B111BI # - 67 No Carry

i
- Pl -187  Overflow ‘l
010198010 -174 |
\
f) 18111181 - 67 Carry ‘
+ 21181811 +187 No Overflow
| 29101008 49
\
6a) AND OR XOR
0080800 11218181 11818181
Carry= @ c=0 c=0
Zero = | =0 =9 |
Sign = @ S= | S= | |
Parity=1 P= P= g
by 181tP10¢ [RRRRAAR 181811
c=9 c=g c=9
=g =@ =0
S= 1 S= 1 S= 9
P=1 P= 1 P=1
c) AND OR XOR
ooolol1o [RRRRRRN 11101004
C= g =g c=9
=9 Z= ¢ =6
S=9 S= 1 S= 1
P=g P= 1 P=g
d) 10100810 [RRRT NN 1818181
C=0 c=0 c=9
Z= ¢ = =9 [
S=1 S= | S= 9
P= @ P= g P= |
e) 0001 6800 18811181 108081191
Cc=p c=d¢ c=g
=8 = ¢ =g ;
S= g S= | S= 1 !
P= P= 0 P= | ;
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) po000000 11119881 1111281

c=9 c= 8 Cc=0
z= | =0 =9
s= 9 S= | s= 1
P= | P= ¢ P= @

g) oP000000 [EREAARAN [RARARNNI

c= 9 c=p c=9
z= | z= 8 2= 0
s= 0 5= 1 s= 1
P= 1 P= | P= |
R LB Tiggint gpa00aes
c= 9 c= 9 c=9
=9 =9 z= |
s= | s= 1 s= ¢
p= | p= 1 P= 1|

WHERE_|S MY VARIABLE?

1) 8#8p Z-86 the point is that an
MOV A,D LD A,D intermediate storage
MOV D,E LD D,E area must be used
MOV E,A b E,A

2) 11119198

3) After the first instruction HL contains:
2039, so HL now points to a new location,

After the second instruction A contains:

[

4) 3AF334
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5) Interprets the contents of index register IX as an address. Takes ¢
that address plus 12 and loads the contents of the byte into !
register E, i

6) The first loads the value of the two bytes beginning at SPOT into
register pair HL. The second loads the address of SPOT into
register pair HL.

7) AF 49!2[6H. The registers are swapped.

8) No.

9) a) LXI SP,6F32H  (8@8P) NOTE: Assemblers differ on the form
LD SP,6F32H (Z-8@) Hex numbers must be written in, The
assembler will put It in swapped format

within the instruction,

9) b) BC = @302

SP = 6F34

10} Here is a blow-by-blow account of the effects:
a) Register A contalns the value 3.
b} Memory location 248p contains the value 3,
¢) Index register IX contains, after unswapping, 2403H.

d} Register C contains the value 2I.

A METHOD TO OUR LOGIC

1) 8g8p 8
SuB A SUB A i
ADD M ADD A, (HL) f
INX H ING HL |
ADD M ADD A ;
INX H ING HL i
ADD M ADD A, (HL) |
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2) MOV A,C LF A,C

ADD L ADD A,L
MOV LA D LA
MOV A,B LD A,B
ADC H ADC A,H
MOV H,A LD H,A
3) Desired bit pattern: [11118i8 = FAH
CPI  FAH cP FAH

The zero flag will be set on a match,

4) Signed V XORS = |
Unsigned C = |

5) a) Load into the accumulator the high order byte of BIGA
b) Load into the HL pair the address of the high order byte of BIGB

c) Compare the high order bytes. If they are not equal we are done.
We have our answer in the sign and overflow flags.

d) If the high order bytes were equal, repeat comparison on low order
bytes.

6) To perform HL « HL - BC:

8080 z8p

MOV A,L D AL
SUB C suB C
MOV L,A D LA
MOV A,H LD A
sBB B SBC A,B
MOV H,A D HA

JUMPS, LOOPS AND MODULAR PROGRAMMING

1) For unsigned numbers

8p8g. Z-8p
a) JC SPOT JP C,SPOT
b) JC  SPOT JP  C,SPOT
Jz  sPoT JP  Z,SPOT
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By using these two jumps one after the other, both the < case and

the = case are handled.

c) JZ SPOT JP Z,SPOT
d) JINZ SPOT JP NZ,SPOT
e) JUNC SPOT JPNC,SPOT
f) JC  SKiP 4R C,SKIP ’
JZ  SKIP JR  Z,SKIP |
JMP  SPOT JP SPOT
SKIP: . SKIP: .

The method used here is to avoid jumping to SPOT if VARA < VARB,

Other techniques are possible as well,

For signed numbers. In several instances here, we will want the
the effect of (V XOR S), but there is no single instruction that
will exclusive or flags for us. The fotlowing flow chart will

outline the test we must make:

v

V XOR S V XOR § V XO0R S Vv XOR §

We wil) use the carry flag to hold the result of (V XOR S),

8080 Z-80

STC (Set the carry) SCF

o A (Jump if V = 1) JP PE,A !

cMe (Now C = V) CCF 3
A:  JP B (Jump if S = @) A: JP P,B J‘

cve (Now C = V XOR S) CCF |
B: NOP (Do nothing used so B: NOP [

B can be a label on
an Instruction,)
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At the conclusion of this Iittle sequence of code, the carry flag
can be used just as it was used in unsigned numbers, Let's name
the above sequence VXORS. (If your assembler has macro capability,
took into how you could create a macro named VXORS fo perform the

above sequence.)

Now the answer to this exercise can be given. Everywhere VXORS is

used, it means the above five instructions.

8geg 4-80
a) VXORS VXORS
Jc SPOT JP C,SPOT
b) VXORS VXORS
JC SPOT JP C,SPOT
Jz SPOT JP Z,5POT
c) JZ SPOT JP Z,SPOT
d) JNZ SPOT JP NZ,SPOT
e) VXORS VXORS
JNC SPOT JP  NC,SPOT
f) VXORS VXORS
Jc SKIP JR C,SKIP
JZ SKIP JR Z,5KIP
JMP SPOT JP SPOT
SKIP: : SKIP: :

Except for the addition of VXORS, these are identical to the answers

to exercise #1.

Inputs: ARYADR - start address of the array
SIZE - number of elements

Outputs: REGISTER A ~ Sum (If no overflow)

OVFLAG - set to a vatue of 1 if overflow
8gsp
SuM: PUSH B Save BC register pair
PUSH H Save HL register pair
LHLD ARYADR Fetch start address of the array
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SuB A Zero the accumulator
STA OVFLAG Clear overflow flag
LDA SIZE Fetch the number of elements
ANA A Checks to see If there are zero elements in
the array without changing the value in A
Jz DONE If there are none, we're done. The sum is
correctly reported as zero
MOV B,A Otherwise, move the size to register B
suB Zero the sum
LOOP: ADD M Add array value
JNO oK Jump 1f no overflow occurred
MY ( Al Otherwise A < |
STA OVFLAG Set the overflow flag
JMP DONE Done
INX H Next element
OK: DCR B Decrement count
JINZ LooP Repeat until done
DONE : POP H Restore HL pair
POP B Restore BC pair
RET
Z-89
SUM: PUSH BC Save BC register pair
PUSH HL Save HL register pair
LD HL, (ARYADR) Fetch start address of the array
SUB A Zero the accumulator
LD (OVFLAG),A  Ciear the overflow flag
LD A, (SIZE) Fetch the number of elements
AND A Checks to see if there are zero elements in
the array without changing the value in A
JR Z,D0NE If there are none, we're done. The sum is
correctly reported as zero
LD B,A Otherwise, move the size to register B
suB A Zero the sum
LOOP: ADD A, (HL) Add array value
JP PO, 0K Jump if no overflow occurred
LD Al Otherwise A < |
LD (OVFLAG),A  Set the overflow flag
JR DONE Done
INC HL Next element
OK: DINZ LooP Decrement count
DONE: POP HL Restore HL pair
POP BC Restore BC pair
RET
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4) Other methods are possible, but this one first compares high order
bytes, if equal, then low order bytes.

808g 7-8¢
LHLD BIGB (Fetch BIGB) LD HL, (BIGB)
LDA  BIGA+1 (Fetch high order byte of BIGA) LD A, (BIGA+1})
CMP  H (Compare high order) CcP H
JZ CKLOW (If equal, check low) JR Z,CKLOW
Jc CALB (A conditional call won't work JR C,CALB
JMP - CALA here. Why?) JR CALA
CKLOW: LDA BIGA (Fetch low order byte of BIGA) CKLOW: LD A, (BIGA)
‘ cvP L {Compare low order} cP L
UNC  CALA (Jump If BIGA larger) JR NC,CALA
CALB: CALL BBIGR CALB: CALL BBIGR
JMP  DONE (To avoid calling ABIGR upon Jp DONE
return from BBIGR)
CALA: CALL ABIGR CALA: CALL  ABIGR
DONE: : DONE : :

5) Simply Insert "WXORS" right after the "Compare High Order."
Why is it not needed after the "Compare Low Order"?

6) Continued on next page.

8p8g Z-80
LDA COUNT (Fetch # of clients; this time we LD A, (COUNT)
will assume that count # @)

MoV B,A (Save in register B) LD B,A

LXI H,PEOPLE  (Start address of fhe array) Lo HL,PEOPLE

LXI D,3 (Increment for the address) Lo DE,3

MVI A, @FAH (FAH is the desired descriptor byte) Lo A,BFAH
LOOP: CMP M {Compare to person in Array) LOOP: CP (HL)

Jz MATCH (Jump if match found) JR Z,MATCH

DAD D (increment to next person) ADD  HL,DE

DCR B (Repeat until Match or Done) DINZ LOOP

JNZ LOOP

CALL  NOSUCH (No match found) CALL NOSUCH
MATCH: INX H (To point to jump address) MATCH: INC  HL

MOV E,M (Fetch low order byte) LD E, (HL)
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INX H (To point to high order) INC HL

MoV D,M (Fetch high order byte) LD D, (HL)
XCHG (Jump address in HL) EX DE,HL
PCHL (Jump) JP (HL)

Match could be included inside the toop by changing the jump on zero to
a jump on non-zero and skipping around this piece of code, The only
reason it's not done that way here is to clearly separate the two
problems:

a) looping through PEOPLE looking for a match, and

b) transferring to the jump address, when a match is found,

NOTE: A structfure such as PEOPLE which contains jump addresses is often
called a vector table. The jump address Itself is usually called

a vector,

BIT FIDDLING AND MESSAGE MAKING

Bl

tnput: MLTPLR two eight bit positive numbers
MLTCND

Output:  PRODCT a two byte product of the two inputs

The 8@8f version of this subroutine and Its Z-88 counterpart will
differ significantly owing to the ability of the Z-88 to rotate
and shift any desired reglster, The two routines will therefore
be presented separately.

8¢8g Multiply Subroutine

MLTPLY: PUSH PSW SAVE REGISTERS
PUSH B
PUSH o}
LDA MLTPLR  Fetch muitiplier
MoV E,A Save in low order byte of DE pair
1.DA MLTCND  Fetch multiplicand
MOV C,A Save in register C,
MVI B,8 toad the loop counter in B,
MvI D,8 Zero high order byte of DE pair
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LOOP: MoV AE To check bit # of the multiplier
RRC Shif+ bit @ into carry
JNC NOADD I+ it is zero, skip the addition
MOV A,D |¥ set, add the multiplicand to the
ADD C order byte
MOV b,A Replace the result
NOADD: MOV A,D The apparent redundancy is due to the case
where the original move fo A from D was
skipped
ANA A Clear carry
RAR Shift high order byte
MOV D,A Replace The result
MoV AE Fetch low order byte
RAR Shift low order byte bringing in bit @
of the high order byte
MoV E,A Replace low order byte
OCR B Loop increment
INZ LOOP Repeat until done
XCHG Swap DE and HL
SHLD PRODCT The result was in the DE pair
XCHG Swap back
POP D
POP B
POP PSW
RET Done
Z-8¢ Multipi Subroutine
MLTPLY: PUSH AF Save registers
PUSH BC
PUSH DE
D A, (MLTPLR)  Fetch multiplier
LD E,A Save in low order byte of DE pair
LD A, (MLTCND)  Fetch multipiicand
LD C,A Save in register C
LD B,8 Load the loop counter in B
suB A Clear the A register. Registers A and E
will be used as a pair during formation
of the product
LOOP: BIT @,E Check bit @ of the multiplier
JR Z,NOADD If it is zero, skip the addition
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2)

NOADD:

Inputs:

MULTZ:

POS 1:

ADD

SRL

DINZ

LD

POP

POP
RET

A,C if set, add the multiplicand to the high
order byte

A Shift the high order byte right

Shift the low order byte bringing in bit
@ of the high order byte

LOOP Repeat until done

B,A Place high order byte of product into high
order byte of DE pair

(PRODCT},DE Store result

DE Restore registers
BC
AF

Done

MLTPLR Two elght blit+ numbers not necessarily positive
MLTCND

PRODCT A two byte product of the two inputs

88g Comments Z-8p

PUSH PSW Save registers MULT2: PUSH AF

PUSH H PUSH BC

PUSH D PUSH DE

MVI H,8 Clear sign of LD B,¢
result flag

LDA MLTPLR Fetch first operand LD A, (MLTPLR)

MOV E,A Save in E Lo E,A

ANA A Test sign of number AND A

JP POS 1 Skip complement if JP P,POS 1
positive

CMA Form 2's complement if NEG

INR A negative

INR H Increment sign of result INC B
flag

STA MLTPLR Replace positive POS 1: LD (MLTPLR) ,A
multiplier

LDA MLTCND Fetch second operand LD A, (MLTCND)

MOV D,A Save In D D D,A

ANA A Test sign of number AND A

JP POS 2 Skip complement if JP P,POS 2°
positive

CMA Form 2's complement if NEG

INR A negative
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INR H Increment sign of result INC B
flag
POS 2: STA MLTCND Replace positive POS 2: LD (MLTCND) ,A
muttiplicand
CALL MLTPLY Get positive result in CALL MLTPLY
MOV AMH product BIT 8,8
RAR Test bit @ of sign of
result flag
JNC RESPOS If the bit is # the result JR Z,RESPOS
is positive. Otherwise
complement the result
LHLD PRODCT Fetch the resuit LD BC, (PRODCT)
MOV AH Form 1's complement LD A,B
CMA of each byte CPL
MOV H,A LD B,A
MOV AL b AC
CMA CPL
MOV LA b C,A
INX Increment register pair INC BC
for 2's complement
SHLD PRODCT Store the properly signed LD (PRODCT),BC
result
RESPOS: MOV AE Restore initial RESPOS: LD AE
STA MLTPLR signed inputs In LD (MLTPLR), A
MoV A,D MLTPLR and MLTCND LD A,D
STA MLTCND LD (MLTCND) , A
POP D Restore registers POP  DE
POP H POP  BC
POP PSW POP  AF
RET Done RET
3) Inputs: DIVDND - A two byte positive number
DIVSOR =~ A one byte positive number
Outputs: QOTENT - A one byte positive quotient
RMANDR - A one byte positive remainder or a flag
value of -1 on overflow
Again, separate 8¢8@ and Z-8¢ versions will be given.
8gsp Division Subroutine
DIVIDE: PUSH PSW Save registers
PUSH B
PUSH D
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Fetch dividend into the DE register pair

Save in register C
Loop counter in register B

Shift tow order byte to the left

Fetch high order byte
Rotate bringing in high order bit

If result was positive, jjmp
Otherwise add back divisor
Replace high order byte

Go to increment phase
Replace high order byte
Fetch low order byte

Set low order bit

Reptace low order byte
Decrement loop counter
Repeat until done

Test sign of result
If positive, the result is accurate

Set overflow value

LDED DIVDND
LDA DIVSOR Fetch divisor
Mov C,A
MVI 8,8
LOOP: MOV AE
ANA Clear carry
RAL Shift
Mov E,A Replace value
MoV A,D
RAL
SuB C Subtract divisor
JP SETBIT
ADD C
MoV D,A
JMP NEXT
SETBIT: MOV D,A
MoV AE
ORI 1
MOV E,A
NEXT: DCR B
INZ LOOP
MoV AE Quotient
ANA A
JP 0K
MVI A,-1
STA RMANDR
JmP DONE Jump
OK: STA QOTENT Save quotient
MoV A,D Rema i nder
STA RMANDR Save remainder
DONE:  POP D Restore Registers
POP B
POP PSW
RET
Z-8¢ Division Subroutine
DIVIDE: PUSH AF Save registers
PUSH BC
PUSH DE
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LD DE, (DIVDND) Fetch dividend into the DE register pair

LD A,(DIVSOR) Fetch divisor |
LD C,A Save in register C ‘i
Lo B,8 Loop counter in register B |
LD A,D Will use registers A and E as a pair r

during formation of the quotient |

LOOP: SLA E Shift low order byte
RLA Rotate high order byte bringing in carry
suB c Subtract divisor
JP P,SETBIT If the result was positive, jump
ADD A,C Otherwise add back divisor
3P NEXT Go to increment phase
SETBIT: SET 8,E Set low order bit
NEXT:  DJINZ LOOP Repeat until done
BIT 7,€ Test sign of result
JR Z,0K If positive, the result is accurate
LD A,-1 Set overflow flag
LD (RMANDR) , A
JR DONE Jump
OK: LD (RMANDR),A Save remainder
LD AE Quotient
LD (GOTENT),A Save quotient
DONE: POP DE Restore reglisters
FOP BC
POP AF
RET Done
4) The purpose of this exercise is to Illustrate coding of a routine where

three pointers must be maintained. Two pointers can be handled easily
using the DE and HL pairs, but where can a third pointer be stored
conveniently? The answer is fo use the fop of the stack. Load the
first pointer into HL and push it on the stack. Load the second and
third pointers into the DE and HL register pairs. Now whenever the
first pointer is needed execufe an:

XTHL  (8@88)

EX (SP),HL (Z-88)
With the above hint, the routine should be within the grasp of the |

reader.
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5) Input: WHERE -~ +the address of an array of character
DIGITS - the number of characters In the array

OQutput: RESULT -~ a two byte binary number equal to the value Input
in the character string

e.g. WHERE 31 39 38 BIASCII
RESULT = (¢0¢ 0000 0g0d 1981
Separate 8#8f and Z-80 versions will be given, Both will cail a
hypothetical routine named WOOPS if:
a) the number of characters as recorded in DIGITS
exceeds 16
b) any character appears in the array that is neither
a 31, or a 38,
808¢ Convert Binary Input
CBININ: PUSH PSW Save registers
PUSH B
PUSH D
PUSH H
LDA BIGITS Fetch number of characters
CPI 17 Test for too many
CNC WOOPS If a carry (borrow) does not occur, caill WOOPS
MOV B,A Save DIGITS as a counter
LHLD WHERE Set pointer fo character array
LXI D,@ Clear DE register to use in forming the result
LOOP: MOV A,M Fefch character
CPI 38H Is it a "g"?
3z oK Yes, jump
CPI 31H Is it a "1"?
CNZ WOOPS If not, call WOOPS
OK: RAR Shift the @ or 1 into the carry
MoV AE Fetch tow order byte of result
RAL Rotate digit into result
MoV E,A Replace low order byte
MOV A,D Fetch high order byte
RAL Rotate digit into result
Mov D,A Replace high order byte
INX H Next character |
DCR B Decrement count i
JINZ LOOP Repeat unti} done
XCHG Swap DE and HL |
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SHLD RESULT Store final result

XCHG Swap back

POP H Restore registers
POP D

POP B

POP PSW

RET Done

Z-8p Convert Binary input

CBININ: PUSH AF Save reglsters
PUSH BC
PUSH DE
PUSH HL
LD A, (DIGITS) Fetch number of characters
cP 17 Test for too many
CALL NC, WOOPS If a carry (borrow) does not occur, call WOOPS
Lo B,A Save DIGITS as a conter
LD HL, (WHERE) Set pointer to character array
LD DE,# Clear DE register to use in forming the result
LOOP: LD A, (HL) Fetch character
cP 3¢H ts it a "g"?
JR Z,0K Yes, jump
cP 31H Is is a "1"?
CALL NZ , WOOPS I1f not, call WOOPS
OK: RRA Shift the # or 1 into the carry
RL E Rotate digit into low order byte
RL D Rotate high order byte
INC HL Next character
DINZ LooP Repeat until done
LD (RESULT),DE Store final result
POP HL Restore registers
POP DE
POP BC
POP AF
RET Done

6) a) When each character input is a hexadecimal diglt, you will want
want to verlfy that each character in the buffer lies in the range:
a) SDH < Char < 39 (8-9)

- H
b) 4k, < Char < 46,  (A-F)
c) GIH < Char < 66H (a~f)




In range a, you will naturally subtract MH'

In range b, a subtraction of 37H will produce the appropriate
hex digit,

In range ¢, the number to subtract is 57H'

After the digit has been Isolated, it will occupy the order four
bits of the accumuiator, Shifting those bits into the result
should pose no problem.

b) Input: WHERE ~ the address of the character array
DIGITS - the number of characters in the array

Output:  RESULT - a two byte value of the number

During the course of the subroutine, it will be necessary to
multiply a two byte vaiue by 18, The method to be used will
be to multiply the high and low order bytes separately. The
Two could then be added as:

high order product
+ [ low order product
three byte result

In fact, however, if the high order byte of the high order

product is non-zero, it will be +ime to call WOOPS. The sum

would overflow the size of the result.

8p8@ Decimal to Binary Input Subroutine

DECBIN: PUSH PSW Save registers

PUSH B

PUSH D

PUSH H

LDA DIGITS Fetch number of digits

CPI 6 The largest signed number that will fit is
32,767

CNC WOOPS Call if more than five digits (this stil1
won't guarantee no overflow)

MoV B,A Save count

LHLD WHERE Load address of character array

LXI D,p Clear DE register for the result
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LOOP: MOV
CP1
cC
SUl
MOV

JNZ
XCHG
SHLD
POP

POP
POP
POP
RET

A,M
3¢H
WOOPS
3pH
C,A

AE
MLTGND
A, 18
MLTPLR
MLTPLY
A,D

PRODCT

MLTOND
MLTPLY
PRODCT+1
A

HOOPS
PRODCT
b

WOOPS
D,A

A,C

E

E,A

A8

D

WOOPS
D,A

H

B

LOOP

RESULT
H

PSW

Fetch character
Is it under 3@H?
Yes, call WOOPS
The digit must be OK, subtract

To get its binary value, save in C. We
now need to multiply the result already
forming by 1. This will be done in fwo
separate operations.

Fetch low order byfe

Store as multiplicand

Store 19 as multiplier

Multiply the two

Fetch high order byte

Swap DE and HL

Retch resutt

Swap back

Store high order as multiplicand
Muitiply by same multiplier
High order bytfe

Test for zero

If it isn't, call WOOPS

Low order byte

Add to high order of previous product
1¥ overflow, call WOOPS

Place result in low order

Fetch new digit

Add to low order

Replace low order

Clear A without destroying flags
Add in any carry from low order

If overflow, call WOOPS

Replace high order

To point to next digit

Decrement count

Repeat until done
Swap DE and HL
Store result
Restore registers

Done
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DECBIN:

Loor:

Z-8¢ Decimal to Binary Input Subroutine

PUSH AF Save registers

PUSH B8C

PUSH DE

PUSH HL

LD A,(DIGITS) Fetch number of digits

cP 6 The largest signed number that wiil fit Is 32,767

CALL NC, WOOPS Call if more than five digits (thls still won't
guarantee no overflow,)

LD B,A Save count

LD HL, (WHERE) Load address of character array

LD DE,@ Clear DE register for the resuit

Lo A, (HL) Fetch character

cP 30H Is 11+ under 3@H?

CALL C,Woors Yes, call WOOPS

cP 3AH Is it over 39H?

CALL NC, WOOPS Yes, call WOOPS

suB 3PH The digit must be OK, subtract

LD C,A to get its binary value, save in C. We now
need to multiply the result already forming by
18, This will be done in ftwo separate operations,

LD AE Fetch low order byte

LD (MLTCND),A  Store as multiplicand

LD A, I8

LD (MLTPLR),A Store IP as multiplier

CALL MLTPLY Multiply the two

LD A,D Fetch high order byte

Lo DE, (RESULT) Fetch resuit

Lo (MLTCND),A  Store high order as multiplicand

CALL MLTPLY Multiply by same muitiptier

LD A, (RESULT+1)High order byte

AND A Test for zero

CALL NZ, WOOPS Hf it Tsn't, call WOOPS

LD A, (RESULT) Low order byte

ADD A,D Add to high order of previous product

CALL PE, WOOPS 1f overflow, call WOOPS

LD D,A Place result in low order

() [ Fetch new digit

ADD AE Add to low order

LD E,A Replace low order

LD A,B Clear A without destroying flags

ADC A,D Add in any carry from low order
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n

CALL PE, WOOPS I overflow, call WOOPS

LD D,A Replace high order

INC HL To point to next digit

DINZ LooP Decrement Count
Repeat until done

LD (RESULT),DE Store result

POP HL Restore registers

POP DE

POP BC

POP AF

RET Done

Translating back from binary to character should pose no problems In
the case of binary and hexadecimal values, The algorithm for converting
back from binary into decimal is a little trickier, The trick is to
divide the two byte value by If and use the remainder as the lowest
order digit. Then divide what's left of the result by 18 again and

so on, so that the character value is created from right to left,

The only problem Is that you are very likely to get an overflow on the
first division. How can you break the division into two pieces to

get around this problem?

A CASUAL INTRODUCTION TQO DATA STRUCTURES

1

Due to the machine dependent aspects of 1/0, It is not possible to
present a routine that is guaranteed to work on your system, The
routine called KYBDIN that accepts a single character from the
keyboard and leaves its value in the accumulator. Echoing Is
accomp |l ished by calling a hypothetical routine called VIDOUT which
accepts a single character In the accumulator and displays it on
the screen. It is assumed that this routine does not destroy the

contents of the accumulator.

8088 String Input Routine

BUFFER: .BLKB 38 Reserve 3@ bytes of storage
STRGIN: PUSH PSW Save registers

PUSH B

PUSH H

LXI H,BUFFER Set HL to point fo the buffer

MVI A,20H ASCII for a space

MVI B,30 Number of characters in buffer
CLRLOP: MOV M,A Clear buffer location

INX H Next buffer location
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DCR

B Decrement count

JINZ CLRLOP Repeat until entire buffer cleared
LXI H,BUFFER Reset pointer to start of buffer
MVI B,38 Overflow counter
INLOOP:  CALL KYBDIN Get character
CALL vVIDOUT Echo
CPI @oH Carriage return?
Jz DONE Yes, jump out of loop
MoV M,A Else, store in buffer
INX H Next buffer location
DCR B Overflow counter
JINZ INLOOP Repeat if not full
DONE: POP H Restore registers
POP B
POP PSW
RET Done
Z-89 String  Input Routine
BUFFER: .BLKB 3¢ Reserve 3@ bytes of storage
STRGIN: PUSH AF Save registers
PUSH BC
PUSH DE
PUSH HL
LD A,28H ASCII for a space
LD (BUFFER),A Clear first character
LD HL,BUFFER Pointer to first character
LD DE, BUFFER+1 Pointer to second character
LD BC,29 Number of characters to be cleared
LDIR Clear buffer
LD 8,30 Overflow counter
INLOOP: CALL KYBDIN Get character
CALL VIDOUT Echo
co PDH Carriage return?
JR Z,DONE Yes, jump out of loop
LD (HL),A Otherwise, store character
INC HL Next buffer location
DINZ INLOOP Repeat until full or carriage return
DONE POP HL Restore registers
POP DE
PCP BC
POP AF
RET Done
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2) See note to exercise #i. The subroutine below uses VIDOUT.
INPUT: WHERE - start address of the buffer
COUNT - number of characters

8@88 String  Output Routine

STROUT: PUSH PSW Save registers
PUSH B
PUSH H
LHLD WHERE Fetch start address
LDA COUNT Fetch number of characters
MOV B,A Save count

OUTLOP: MOV AM Fetch character
CALL VIDOUT Output to screen
INX H Next character
DCR B Decrement count
JINZ OUTLOP Repeat until done
POP H Restore registers
POP B
POP PSW
RET Done

Z-8p String  Qutput Routine

STROUT: PUSH AF Save registers
PUSH BC
PUSH HL
Lo HL, (WHERE)Fetch start address
LD A, (COUNT) Fetch number of characters
LD B,A Save count
OQUTLOP: LD A, {HL) Fetch character
CALL VIDOUT Output fo screen
INC HL Next character
DINZ OUTLOP Decrement count, repeat until done
POP HL Restore registers
POP 8C
POP AF
RET Done

3) The driver will be a simple matter of moving data and calling STROUT
and STRGIN If the data is structured carefully. When you know in




advance the exact message you want output, define it in ASCII in
your data area. Count up the length and store it as a constant as
well. The driver routine will be trivial if the data is defined as.
follows (use the keywords your assembler wants to see):
MSG1: WASCII "Name?" |
MSG2; JASCII "Address?" |
MSG3:  ,ASCII "Phone number?" J
LEN1 .BYTE 5
LEN2: .BYTE 8 ‘
LEN3: .BYTE I3
NAME : .BLKB 20
ADDRSS: .BLKB 39
PHONE: .BLKB 8 (the extra character Is for the "-")

S

4) The storage area can be reserved using:
.Loc 2008 (or some page boundry address)
POOL: .BLKB 4PPH

a) 8¢8g Link-up Subroutine
LINKUP: PUSH PSW
PUSH 8 Save registers
PUSH D
PUSH H
LXI H,PO0L  Start address of space

SHLD AVAIL Avail will point fo first node
LXI  D,POOL+64 DE will point to next node

LXI B,127 BC=(node size*2) -1 (the reason should become clear later)
MVI A,15 The number of nodes that will fit minus 1.,
SETLOP: MOV M,E Low order byte of |ink
INX H Point to next byte
MoV M, 0 High order byte of link
DAD B To point to the node after next
XCHG Now HL points to the next node
DCR A Decrement loop counter
INZ SETLOP  Repeat until all nodes have link fields set but the fast
MoV M,A Set final link value of all #'s
INX H
MOV M,A
POP H Retore registers
POP D
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LINKUP:

SETLOP:

b)
GETNOD:

POP B

POP PSW

RET Done

Z2-80 Link-up Subroutine

PUSH AF

PUSH BC Save reglsters

PUSH DE

PUSH HL

LD HL,POOL Start address of space

LD (AVAIL),HL Avall will point to first node

LD DE,POOL+64 DE will point to next node

LD 8C,127 BC=(node size*2) -1 (the reason should become clear tater)
LD A,15 The number of nodes that will fi¥ minus 1

Lo (HL),E  Low order byte of link

INC HL Point to next byte

LD (HL),D  High order byte of link

ADD HL,BC To point to the node after next

EX DE,HL Now HL points to the next node

DEC A Decrement loop counter

JR NZ,SETLOP  Repeat untif all nodes have link fields set but the last
LD (HL),A Set final iink value of all P's

INC HL

LD (HL),A

POP HL Restore registers

POP DE

POP BC

POP AF

RET Done

8gep Get-node Subroutine

PUSH Psw Save registers

PUSH D

LHLD AVAIL Fetch pointer to next available node

MOV A,L Test for all zeroes which would Indicate no more
ORA H nodes avaliable

[o74 OVFLOW Call hypothetical overflow routine if no nodes are left
MoV E,M Otherwise fetch Iink field from this node

INX H

MoV o,M

XCHG Swap DE + HL

SHLD AVAIL Set new poinfer in avail
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XCHG Swap back so HL points to new node

POP D Restore registers
POP PSW
RET Done

Z-88 Get-node Subroutine

GETNOD: PUSH AF Save registers
PUSH DE
LD HL, (AVAIL) Fetch pointer to next available node
LD A,L Test for all @'s which would indicate no more nodes
OR H avallable ;
CALL Z,0VFLOW Call hypothetical overflow routine if no nodes are left
LD E, (HL) Otherwise fetch tink field from this node
INC HL
I} D, (HL)
LD (AVAIL),DE Set new pointer in avail
POP DE Restore registers
POP AF
RET Done

c) Since there are no overflow worries, this routine should pose no
problems. A basic attack might involve:
1) fetch value of avall (pointer to next node on avail {ist)
2) store that pointer in link field of node to be returned
3) store pointer to returned node in avail

BINARY CODED DECIMAL ARITHMETIC

1) The method to be used involves two separate subroutines. The first
subroutine will accept a pointer to a buffer which contains only
digits In character form and will transiate from ieft to right into
BCD. The second subroutine will analyze the original raw input
extracting punctuation and stray characters. |t will then call the
first and pass it the byte count and address in register B and the
DE register pair respectively, The final BCO number will be placed
in an array called NUMBER, The first three bytes of NUMBER will be
its descriptor block.

8¢8p  Digit to BCD Subroutine

DGTBCD: PUSH  PSW Save registers
PUSH B
PUSH D
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LOOP:

DGTBCD:

LOOP:

PUSH H

LXI H,NUMBER+3  First destination slot for BCD output
LDAX D Fetch digit

suL 3¢H Delete ASCII code

RAL Rotate four times to the left

RAL

RAL

RAL

MoV C,A Save

INX D Point to next digit

LOAX D Fetch next digit

SUI 3BH Delete ASCII code

ADD [ To form BCD pair of digits

MOV M,A Save in number

INX D Next digit

INX H Next byte in number

DCR B Decrement byte count

INZ LooP Repeat until done

POP H Restore registers

POP D

POP B

POP PSW

RET Done

Z-8¢ Digit to BCD Subroutine

Unlike the 8@88 version. This subroutine affects the contents
of the buffer location passed to it.

PUSH  AF Save registers

PUSH  BC

PUSH  DE

PUSH  HL

LD HL,NUMBER+3 Pointer to output area

suB A Clear accumulator

EX DE,HL Swap polinters so HL points to input buffer
RRD Bring in binary form of first digit
LD (DE),A Store in number

INC HL Next character

RRD Bring in binary form

EX DE,HL Swap pointers to HL points to number
RLD Rotate second digit into number

INC HL Next byte
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INC DE Next digit

DIJNZ  LOOP Repeat until done
POP HL Restore registers
POP DE

POP BC

POP AF

RET Done

The second subroutine deals with data areas defined as on page (43,
The sizes of BUFFER and NUMBER can be assumed to have been defined
to be large enough to accomodate any number the routine will have
to deal with. That Is,the routine needn't do any overflow error
checking. We will also assume that the entire data area for NUMBER

was previously cleared.

8@8f  Characters to Digits Subroutine
CARTDG: PUSH  PSW

PUSH B
PUSH D
PUSH H
SuB A Clear accumulator
STA SPRFLG Clear spare flag
LXI H,BUFFER Pointer to Buffer + @
LXI D,BUFFER Same

PRESIG: LDAX D Fetch character
CPI 20H Is it a space?
Jz INCR Yes, jump
CPI 24H Is it a "§"?
Jz INCR Yes, jump
CPI 2BH Is 1T a "+"7
JZ INCR Yes, jump
CPI 2DH Is it a "-"?
INZ  NOMNUS No, jump
MVI A,-1 Set negative indicator
STA NUMBER+2 Place in sign byte
JMP INCR Jump

NOMNUS: CPI 2EH Is it a ","?
JNZ  NOPERD No, Jump
INX D Next character
JMP POSTDC Jump
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NOPERD: CPI 3@H Is 1t less than a digit?

Jc TERMSG Yes, jump
CPI 3AH Is it greater than a digit?
JNC TERMSG Yes, jump
MOV M,A Store character
INX D Increment buffer pointers
INX H
INX B Increment digit count
JMP POSTSG Jump
INCR: INX D Next character
JMP PRESIG Repeat
efc.

So the whole routine is just a straightforward coding of the algorithm on

pages 143-146. NOTE: Do not call DG6TBCD when the number is zero bytes long.
Z-8f Characters to Digits Subroutine

CARTDG: PUSH  AF

PUSH BC
PUSH DE
PUSH HL
suB A Clear accumulator
LD {SPRFLG),A Clear spare flag
LD HL,BUFFER Pointer to Buffer + @
LD DE, BUFFER Same
PRESIG: LD A, (DE) Fetch character
CP 20H Is it a space?
JR Z,INCR Yes, jump
cpP 24H ts is a "$"?
JR Z,INCR Yes, jump
CP 2BH Is it a "+"?
JR Z,INCR Yes, jump
cP 2DH Is it a "7
JR NZ, NOMNUS No, jump
LD A,-1 Set negative Indicator
LD (NUMBER+2) ,A Place in sign byte
JR INCR Jump
NOMNUS: CP  2EH Is ita ™" |
JR NZ,NOPERD No, jump
INX D Next character
JP POSTDC Jump
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NOPERD: CP 384 Is it less than a digit?

JP C, TERMSG Yes, Jump
cP 3AH Is it greater than a digit?
JP NC, TERMSG Yes, jump
LD (HL) A Sfore character
INC DE Increment buffer pointers
INC HL
INC B Increment digit count
JP POSTSG Jump
INCR: INC DE Next character
JR PRESIG Repeat
etc.

So the whole routine is just a straightforward coding of the algorithm on
pages 143-146. NOTE: Do not call DGTBCD when the number is zero bytes long.

2) Fixed point addition:

INPUT:  VARA - are two BCD numbers
VARB
SZMAX - number of bytes of storage reserved for each

number input

OUTPUT: SUM - data area where result will be stored or flag
result of negative zero on overflow

8g8g Fixed Point Addition

SUM: .BLKB 258 (for max of 256 byte number and 3 byte descriptor block)
ENDSUM: .BLKB 1
BLOCKA: .BLKB 3 (storage area for descriptor blocks of input)
BLOCKB: .BLKB 3
FXPTAD: PUSH PSW Save registers

PUSH B

PUSH D

PUSH H

LXI D, BLOCKA Pointer to block save area

LXt H, VARA Pointer to descriptive block

MV B,3 Number of bytes in block
FXPT@5: MOV AM Transfer block to block save area

STAX D

INX H

INX D
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DCR B
JNZ FXPTB5
MV B,3 Bytes in second block
LXI H,VARB Pointer to second descriptive block (DE already points
to second save area)
FXPT18: MOV A,M Transfer second block to save area
STAX D
INX H
INX D
DCR B
JINZ FXPT18
LDA SZMAX Fetch maximum size
MOV C,A Save
(ALIGN DECIMAL POINT)
LDA VARB+1 Number of decimal places in VARB
MOV B,A Save
LDA VARA+1 Number of decimal places in VARA
suB B Find the difference
MOV D,A Save
JZ FXPT38 Jump if same number of places
JNC FXPT25 Jump if A has more
LXI H, VARA Pointer to size of VARA
FXPT15: ADD M Get new size
CMP 9} Compare to maximum size
Jz FXPT28 |f same, we're OK
CNC OVFLOW If over max, call overflow
FXPT28: MOV M,A Store new size
MOV A,D Restore difference
INX H Pointer to decimal places in variable
ADD M New decimal places
MoV M,A Store new decimal places
STA SUM+1 Store decimal places in sum
JMP FXPT3@ Jump
FXPT25: LXI H,VARB Pointer to size of VARB
JMP FXPT15 Get new size |
(CHECK SIGN OF NUMBERS) |
FXPT3@: LDA VARB+2 Sign of VARB
MOV B,A Save
LDA VARA+2 Sign of VARA
CMmP 8 Do signs match?
JINZ FXPT35 No, jump
STA SUM+2 Give their common sign to the result
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X1 H, VARA Pass the parameters to BCD ADD

SHLD ADD1
LXI H, VARB
SHLD ADD2
X1 H, SUM
SHLD RESULT
CALL BCDADD Add the two numbers
JMP FXPT55
FXPT35: LDA VARB Size of VARB
MoV B,A Save
LDA VARA Size of VARA
cMP B Are numbers the same size?
INZ FXPT45 No, jump
LXI D, VARA+3 First byte of number of VARA
LXI H, VARB+3 First byte of number of VARB
FXPT4#: LDAX D Fetch byte of VARA
CMP M Compare to VARB, same?
JINZ FXPT45 No, jump
INX D Yes, then check next byte
INX H
DCR B
JINZ FXPT48 Repeat while bytes remain
suB A The two numbers are equal, so move zero to sum
STA SUM
STA SUMHL |
STA SUMH2 |
JMP FXPT55
FXPT45: JC FXPT58 Jump 1f VARB Is larger
LDA VARA+2
STA SUM+2
LXI H,VARA Prepare parameters to subtract VARB from VARA
SHLD NMUEND
LXI H,VARB
SHLD SBTRHD
LXt H, SUM
SHLD DFFRNC
CALL BCDSUB Subtract
JMP FXPT55
FXPT5@: LDA VARBT2
STA SUM+2
LXI H,VARB Prepare parameters to subtract VARA from VARB
SHLD MNUEND
LXI H, VARA
SHLD SBTRHD
LXI H,SUM
SHLD DFFRNC
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CALL
FXPT55:

BCDSUB

The routine is essentially complete, Just
move the descriptive blocks back from the save
area, pop the reglsters, and return,

Z-80 Fixed Point Addition
SUM: .BLKB 258 (for max of 256 byte number and 3 byte descriptor block)
ENDSUM: .BLKB 1
BLOCKA: 3 (storage area for descripfor blocks of input)
BLOCKB: 3
FXPTAD: PUSH AF Save registers
PUSH BC
PUSH DE
PUSH HL
LD DE,BLOCKA  Polnter to block save area
LD HL, VARA Pointer to descriptive block
LD BC,3 Number of bytes in block
LDIR Transfer block to block save area
LD 8C,3 Bytes In second block
LD HL, VARB Pointer to second descriptive block (DE already points
to second save area)
LDIR Transfer second block to save area
LD A, (SZMAX) Fetch maximum size
LD C,A Save
(ALIGN DECIMAL POINT)
LD A, (VARB+1) Number of decimal places in VARB
LD B,A Save
Lo A, (VARA+1) Number of decimal places in VARA
suB B Find the difference
LD B,A Save
JR Z,FXPT2¢  Jump if same number of places
JP NC,FXPT15  Jump if A has more
LD H,VARA Pointer to size of VARA
FXPT@5: ADD A, (HL) Get new size
CP 4 Compare to maximum size
JR Z,FXPT18 1¥ same, we're OK
CALL NC,OVFLOW | f over max, call overflow
FXPT1#: LD (HL),A Store new size
LD A,D Restore difference
INC HL Polnter to decimal places in variable
ADD A, (HL) New decimal places
LD (HL),A Store new decimal places
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LD (SUM+1),A  Store decimal places In sum
JP FXPT28 Jump |
FXPT15: LD HL, VARB Pointer to size of VARB !
JP FXPTE5 Get new size |
(CHECK SIGN OF NUMBERS) ’
FXPT28: LD A, (VARB+2) Sign of VARB ,
LD B,A Save |
LD A, (VARA+2) Sign of VARA ﬂ
cpP B Do sings match? ‘
JR NZ,FXPT25  No, jump
LD (SUM+2),A  Give their common sign to the result
LD HL, VARA Pass the parameters to BCD ADD
LD (ADD1),HL
LD HL, VARA
LD (ADD2) ,HL
LD HL, SUM
LD (RESULT),HL
CALL BCDADD Add the two numbers
JP FXPT45
FXPT25: LD A, (VARB) Size of VARB
LD B,A Save
LD A, (VARA) Size of VARA
cpP B Are numbers the same size?
JR NZ,FXPT35  No, jump
LD DE,VARA+3  First byte 'of number of VARA
LD HL,VARB+3  First byte of number of VARB
FXPT3@: LD A, (DE) Fetch byte of VARA
cp (HL) Compare to VARB, same?
JR NZ,FXPT35  No, jump
INC DE Yes, then check next byte
INC HL
DINZ FXPT30
suB A The two numbers are equal, so move zero to sum
LD (SUM),A
LD (SUM+1) ,A
LD (SUM+2) ,A
JR FXPT45
FXPT35: JP C,FXPT48 Jump if VARB is targer
LD A, (VARA+2)
LD (Sum+2) ,A
LD HL,VARA Prepare parameters to subtract VARB from VARA
LD (MNUEND) ,HL
LD HL,VARA
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LD (SBTRHD) ,HL

LD HL, SUM
LD {DFFRNC) ,HL
CALL BCDSUB Subtract
JR FXPT45
FXPT4@: LD A,(VARB+2)
LD (Sum+2),A
LD HL ,VARB Prepare parameters to subtract VARA from VARB
LD (MNUEND) , HL
LD HL ,VARA
LD (SBTRHD) ;HL
LD HL,SUM
LD (DFFRNC) ,HL
CALL BCDSUB
FXPT45: . The routine is essentially complete. Just move the

descriptive blocks back from the save area, pop the
registers, and return.

The two routines BCDADD and BCDSUB are extremety simple. They are just
multibyte addition and subtraction with decimal adjust between each add

or subtract. BCDSUB should squeeze out any leading gp bytes before returning.

3) The fixed point subtract is trivial once the fixed point add has been
written, The algorithm foliows:
a) load and save the sign of the subtrahend
b) reverse the sign In the descriptor block
c) call FXPTAD
d) replace the original sign

4) A portion of the floating point muttiply subroutine will be glven here.

What will not be shown is:

a) initially saving the registers and the descriptor blocks of
MLTPLR and MLTCND and clearing PRODCT.

b) adding the two numbers of digits to the right of the decimal
point and storing it in the descriptor block of the result

' c) determining which number is longer. FPlacing a pointer to the
end of the shorter in the HL register pair placing the size of
Fhe shorter in the C register

d) determining the sign of the result and storing it
e) restoring registers and descriptor blocks
What will be shown is performing the multiplication itself using calls

to BCDADD.
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8@8g Floating Point Multiply
FPMULT: :
XCHG Swap DE and HL
LXI H,MLTCND Set up parameters for BCDADD
SHLD ADD1
LXI H,PRODCT
SHLD ADD2
SHLD RESULT i.8., ADDZ2«ADD1 + ADD2
XCHG Swap back
BIGLP: MOV A,M Fetch byte of muitiplier
AN} BFH Clear high order digit
Jz LILP2A
MoV B,A Save as counter
LILP1: CALL BCDADD Add multiplicand a single time
DCR B Decrement counter
JINZ LiLP1 Repeat addition the number of times of the digit
LILP2A: CALL LFTSFT Shift number 4 bits to left for multiply by 18
MOV A,M Get byte again
ANI PFPH Clear low order digit
Jz LILP4
RRC Rotate four times
RRC
RRC
RRC
MOV B,A Save as counter
LiLP3: CALL BCDADD Add multiplicand a single time
DCR B Decrement counter
JINZ LILPZ Repeat addition the number of times of the digit
LILP4: CALL RGTSFT Shifts the number 4 bits to the right (i,e., back
to original alignment) and adds a @8 byte to the
end. This accomplishes a second 4 bit shift to
the left without having the number move through
memory by more than one byte,
DCX H Next byte of multiplier
DCR c Decrement byte count
JINZ BIGLP Repeat until done
2-89 Fioating Point Multiply
FPMULT: .
suB A Clear accumulator
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Lo HL,MLTCND Set up parameters for BCDADD

LD (ADD1) ,HL
LD HL,PRODCT
LD (ADD2) ,HL
LD (RESULT) ,HL f.e., ADD2«ADD2 + ADD1
BIGLP: RRD Fetch first digit
Lo B,A Save as counter
LiLP1: CALL BCDADD Add multiplicand
DINZ LILP1 Repeat the number of times of the digit
CALL LFTSFT Shift number 4 bits To left for multiply by 18
RRD Fetch second digit
LD 8,A Save as counter
LILP2: CALL BCDADD Add multiplicand
DJNZ LILP2 Repeat the number of times of the digit
CALL RGTSFT Shifts the number 4 bits to the right (i.e., back
to original alignment) and adds a @8 byte to the
end. This accompllishes a second 4 bit shift to
the left without havihg the number move through
memory by more than one byte
INC HL Next byte of multiplier
DEC Cc Decrement byte count
JR NZ,BIGLP Repeat until done

5) Flcating point division will again make use of LFTSFT and RGTSFT fo
prevent the dividend from wandering through memory. It will also save
and later restore the descriptor blocks of the dividend and divisor.
I+ will have to call the fixed point subtract subroutine rather than
BCDSUB, because the sign of the result is not known beforehand.
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Accumulator, 14, 81
ACI, 32, 106

ADCG, 32, 41, 106, 108
ADD, 32, 40, 41, 106, 108
Addition, 8, 9, 32, 40, 41
Address, 15, 17

ADI, 32, 106

ANA, 34, 107

AND, 11, 83, 34, 107
ANI, 34, 107
Arithmetic, 31

Array, 72, 80

ASCII, 68, 113
Available nodes, 78

Binary, 4-6

Binary coded decimal, 83
Bit, 7

BIT, 58, 109

Bit manipulation, 57
Block search, 79

Block transfer, 79

Body, 44

Boolean, 10

Borrow, 9

Boundary alignment, 76
Byte, 7

CALL, 52, 58, 110, 111
Carry flag, 9, 10, 12
CC, 53, 110

CCD, 80, 106
CCDR, 80, 106
CCF, 39, 107

CCI, 80, 106
CCIR, 80, 106
Clock speed, 101
CM, 58, 111

CMA, 39, 107
CMG, 39, 107

index

166

CMP, 87, 107

CNC, 53, 111

CNO, 58, 111

CNZ, 53,110

CO, 53, 111

Compare, 34
Complement accumulator, 38
Complement carry, 39
Conditional jump, 44
Conversions, 5

CP, 37, 53, 107, 111
CPD, 80, 106

CPDR, 80, 106

CPE, 53, 111

CPI, 37, 80, 106, 107
CPIR, 80, 106

CPL, 39, 107

CPO, 53, 111

CZ, 538, 111

DAA, 85, 107

DAD, 40, 108
DADC, 41, 108
DADX, 41, 108
DADY, 41, 108
DCR, 38, 107

DCX, 40, 108

DEC, 38, 40, 107, 108
Decimal, 5, 6
Decimal adjust, 84
Declaration, 71
Decrement, 37

DI, 107

Digits, 4, 6
Displacement, 21, 75
Division, 62

DJNZ, 50, 110
Documentation, 98
DSBC, 41, 108




Index

EI, 107

Equate, 74

EX, 27, 28, 105, 106
EXAF, 28, 105
Exchange, 26
Exclusive OR, 12, 83
EXX, 28, 105

Flags, 31, 32
Hexadecimal, 4-6

IM, 108

Immediate, 20, 24
IN, 111

ING, 38, 40, 107, 108
Increment, 37, 44, 45
IND, 112

Index register, 21
INDR, 112

INI, 112

INIR, 112
Initialization, 44
INP, 111

INR, 38, 107

INX, 40, 108

JC, 47, 110
M, 47, 110
JMP, 47, 109
JMPR, 49, 110
JNG, 47, 110
JNO, 47, 110
JNZ, 47, 110
JO, 47, 110

7P, 47, 109, 110
JPE, 110

JPO, 110

JR, 49, 110
JRC, 49, 110
JRNC, 49, 110
JRNZ, 49, 110
JRZ, 49, 110
JZ, 47, 109

LBCD, 24, 104

LD, 17-21, 23, 24, 104, 105
LDA, 20, 104

LDAI 104

LDAR, 104

LDAX, 19, 104

LDD, 79, 106
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LDDR, 79, 106
LDED, 24, 104
LDI, 79, 106
LDIR, 79, 106
LHLD, 24, 104
Linked structures, 77
LIXD, 24, 104
LIYD, 24, 105
LSPD, 24, 105
LXI, 24, 104
Load, 17, 22
Logical, 31
Loop, 44, 50

Magnitude bits, 7, 10
Memory, 15

Memory-register, 18, 22
Mnemonics, 17

Modular programming, 51, 52
Monitor, 69

MOV, 104

Multi-dimensional array, 72
Multiplication, 60

MVI, 104

NEG, 39, 107
Negate, 39
Nibble, 7

NOP, 40, 107
NOT, 38
Number system, 4

One’s complement, 8
OR, 11, 38, 107
ORA, 34, 107
ORI, 34, 107
OTDR, 112
OTIR, 112

OUT, 112

OUTD, 112
OUTDR, 112
OUTI, 112
OUTIR, 112
OUTP, 112
Overflow flag, 9, 10

Page, 76
Parity flag, 12
Patch, 100
PCHL, 50, 110
PCIX, 51, 110
PCIY, 51, 110
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POP, 25, 26, 111

Post-test, 45

Pre-test, 45

Program counter, 15, 16, 22, 43
PUSH, 25, 26, 105

RAL, 59, 108
RALR, 66, 109
RAR, 59, 108
RARR, 66, 109
RC, 54, 111
Register, 14
Register indirect jump, 50
Register pair, 15
Relative jump, 47, 48
RES, 58, 109
RET, 54, 111
RETI, 111
RETN, 111

RL, 66, 109
RLA, 59, 108
RLC, 59, 66, 108
RLCA, 59, 108
RLCR, 66, 108
RLD, 68, 109
RM, 54, 111
RNGC, 54, 111
RNO, 54, 111
RNZ, 54, 111
RO, 54, 111
Rotate, 59, 66, 68
RP, 54, 111

RPE, 54, 111
RPO, 54, 111
RR, 66, 109
RRA, 59, 108
RRC, 59, 66, 108, 109
RRCA, 59, 108
RRCR, 66, 109
RRD, 68, 109
RST, 111

RZ, 54, 111

SBB, 33, 107

SBC, 33, 41, 107, 108
SBCD, 24, 105

SBI, 38, 107

SCF, 39, 107

SDED, 24, 105

SET, 58, 109

Set carry, 39

Shift, 59, 66, 67

Z-88 and 8989 Assembly Language Programming

SHLD, 24, 105

Sign, 12

Sign bit, 7, 10

Signed compare, 35, 36
SIXD, 24, 105

SIYD, 24, 105

SLA, 67, 109

SLAR, 67, 109

SPHL, 23, 105

SPIX, 23, 105

SPIY, 23, 105

SRA, 67, 109

SRAR, 67, 109

SRL, 67, 109

SRLR, 67, 109

SSPD, 24, 105

STA, 20, 104

Stack, 16

Stack pointer, 15, 22, 25
STAI 104

STAR, 104

STAX, 104

STC, 107

Structure, 73
Structured programming, 52
SUB, 33, 106, 107
Subroutine, 51, 52
Subtraction, 9, 33, 40, 41
SUI, 38, 107

Swapped format, 23

T-state, 101

Test, 45, 46

Top down, 98

Two's complement, 7

Unsigned compare, 37
Utility, 69

Value, 17
Variable, 14, 71, 75

XCHG, 27, 105
XRA, 34, 107
XRI, 34, 107
XOR, 12, 33, 107
XTHL, 27, 106
XTIX, 27, 106
XTIY, 27, 106

Zero flag, 12

——







