DISK 1™
TECHNICAL MANUAL

IEEE 696 / S-100
ARBITRATED 24 BIT DMA
FLOPPY DISK CONTROLLER

CompuPro
A GOODBOUT COMPANY
DISK 1 TECHNICAL MANUAL
Copyright ©1981
CompuPro
Oakland Airport, CA 94614

First Printing: July 1981
Second Printing: January 1982
Third Printing: May 1982
Forth Printing: March 1983

Contents of this document were proofread with the aid of SpellGuard™, a product from SORCIM Inc. Santa Clara, CA.

DISCLAIMER - CompuPro makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, CompuPro reserves the right to revise this publication and to make any changes from time to time in the content hereof without obligation of CompuPro to notify any person of such revision or changes.

CompuPro is a registered trademark and Diskl is a trademark.
Tri-State is a trademark of National Semiconductor Corp.

All rights reserved. No part of this publication may be reproduced or transmitted in any form, or by any means, without the written permission of CompuPro. Printed and assembled in the United States of America.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>4</td>
</tr>
<tr>
<td>Attention purchasers of CP/M-80</td>
<td>4</td>
</tr>
<tr>
<td>ABOUT DISK 1</td>
<td>5</td>
</tr>
<tr>
<td>Technical overview</td>
<td>5</td>
</tr>
<tr>
<td>HOW TO GET YOUR DISK 1 UP AND RUNNING</td>
<td>5</td>
</tr>
<tr>
<td>WITHOUT READING THE MANUAL</td>
<td>5</td>
</tr>
<tr>
<td>System configurations using CompuPro hardware</td>
<td>6</td>
</tr>
<tr>
<td>Drive interface - 8 inch drives</td>
<td>11</td>
</tr>
<tr>
<td>5.25 inch drives</td>
<td>12</td>
</tr>
<tr>
<td>Trying to boot the controller</td>
<td>12</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>13</td>
</tr>
<tr>
<td>HARDWARE SECTION</td>
<td></td>
</tr>
<tr>
<td>Disk interface port map</td>
<td>15</td>
</tr>
<tr>
<td>CompuPro drive interface address - 8 inch drive</td>
<td>15</td>
</tr>
<tr>
<td>- 5.25 inch drive</td>
<td>16</td>
</tr>
<tr>
<td>Port addressing</td>
<td>16</td>
</tr>
<tr>
<td>Serial port</td>
<td>16</td>
</tr>
<tr>
<td>Interrupts</td>
<td>17</td>
</tr>
<tr>
<td>Boot EPROM</td>
<td>17</td>
</tr>
<tr>
<td>Boot EPROM routine addressing</td>
<td>17</td>
</tr>
<tr>
<td>Boot routine short description</td>
<td>18</td>
</tr>
<tr>
<td>Wait state enable</td>
<td>18</td>
</tr>
<tr>
<td>Boot enable/inhibit</td>
<td>18</td>
</tr>
<tr>
<td>Arbiter and priority selection</td>
<td>19</td>
</tr>
<tr>
<td>Motor control enable</td>
<td>19</td>
</tr>
<tr>
<td>Modifications for minifloppy drives</td>
<td>19</td>
</tr>
<tr>
<td>Disk 1 connector pinout with 8 and 5.25 inch drives</td>
<td>20</td>
</tr>
<tr>
<td>THEORY OF OPERATION</td>
<td></td>
</tr>
<tr>
<td>Bus interface & boot circuitry</td>
<td>21</td>
</tr>
<tr>
<td>DMA counters & address drivers</td>
<td>22</td>
</tr>
<tr>
<td>DMA arbiter & sequencer logic</td>
<td>22</td>
</tr>
<tr>
<td>Disk read/write circuitry & data separator</td>
<td>23</td>
</tr>
<tr>
<td>Floppy disk controller & interface circuitry</td>
<td>24</td>
</tr>
<tr>
<td>Test routines for the DISK 1 controller</td>
<td>25</td>
</tr>
<tr>
<td>Test routine listing</td>
<td>25-30</td>
</tr>
<tr>
<td>INTEL - Single/double density floppy disk controller</td>
<td>31-46</td>
</tr>
<tr>
<td>DISK 1 BOARD</td>
<td></td>
</tr>
<tr>
<td>Logic diagram</td>
<td>47-51</td>
</tr>
<tr>
<td>Parts list</td>
<td>52</td>
</tr>
<tr>
<td>Component layout</td>
<td>53</td>
</tr>
<tr>
<td>SOFTWARE SECTION</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>Applicable documents</td>
<td>55</td>
</tr>
<tr>
<td>Software user's guide</td>
<td>56</td>
</tr>
<tr>
<td>Software features</td>
<td>68</td>
</tr>
<tr>
<td>Software internal design</td>
<td>62</td>
</tr>
<tr>
<td>CB/OS customization guide</td>
<td>65</td>
</tr>
<tr>
<td>I/O routines alteration guide for Interfacer 1/2</td>
<td>69</td>
</tr>
<tr>
<td>System Support 1</td>
<td>72</td>
</tr>
<tr>
<td>Interfacer 3/4</td>
<td>74</td>
</tr>
<tr>
<td>SOURCE LISTINGS</td>
<td></td>
</tr>
<tr>
<td>Obios</td>
<td>77</td>
</tr>
<tr>
<td>Disk Boot</td>
<td>120</td>
</tr>
<tr>
<td>Rom Boot</td>
<td>126</td>
</tr>
<tr>
<td>CUSTOMER SERVICE INFORMATION/LIMITED WARRANTY</td>
<td>132</td>
</tr>
</tbody>
</table>
WARNING

Not all floppy disk controllers generate true IBM compatible 3740 and SYSTEM 34 formats. Therefore, we strongly recommend that you do not use the DISK 1 to copy data onto a diskette that has been formatted by another controller! The proper procedure is to format new diskettes using the DISK 1, and copy the contents of other diskettes onto the newly formatted diskettes. (SOFTWARE SECTION; Software User's Guide)

The technical reason for this problem arises from the fact that almost all versions of the 1791 type floppy controller insert a byte of 00s immediately following the header CRC bytes. This byte of 00s is not specified in either IBM standard, and may confuse the 8272/765 controller on the DISK 1.

If your controller generates a true IBM type format, or you are using diskettes formatted by IBM, you will not experience this problem.

ATTENTION PURCHASERS OF CP/M-80

If purchasing CP/M-80 with your DISK 1 controller, you will receive a diskette that contains your serialized version of CP/M-80 (for a 32K system) along with several support utilities and special BIOS files. This diskette should be used to create a working copy only, and not altered in any way. The following procedure should be strictly followed.

1. Read the Software User's Guide in the SOFTWARE SECTION.

2. Boot your system using the provided diskette.

3. Run the FORMAT program and create a scratch diskette with a format identical to the format of your master diskette. (Your master will indicate its format on the label, i.e., 2D-256 = 256 byte format, 2D-1024 = 1024 byte format, etc.

4. Run the COPY program and create a duplicate of your entire (system and data tracks) master diskette. (see NOTE (2) below)

5. Remove your master diskette and store it in a safe place. Do not use this diskette again unless you damage your working copies. There will be a $35 charge for recreating your master diskette if you damage or alter it.

6. Use your new working copy for all alterations that are made to your system.

NOTE (1): On your copy of CP/M you will receive two versions of the CompuPro BIOS. One version may be altered and reassembled using the CP/M supplied assembler (ASM), and another version must be reassembled and linked under the ACT assembler from SORCIM. The hex code from these files is identical, however, ASM will not assemble the files written for ACT.

NOTE (2): If you wish to change the density of your working disk or go from single sided to double sided, you must use SYSCON to create the system, and PIP to transfer the data files. The COPY utility will only copy diskettes of identical formats.
ABOUT DISK 1

Congratulations on your decision to purchase the DISK 1 floppy disk controller. DISK 1 has been designed to be the highest performance floppy disk interface available that fully complies with the IEEE 696/S-100 bus standard. Due to its provision for ready expansion and modification as the state of the computing art improves, the S-100 bus is the professional level choice for commercial, industrial, and scientific applications. We believe that this board, along with the rest of the S-100 portion of the CompuPro family, is one of the best boards available for that bus.

Features such as fully arbitrated DMA data transfer with 24 bits of addressing, 3rd generation LSI floppy disk controller, on-board phantom BOOT EPROM, I/O mapping for uninterrupted memory space, and a startup serial port make the DISK 1 another proud member of the CompuPro family.

TECHNICAL OVERVIEW

The DISK 1 was specifically designed to give the user one of the most powerful floppy disk interfaces available for the S-100 bus. Designed for full electrical and mechanical compatibility with the IEEE 696/S-100 bus standard, this board boasts several innovative features not found on currently available disk controllers. These features include 24 bit DMA data transfers with the ability to cross 64K boundaries, an advanced, 3rd generation floppy disk controller made by NEC or INTEL (765A or 8272), priority arbitration for the on-board DMA circuitry that will allow up to 16 temporary bus masters without conflict, an on-board BOOT EPROM with the capability of supporting eight different processors or BOOT routines, and a start-up serial port for ease of system initialization.

Other features standard to all CompuPro boards include thorough bypassing of all supply lines to suppress transients, on-board regulators, and low power Schottky TTL and MOS technology integrated circuits for reliable, cool operation. All this and sockets for all IC's go onto a double sided, solder masked printed circuit board with a complete component legend.

HOW TO GET YOUR DISK 1 UP AND RUNNING WITHOUT READING THE MANUAL

This section is for the user who is so anxious to see the DISK 1 running that he doesn't want to read the manual. This section will tell you how to set up the DISK 1 board as well as many other CompuPro boards so that it can run CP/M-80 or CP/M-86 in your system with either the on-board serial channel or any other supported serial channel.

We strongly recommend that you relax and read the manual. If, after reading and following the directions in this section, your system does not work, don't panic! Read the manual!
SYSTEM CONFIGURATIONS USING COMPUPRO HARDWARE

The following guide will help the user to configure CompuPro hardware for operation with CP/M type operating systems. This list covers boards in production at the date of printing, and if your particular CompuPro board is not listed, consult the individual manual. For the configuration of CompuPro hardware for the OASIS operating systems, refer to the configuration guide supplied by Phase One.

The following list will describe the proper switch settings and jumper options required by each CompuPro board when run with the DISK 1 controller.

DISK 1 - The standard switch settings for running CP/M are as follows:

<table>
<thead>
<tr>
<th>"OFF" S1 "ON"</th>
<th>"OFF" S2 "ON"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ></td>
<td>* 1 *</td>
</tr>
<tr>
<td>< 2</td>
<td>* 2 *</td>
</tr>
<tr>
<td>< 3</td>
<td>< 3</td>
</tr>
<tr>
<td>< 4</td>
<td>< 4</td>
</tr>
<tr>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>< 6</td>
<td>< 6</td>
</tr>
<tr>
<td>< 7</td>
<td>< 7</td>
</tr>
<tr>
<td>< 8</td>
<td>< 8</td>
</tr>
</tbody>
</table>

J16 = Short B-C
J17 = Short A-C for CPU-Z or CPU 8085/88
J17 = Short B-C for CPU 8086/87

S2 POSITION
I/O BOARD SUPPORTED UNDER CP/M-80 AND CP/M-86

| 1 | 2 |

- "ON" "ON" INTERFACTOR 1 or 2; Console at OOH, LPT List at O2H
- "ON" "OFF" DISK 1 serial port as Console - CP/M-80 ONLY!!!
- "OFF" "ON" SYSTEM SUPPORT 1 at 3OH; Console 9600 baud, List as above
- "OFF" "OFF" INTERFACTOR 3 or 4; 9600 baud, Console user 7, List user 6

These settings select DMA arbiter priority 15, port COH-C3H, wait states enabled, and the BOOT routine as selected.

CPU-Z - The standard switch settings for running the CPU-Z with DISK 1 are:

<table>
<thead>
<tr>
<th>"OFF" S1 "ON"</th>
<th>"OFF" S2 "ON"</th>
<th>"OFF" S3 "ON"</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>< 2</td>
<td>< 2</td>
<td>< 2</td>
</tr>
<tr>
<td>< 3</td>
<td>< 3</td>
<td>< 3</td>
</tr>
<tr>
<td>< 4</td>
<td>< 4</td>
<td>< 4</td>
</tr>
<tr>
<td>< 5</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>< 6</td>
<td>< 6</td>
<td>< 6</td>
</tr>
<tr>
<td>< 7</td>
<td>< 7</td>
<td>< 7</td>
</tr>
<tr>
<td>< 8</td>
<td>< 8</td>
<td>< 8</td>
</tr>
</tbody>
</table>

This assumes that you are not planning to run at the slow CPU-Z speed and that you do not require wait states generated on the CPU.
CPU 8085/88 - The standard switch settings for running the CPU 8085/88 with DISK 1 are:

<table>
<thead>
<tr>
<th>"OFF"</th>
<th>S1</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S2</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S3</th>
<th>"ON"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>></td>
<td><</td>
<td>1</td>
<td><</td>
<td>1</td>
<td><</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>></td>
<td><</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>></td>
<td><</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>4</td>
<td><</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switch S4 should be set to the desired speed. Switch S1-7 should be "OFF" in systems having a front panel and "ON" in systems without a front panel. A wait state is inserted in all I/O cycles.

CPU 86/87 - The standard switch settings for running the CPU 86/87 with DISK 1 are:

<table>
<thead>
<tr>
<th>"OFF"</th>
<th>S1</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S2</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S3</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S4</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S5</th>
<th>"ON"</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>1</td>
<td><</td>
<td>1</td>
<td><</td>
<td>1</td>
<td><</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>2</td>
<td><</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUMPERS: Make sure there is a shorting plug installed at jumper location J8. J8 is located near the top left-hand corner of the board. There should be no shorting plugs installed at jumper locations J0 thru J7, which are located near the bottom left-hand corner of the board.

INTERFACER 1 - The standard switch settings for running the INTERFACER 1 as the console and List device I/O board with DISK 1 are:

<table>
<thead>
<tr>
<th>"OFF"</th>
<th>S1</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S2</th>
<th>"ON"</th>
<th>"OFF"</th>
<th>S3</th>
<th>"ON"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>></td>
<td></td>
<td>1</td>
<td>></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>2</td>
<td></td>
<td>2</td>
<td>></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>3</td>
<td></td>
<td>3</td>
<td>></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>4</td>
<td></td>
<td>4</td>
<td>></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>5</td>
<td></td>
<td>5</td>
<td>></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>6</td>
<td></td>
<td>6</td>
<td>></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>7</td>
<td></td>
<td>7</td>
<td>></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This configuration provides the Console device on channel "A" (ports 00H and 01H) at 9600 baud and the List device on channel "B" (ports 02H and 03H) at 9600 baud.

1. Jumpers J3 through J6 should be set in Slave mode.
2. We recommend that Jumpers J7 and J8 be set to match your terminal
and printer specifications and that Jumpers J9 and J10 have traces 2-15, 4-13, 6-11, and 8-9 cut.
3. Baud rates may be altered if desired by resetting S1.

INTERFACER 2 - The standard switch settings for running the serial section of the INTERFACER 2 as the console device I/O board with DISK 1 are as follows. The list device is assumed to be another INTERFACER 1/2 serial port at locations 02H and 03H.

```
<table>
<thead>
<tr>
<th>&quot;OFF&quot;</th>
<th>S2</th>
<th>&quot;ON&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&gt;</td>
<td>1</td>
</tr>
<tr>
<td>&lt; 2</td>
<td>2</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 3</td>
<td>3</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 4</td>
<td>4</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 5</td>
<td>5</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 6</td>
<td>6</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 7</td>
<td>7</td>
<td>&gt;</td>
</tr>
<tr>
<td>&lt; 8</td>
<td>8</td>
<td>&lt;</td>
</tr>
</tbody>
</table>
```

This configuration provides the Console device on the serial channel (ports 00H and 01H) at 9600 baud and the List device on another INTERFACER 1 or 2 channel.

1. Jumpers J5 and J6 should be set in Slave mode.
2. We recommend that you set J9 to match your terminal specifications and that Jumper J10 have traces 2-15, 4-13, 6-11, and 8-9 cut.
3. Baud rate may be altered if desired by resetting S2.
4. The setting of S1 is dependent on your parallel requirements and does not affect the setting of the serial channel.
5. The address chosen for the parallel ports is the CompuPro standard of 08H through 0BH so that it does not overlap the serial port.

INTERFACER 3 - The standard switch settings for running the INTERFACER 3 as the console and list device I/O board with DISK 1 are:

```
<table>
<thead>
<tr>
<th>&quot;OFF&quot;</th>
<th>S1</th>
<th>&quot;ON&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>&gt;</td>
<td>4</td>
</tr>
<tr>
<td>&lt; 5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>&gt;</td>
<td>8</td>
</tr>
</tbody>
</table>
```

This configuration provides the Console device on User 7 (left most) at 9600 baud and the List device on User 6 (2nd from left) at 9600 baud.

1. Jumpers J1 and J2 should be set in Slave mode.
2. We recommend that Jumpers J3 through J14 be removed.
3. Jumpers J15 and J16 may remain unwired.
4. Jumper J17 should be set for an appropriate number of wait states for your system speed.
5. USART assumes 8 data bits, 2 stop bits, no parity, async operation, RTS and DTR output in "spacing" (+12V) condition.
6. USART requires that CTS and DSR* be "spacing" (+12V). *(DSR is used to determine if printer is ready on User 6 only)

INTERFA CER 4 - The standard switch settings for running the INTERFA CER 4 as the console and list device I/O board with DISK 1 are:

```

<table>
<thead>
<tr>
<th>&quot;OFF&quot;</th>
<th>S1 &quot;ON&quot;</th>
<th>&quot;OFF&quot;</th>
<th>S2 &quot;ON&quot;</th>
<th>&quot;OFF&quot;</th>
<th>S3 &quot;ON&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1</td>
<td>1 &gt;</td>
<td>1 &gt;</td>
<td></td>
<td>&lt; 1</td>
<td></td>
</tr>
<tr>
<td>&lt; 2</td>
<td>2 &gt;</td>
<td>2 &gt;</td>
<td></td>
<td>&lt; 2</td>
<td></td>
</tr>
<tr>
<td>&lt; 3</td>
<td>3 &gt;</td>
<td>3 &gt;</td>
<td></td>
<td>&lt; 3</td>
<td></td>
</tr>
<tr>
<td>&lt; 4</td>
<td>4 &gt;</td>
<td>4 &gt;</td>
<td></td>
<td>&lt; 4</td>
<td></td>
</tr>
<tr>
<td>&lt; 5</td>
<td>5 &gt;</td>
<td></td>
<td>&lt; 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 6</td>
<td>6 &gt;</td>
<td></td>
<td>&lt; 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 7</td>
<td>7 &gt;</td>
<td></td>
<td>&lt; 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 8</td>
<td>8 &gt;</td>
<td></td>
<td>&lt; 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 9</td>
<td>9 &gt;</td>
<td></td>
<td></td>
<td>&lt; 9</td>
<td></td>
</tr>
<tr>
<td>&lt; 10</td>
<td>10 &gt;</td>
<td></td>
<td></td>
<td>&lt; 10</td>
<td></td>
</tr>
</tbody>
</table>
```

This configuration provides the Console device on User 7 (left most serial port-CONN3-A) at 9600 baud, the List device on User 5 (middle serial port-CONN3-B at 9600 baud or the CENTRONICS PARALLEL Channel-CONN 2 / SEE ITEM #3 BELOW), and the ULI device on User 5 (right most serial channel).

1. Jumper Sockets JS1-JS3 should contain 8 position DIP SHUNTS (Slave mode for terminals or printers).
2. Jumper J6, J7, or J8 should be installed for 1, 2, or 3 wait states.
3. For a serial list device, use CONN3-B with jumper J26 having "A" shorted to "B", and "C" shorted to "D".
 For a parallel list device using the CENTRONICS PARALLEL Channel, use CONN2 with jumper J26 having "A" shorted to "C", and "B" shorted to "D"
 For an EPSON type printer, install J2-bottom, J3-top, and J4-bottom.
4. All other Jumpers may be removed.
5. USART assumes 8 data bits, 2 stop bits, no parity, asynch operation, RTS and DTR output in "spacing" (+12V) condition.
6. USART requires that CTS and DSR* be "spacing" (+12V). *(DSR is used to determine if printer is ready on User 6 only)

SYSTEM SUPPORT 1 - The standard switch settings for running the SYSTEM SUPPORT 1 as the console device I/O board with DISK 1 are:

```

<table>
<thead>
<tr>
<th>&quot;OFF&quot;</th>
<th>S1 &quot;ON&quot;</th>
<th>&quot;OFF&quot;</th>
<th>S2 &quot;ON&quot;</th>
<th>&quot;OFF&quot;</th>
<th>S3 &quot;ON&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1</td>
<td>1 &gt;</td>
<td></td>
<td>&lt; 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 2</td>
<td>2 &gt;</td>
<td></td>
<td>&lt; 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 3</td>
<td>3 &gt;</td>
<td></td>
<td>&lt; 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 4</td>
<td>4 &gt;</td>
<td></td>
<td>&lt; 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 5</td>
<td></td>
<td>5 &gt;</td>
<td></td>
<td>5 &gt;</td>
<td></td>
</tr>
<tr>
<td>&lt; 6</td>
<td></td>
<td>6 &gt;</td>
<td></td>
<td>6 &gt;</td>
<td></td>
</tr>
<tr>
<td>&lt; 7</td>
<td></td>
<td>7 &gt;</td>
<td></td>
<td>7 &gt;</td>
<td></td>
</tr>
<tr>
<td>&lt; 8</td>
<td></td>
<td>8 &gt;</td>
<td></td>
<td>8 &gt;</td>
<td></td>
</tr>
</tbody>
</table>
```

This configuration provides the Console device on the SYSTEM SUPPORT 1 serial channel at 9600 baud and the List device as an INTERFA CER 1/2 serial channel at ports 02H and 03H.
1. USART assumes 8 data bits, 2 stop bits, no parity, RTS and DTR output in "spacing" (+12V) condition. USART requires that CTS be "spacing" (+12V).
2. J2 and J8 should be bussed straight across with a shunt.
3. For CP/M-86, either a 6116 RAM chip or a G086 JUMP EPROM should be installed in U16. The above settings place it at OFF0000H for the 8086/88.

RAM 16 - The standard switch settings for operating a RAM 16 as the first 64K of system memory with the DISK 1, this setting places 64K in extended page 0 (base page), are:

```
"OFF"  S1  "ON"
  1 >   2 >   3 >   4 >   5 >   6 >   7 >   8 >
```

RAM 17 - The standard switch settings for operating a RAM 17 as the first 64K of system memory with the DISK 1 are:

```
"OFF"  S1  "ON"  "OFF"  S2  "ON"
  *  1  *  <  1  
  2 >  2 >  
  3 >  3 >  
  4 >  4 >  
  5 >  5 >  
  6 >  6 >  
  7 >  7 >  
  8 >  8 >  
  9 >  9 >  
  * 10  *  10 >
```

In systems with front panels, S1-1 should be "ON" and S1-10 should be "OFF". In systems without front panels, S1-1 should be "OFF" and S1-10 should be "ON". This setting places all 64K active and resident in extended page 0 (base page).

RAM 20 - The standard switch settings for operating two RAM 20 boards as the first 64K of system memory with the DISK 1 are:

```
"OFF"  S1  "ON"  "OFF"  S2  "ON"  "OFF"  S3  "ON"  "OFF"  S4  "ON"
  1 >  <  1  >  <  1  >  <  1  >  <  1
  2 >  <  2  >  <  2  >  <  2  >  <  2  >  <  2
  3 >  <  3  >  <  3  >  <  3  >  <  3  >  <  3  >  <  3
  4 >  <  4  >  <  4  >  <  4  >  <  4  >  <  4
  5 >  <  5  >  <  5  >  <  5  >  <  5  >  <  5  >  <  5
  6 >  <  6  >  <  6  >  <  6  >  <  6  >  <  6  >  <  6
  7 >  <  7  >  <  7  >  <  7  >  <  7  >  <  7  >  <  7
  8 >  <  8  >  <  8  >  <  8  >  <  8  >  <  8  >  <  8
```
To set the first RAM 20 (0-32K) should have S2-4 in the "OFF" position and the second RAM 20 should have S2-4 in the "ON" position. The two boards will form 64K (all active and resident) in extended page 0 (base page).

RAM 21

The standard switch settings for operating a RAM 21 as the first 128K of system memory with the DISK 1, this setting places 64K in extended page 0 (base page), and 64K in extended page 1, are as follows:

```
"OFF" S1 "ON"
1 >
2 >
3 >
4 >
5 >
6 >
7 >
8 >
```

DRIVE INTERFACE - 8 INCH DRIVES

The interface to soft media 8" drives is standard except that the stepper motors must be enabled at all times (not tied to drive select or head load). This causes the steppers to be powered at all times (they will get warm), and allows stepping without the lamp on the front of the drive being "ON" (so be careful). In addition, the head load signal should not be tied to drive select since the 765A/8272 is always scanning the drives (this would result in a buzz). Standard 50 pin ribbon cable should be used to connect the drives to the controller, and the last drive in the line should be terminated as specified in the drive manual.

NOTE: Due to the steppers being enabled at all times, your disk power supply must be able to handle full load on the +24V line all the time and your drive box must have adequate cooling.

SHUGART 800/801: On a Shugart 800/801 drive, the shorting plugs should be installed and removed as shown on all drives as shown on the following example:

```
INSTALLED ( T2, A, B, C, Z, 800 )
REMOVED ( D, DC, X, Y, HL, DS )
```

Drive select (DSx) should be installed appropriately and the terminators T1, and T3-T6 should be installed on the last drive of the cable.

SHUGART 850/851: On a Shugart 850/851 drive, the shorting plugs should be installed and removed as shown below, and the DIP shunt should be altered as required. **NOTE:** SHUGART changes the drive P.C. board on the 850/851 regularly, so this information is for the MLC 12 series and may be dated.

```
INSTALLED ( C, 2S, S2, IW, RS, DL, IT, AF, M, 850 )
REMOVED ( FS, TS, Y, DS, HLL, HI, D, DC, NF )
```
SHUNT: CUT HL AND X, ALL OTHERS INTACT. TERMINATOR RESISTORS SHOULD BE INSTALLED ON THE LAST DRIVE OF THE CABLE.

QUADE DATA TRACK 8: On Quade Data Track 8 drives, the shorting plugs should be installed and removed as shown below, and the DIP shunt should be altered as required.

INSTALLED (C, 2S, DL, DSx)
REMOVED (T40, GND, DS, D, DC, Y, HA)

SHUNT: CUT HL AND X, ALL OTHERS INTACT. TERMINATOR RESISTORS SHOULD BE INSTALLED ON THE LAST DRIVE OF THE CABLE.

SIEMENS MODEL FDD 100-8: On Siemens Model D drives, the shorting plugs should be installed and removed as shown below.

INSTALLED (S, S2, E, D, RR, 0, 2, F, RJ, L, U, RH)
REMOVED (HS, 8, 16, 22, 1, TE, A, V, B, I, K, M, C)

PC BOARD MODIFICATION FOR RUNNING TWO OR MORE DRIVES: This modification involves the raw read data on pin 46 and the step inhibit signal on IC 6C (7438).
1. Remove the P.C. board and cut the trace leading to IC 6C pin 9.
2. Connect IC 6C pin 9 to IC 6C pin 12 and re-install the P.C. board.

TANDON MODEL 848 On a Tandon 848 drive, the drive will run as shipped except for the alteration of the shunt and the installation of the drive select plug. The following connections should be observed.

INSTALLED (DC, 2S, S2, C, RR, RI, WP)
REMOVED (Y, DS, DL, HLL, D, NP, RM, SI)

SHUNT: CUT HL AND X (5 AND 2 OF U3), ALL OTHERS INTACT. TERMINATOR RESISTORS SHOULD BE INSTALLED ON THE LAST DRIVE OF THE CABLE.

MITSUBISHI MODEL M2894-63 On a Mitsubishi M2894 drive, the shorting plugs should be installed and removed as shown below, and the DIP shunt (PJ1-8) should be altered as required.

INSTALLED (E, Z, 2S, I, R, S2, IWK, C, WP)
REMOVED (A, F, Y, DC, IT, S3)

SHUNT: OPEN PJ4 AND PJ5, ALL OTHERS CLOSED. TERMINATOR RESISTORS SHOULD BE INSTALLED ON THE LAST DRIVE OF THE CABLE.

5.25 INCH DRIVES

Connection to 5.25" minifloppies requires that the DISK 1 board be modified as per the instructions entitled "MODIFICATIONS FOR MINIFLOPPIES" prior to the
following drive connections. Standard 34 pin ribbon cable should be used. However, the female transition connector must be offset to the extreme right when seated in connector J10. The serial port may be used as the motor "ON-OFF" control bit if switch S1-3 is placed in the "ON" position.

No modifications need to be made to minifloppy drives except to select the proper drive select line on the programming shunt and leave it intact. If your minifloppy drive does not drive the READY* line, a jumper must be installed between "C" and "G" of J15. If it does drive the ready line, a jumper must be installed between "C" and "A" of J15. Jumpers J11-J13 should be set for 5.25" operation and J14 should be installed.

TRYING TO BOOT THE CONTROLLER

Before inserting your diskette, you should see the following things:

(1) Your drive activity light should be glowing very dimly to indicate that the floppy controller is scanning the drives.

(2) If the controller is trying to boot, you will see the activity light of drive #1 flashing on and off approximately once a second (dependent on the CPU speed).

If both of these are present, insert your write protected diskette and listen. If using an I/O port other than the on-board serial port, you should hear several (approx. four) clicking sounds from the drive and see the sign-on message. If using the on-board serial port you should hear one click, and after striking the "U" on the terminal, you should hear the four clicks and see the sign-on message.

TROUBLESHOOTING

If you are having problems getting your DISK 1 up and running and you have read the previous sections of this manual completely, read on. The following section may help you solve your problem.

PROBLEM: ONE OR MORE OF YOUR DRIVE ACTIVITY LIGHTS STAYS "ON" BRIGHT ALL THE TIME.

Solution: This almost always indicates that the drive cable is backwards at either the drive box connector or at the drive. This may be verified by removing the 50 pin cable from either the board or the box. If the lamp goes off, the cable is reversed. NOTE: When using our controller with drives from Morrow Designs, the cable must be reversed due to their non-standard connector pinouts.

PROBLEM: ACTIVITY LAMPS DO NOT GLOW DIMLY OR FLASH BRIGHT

Solution: This generally indicates that the drive is jumpered wrong or there is a controller fault. Make sure that the drives are jumpered correctly and that the activity lamp is activated by drive select and not head load. Make sure that the drive has all of the different DC voltages that it requires. If the
lamp still does not light, there could be a problem in either the controller or an open in the 50 pin drive cable.

PROBLEM: ACTIVITY LAMP GLOWS DIMLY BUT DOES NOT FLASH

Solution: This typically indicates either that the CPU is not executing the code in the BOOT EPROM due to the memory not being phantomed OFF, or that the host CPU does not have its jump-on-reset circuit turned off. The lamp will flash even if there is nothing in the system but the CPU and the DISK 1 board (no RAM). Try removing everything but the CPU and the DISK 1 and verifying that the lamp flashes. If it does not, either of these boards could be at fault. Review your switch settings.

PROBLEM: DRIVE LOADS HEAD THEN UNLOADS AND REPEATS

Solution: If the board clicks and then pauses, and then repeats itself, this is typically an indication that the controller is unable to read the data from the drive. This could be from the data on the diskette being bad, the phase lock loop being out of adjustment, the DMA cycle being inhibited by the CPU, or a hardware problem on either the drive, the cable, or the DISK 1 board. Try to isolate the problem by substitution if possible, otherwise check switch settings and drive hardware for proper configuration. CAUTION: Controller calibration should only be performed by an authorized dealer, OEM or the factory.

PROBLEM: DRIVE LOADS HEAD ONCE THEN STOPS

Solution: A single loading of the head and then nothing generally indicates that the controller is reading the first several sectors OK but either the data is transferred into memory improperly or the system memory is either bad or misaddressed. Improper transfer into memory generally occurs only with dynamic RAM boards that rely on specific CPU timing. If you have dynamic memory, make sure that it can handle DMA and that it generates its own refresh timing. Otherwise make sure that the RAM is addressed properly and in the proper extended page (page 0). Remember that for CP/M-80 you only need 32K and for CP/M-86 you need 64K. If you can run a RAM test, verify that that your memory is OK.

PROBLEM: IMSAI FRONT PANEL "LOCKS UP" WHEN DISK 1 IS INSTALLED

Solution: The new IEEE 696/S-100 bus standard calls for lines 20 and 70 to be grounded on the bus. When the IMSAI front panel was designed, many memory boards had the capability to be "protected" from accidental writes to the board. To accommodate these boards, the IMSAI front panel grounded line 70 but pulled up line 20 with a resistor that also enabled all the front panel functions. When DISK 1 is inserted, line 20 is grounded and the front panel is disabled. The solution is to cut line 20 on the front panel since this line is now defined as ground. ADDITIONAL NOTE: To access system RAM from the front panel after reset or power-up without running the DISK 1, the BOOT INHIBIT switch (S1-4) must be set "ON" to disable the BOOT EPROM.
HARDWARE SECTION

DISK INTERFACE PORT MAP

The DISK 1 interface uses a block of four port addresses for communication between it and the host processor. DISK 1 occupies no memory space of the host processor and performs all data transfers via DMA. The address of the first port is switch settable to any address which is a multiple of four. The ports will be referred to as relative ports 0 - 3.

RELATIVE FUNCTION
PORT

0 . . . FDC main status register (read only)

1 . . . FDC data register

2 . . . STATUS register (when read)
 D7 indicates FDC INT output is asserted.
 No other bits are significant.
 DMA address register (when written)
 The DMA address register is actually a push-down stack of three one byte registers. A three byte, twenty-four bit DMA address should be loaded most significant byte first.

3 . . . SERIAL PORT
 When read, bit D7 will contain the current status of the serial input line.
 When written, bit D7 should contain the new state for the serial output line. The state will be latched until changed.
 When written with a "0" in bit D0, the BOOT EPROM will be disabled. A system reset is required to re-enable the BOOT EPROM.

 (1) Bit D7 = 1 indicates a SPACING condition or binary 0. (A start bit is a space)

 (2) Bit D7 = 0 indicates a MARKING condition or a binary 1.

 (3) On RESET, the output will be cleared to the MARKING state.

 If the SERIAL port is not required for RS232 communications, a switch will allow the output data latch to serve as MOTOR-ON for the 5.25 inch floppy disks.

COMPUPRO 8 INCH DRIVE INTERFACE ADDRESS

The current implementation of all software packages written for the DISK 1 controller and 8 inch drives including the CompuPro BIOS for CP/M-80 and CP/M-86, as well as single and multi-user OASIS, requires that the base port address be set to COH.
ACTUAL PORT FUNCTION

C0 FDC main status register (read only)
C1 FDC data register
C2 STATUS register (when read)
 DMA address register (when written)
C3 SERIAL PORT

COMPUPRO 5.25 INCH DRIVE INTERFACE ADDRESS

The recommended base port address for the DISK 1 controller and 5.25 inch drives is CCH.

ACTUAL PORT FUNCTION

CC FDC main status register (read only)
CD FDC data register
CE STATUS register (when read)
 DMA address register (when written)
CF SERIAL PORT

PORT ADDRESSING

DIP switch S2, positions 3 thru 8 are used to select the base address of the
four port block in a binary fashion as shown below:

<table>
<thead>
<tr>
<th>SWITCH POSITION</th>
<th>ADDRESS BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A7</td>
</tr>
<tr>
<td>4</td>
<td>A6</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
</tr>
<tr>
<td>6</td>
<td>A4</td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
</tr>
<tr>
<td>8</td>
<td>A2</td>
</tr>
</tbody>
</table>

"ON" = "0"
"OFF" = "1"

EXAMPLE: To address this board at addresses C0H thru C3H for the CompuPro CP/M
BIOS, positions 3 and 4 would be "OFF" and positions 5 thru 8 would be "ON".
EXAMPLE: To address this board at addresses CCH thru CFH, positions 3, 4, 7 and
8 would be "OFF" and positions 5 and 6 would be "ON".

SERIAL PORT

The serial port on the DISK 1 was designed for initial system startup only
and should not be used as the console device for longer than required to patch
the BIOS. Since this port is controlled entirely by software, its baud rate
limitations are dependent on the host processor's clock rate. With the current
implementation of the BIOS, the speed of the terminal is calculated when an
upper case "U" is struck on the keyboard, and the sign-on message is then
displayed. The terminal may be set to any baud rate, but the following maximum
baud rates should be observed for best reliability:

<table>
<thead>
<tr>
<th>CPU CLOCK SPEED</th>
<th>MAX. BAUD RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MHz</td>
<td>600 baud</td>
</tr>
<tr>
<td>4MHz</td>
<td>1200 baud</td>
</tr>
<tr>
<td>5MHz</td>
<td>2400 baud</td>
</tr>
</tbody>
</table>
If your processor does not run at any of the above speeds, don't worry-these are only suggested maximum rates. Connector J9 accepts a standard INTER-
FACECER cable with ground on pin 7, transmit data on pin 3, and receive data on
pin 2. No RS-232 handshaking lines are provided.

INTERRUPTS

The DISK 1 is capable of running in either a polled mode or an interrupt
driven mode that is particularly suited for multi-user environments. The STATUS
port (relative port 2) allows the user to run in the polled mode by sampling the
interrupt output of the floppy disk controller on data bit 7. To run in an
interrupt driven mode, the interrupt output of the floppy disk controller is
driven onto one of the vectored interrupt lines (V10* thru V17*) or the INT*
line of the S-100 bus. This is accomplished by installing a shorting plug or a
#30 wrap wire across the posts at jumper locations J0 thru J7 or J8. Jumpers J0
thru J7 correspond directly to V10* thru V17*, and J8 is for INT*. It is
recommended that the highest priority vectored interrupt be used to insure that
it is not accidentally masked off.

BOOT EPROM

The BOOT EPROM contains the software routines required to load the initial
sectors of the disk operating system into memory for system startup. The exact
contents of this routine is covered in the SOURCE LISTINGS section under ROM
Boot.

Upon power-up, the BOOT EPROM will appear as 256 bytes of memory at the host
CPU's reset address. If the CPU does not reset to a location on a 256 byte
boundary, the BOOT EPROM will align itself on the nearest 256 byte page. For
example, an 8085 or a Z-80 will reset to 0000H, which is on a 256 byte boundary.
Therefore, in this case the BOOT EPROM will appear from 0000H to 00FFH. An 8088
or an 8086 resets to OFFFOOH, which is not page aligned, therefore, the BOOT
EPROM will appear from OFFFOOH to OFFFFFH.

The DISK 1 requires that a minimum of 256 bytes of system RAM at the same
location as the BOOT EPROM be capable of responding to PHANTOM* by disabling
itself. This RAM may be of any amount greater than 256 bytes since the BOOT
routine requires no memory for proper operation.

BOOT EPROM ROUTINE ADDRESSING

The BOOT EPROM is capable of holding two sets of four switch selectable BOOT
routines of up to 256 bytes each. Positions 1 and 2 of switch S2 select one of
the four routines in a binary fashion and jumper J17 selects either the low or
high half of the EPROM as shown below:

<table>
<thead>
<tr>
<th>J17 POSITION</th>
<th>SWITCH S2 POSITION</th>
<th>EPROM STARTING ADDRESS</th>
<th>BOOT ROUTINE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ON</td>
<td>000H</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>100H</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>200H</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>300H</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>ON</td>
<td>400H</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>ON</td>
<td>500H</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>OFF</td>
<td>600H</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>OFF</td>
<td>700H</td>
<td>7</td>
</tr>
</tbody>
</table>
NOTE: In some cases, the DISK I may be shipped set for routines 4-7 rather than 0-3. In these cases, please leave J17 as shipped and treat the routines as 0-3 only.

BOOT ROUTINE SHORT DESCRIPTION

As shipped, the BOOT EPROM contains routines for loading several sectors of track 0 into memory and passing on the value associated with the particular BOOT routine. The value passed on allows the proper console I/O routine to be selected as described in a following section. The specific details for passing this value is contained in the description of the CP/M-80 BIOS. The BIOS for CP/M-80 and CP/M-86 (for running under CPU 8085/88) as implemented interprets this value as shown below. Software designed CPU 68K will contain information describing which routine to use.

#4 This BOOT routine specifies a standard INTERFA CER 1 or 2 serial port at locations 00H and 01H for the console device and the LPT list device at locations 02H and 03H. (For CP/M-80 and CP/M-86)

#5 This BOOT routine specifies the DISK I on-board serial port as the console device and the list device the same as routine #1. (For CP/M-80 only! CP/M-86 does not support the on-board serial port.)

#6 This BOOT routine specifies the serial channel on the SYSTEM SUPPORT I board addressed at 50H and for 9600 baud as the console device and the list device the same as in routine #1. (For CP/M-80 and CP/M-86)

#7 This BOOT routine specifies two serial channels on an INTERFA CER 3 or 4 addressed at 10H and set for 9600 baud, with user 7 as the console and 6 as the list device. (For CP/M-80 and CP/M-86)

#0 This routine is identical to #4 but for CPU 8086/87 only.

#1 This routine is not used by CPU 8086/87.

#2 This routine is identical to #6 but for CPU 8086/87 only.

#3 This routine is identical to #7 but for CPU 8086/87 only.

WAIT STATE ENABLE

The DISK I is capable of inserting wait states into the BOOT EPROM read as well as the I/O and DMA read or write cycles when fast processors are being used. The wait states become necessary when the access time of the BOOT EPROM and the floppy disk controller are longer than the fetch time of the host processor. The wait states are enabled by placing position 1 of switch S1 in the "ON" position. When enabled, the EPROM will have 5 wait states inserted, and the I/O and DMA cycles can have either 2, 3 or 4 wait states. With J16 in position "A", 2 wait states will be inserted, with J16 in position "B", 3 wait states will be inserted, and with J16 removed, 4 wait states will be inserted.

BOOT ENABLE/INHIBIT

The BOOT EPROM may be disabled by putting position 4 of S1 in the "ON" position, and enabled by placing it in the "OFF" position. A possible reason for disabling the BOOT routine would be if two or more DISK I controllers were
placed in the system at one time or the DISK 2 hard disk controller was the BOOTING device. In this case, more than one controller trying to boot would cause a system conflict.

Remember, the BOOT hardware on the DISK 1 board requires that a 256 byte page of memory respond to PHANTOM at the host processor's reset address. If the memory residing at this address does not respond to PHANTOM, a bus drive conflict will occur and possible damage could result.

ARBITER AND PRIORITY SELECTION

The DISK 1 controller allows multiple DMA devices to be active on the S-100 bus at one time. As long as a DMA board (temporary bus master) conforms to the IEEE 696 specifications concerning DMA arbitration and prioritization, up to 16 different bus masters may gain use of the bus in order of their assigned priority. Remember, there should never be more than one temporary bus master at the same priority level.

The priority of the DISK 1 board is selected in a binary fashion on positions 4 thru 8 on DIP switch S1 as shown below:

<table>
<thead>
<tr>
<th>SWITCH POSITION (S1)</th>
<th>PRIORITY LEVEL</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PRIORITY 3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>PRIORITY 2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>PRIORITY 1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PRIORITY 0</td>
<td>1</td>
</tr>
</tbody>
</table>

"ON" = NO VALUE "OFF" = VALUE

EXAMPLE: 1. For the highest priority (15), positions 5 thru 8 would be "OFF" (8+4+2+1=15).
 2. For priority 9, positions 5 and 8 would be "OFF" and positions 6 and 7 would be "ON" (8+1=9).
 3. For the lowest priority (0), positions 5 thru 8 should be "ON".

MOTOR CONTROL ENABLE

A switch has been provided to allow the output bit of the software serial startup port to act as a "MOTOR-ON" bit for minifloppies. If switch S1 position 3 is "OFF", the serial port may be used, and the minifloppy motors will be on at all times. If position 3 is "ON", the "MOTOR ON" line is active and the motors may be turned "ON" by outputting a "0" to the control bit. The motors may be turned "OFF" by outputting a "1" to the control bit.

MODIFICATIONS FOR MINIFLOPPY DRIVES

If you have purchased a DISK 1 controller for 8 inch drives and wish to convert it to 5.25 inch operation, this modification can be performed at the factory for a nominal charge. Otherwise, the following section may serve as a guide for technically competent users to alter this board.
Several modifications need to be made to the DISK 1 board configured as an 8 inch controller prior using it with minifloppy drives. These changes will be outlined below:

(1) The components indicated in the parts list under ALTERNATE PARTS LIST FOR MINIFLOPPY DRIVES must be substituted for the parts that are currently on the board unless they have been substituted at the factory.

(2) The three traces on the solder side of the board pointed to by the three arrows (behind J11, J12, and J13) must be cut with a sharp knife. Three jumpers must then be installed to connect the pads labeled "5" and "C". In addition install J14.

(3) If your minifloppy does not drive the READY* line, install a jumper on J15 between "A" and "B". If your minifloppy does drive the READY* line, install a jumper between "A" and "C".

At this point, you should be ready to connect your minifloppy drive to the controller and verify its operation. Some alteration of the setting of R35 may be necessary for reliable double density operation. Remember that your 34 pin cable should be seated to the extreme right in connector J10 for proper operation.

DISK 1 CONNECTOR PINOUT WITH 8 AND 5.25 INCH DRIVES

<table>
<thead>
<tr>
<th>DISK 1 J10 PIN</th>
<th>8 INCH DRIVE SIGNAL</th>
<th>DISK 1 J10 PIN</th>
<th>5 INCH DRIVE CABLE PIN</th>
<th>5 INCH DRIVE SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LOW CURRENT</td>
<td>2</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FAULT RESET</td>
<td>4</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FAULT</td>
<td>6</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>8</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TWO SIDED</td>
<td>10</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>12</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SIDE SELECT</td>
<td>14</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NC</td>
<td>16</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>HEAD LOAD</td>
<td>18</td>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>20</td>
<td>INDEX (8")</td>
<td>20</td>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>22</td>
<td>READY</td>
<td>22</td>
<td>6</td>
<td>DRIVE SELECT 4</td>
</tr>
<tr>
<td>24</td>
<td>INDEX (5")</td>
<td>24</td>
<td>8</td>
<td>INDEX</td>
</tr>
<tr>
<td>26</td>
<td>DRIVE SELECT 1</td>
<td>26</td>
<td>10</td>
<td>DRIVE SELECT 1</td>
</tr>
<tr>
<td>28</td>
<td>DRIVE SELECT 2</td>
<td>28</td>
<td>12</td>
<td>DRIVE SELECT 2</td>
</tr>
<tr>
<td>30</td>
<td>DRIVE SELECT 3</td>
<td>30</td>
<td>14</td>
<td>DRIVE SELECT 3</td>
</tr>
<tr>
<td>32</td>
<td>DS4/MOTOR ON</td>
<td>32</td>
<td>16</td>
<td>MOTOR ON</td>
</tr>
<tr>
<td>34</td>
<td>DIRECTION SELECT</td>
<td>34</td>
<td>18</td>
<td>DIRECTION SELECT</td>
</tr>
<tr>
<td>36</td>
<td>STEP</td>
<td>36</td>
<td>20</td>
<td>STEP</td>
</tr>
<tr>
<td>38</td>
<td>WRITE DATA</td>
<td>38</td>
<td>22</td>
<td>WRITE DATA</td>
</tr>
<tr>
<td>40</td>
<td>WRITE GATE</td>
<td>40</td>
<td>24</td>
<td>WRITE GATE</td>
</tr>
<tr>
<td>42</td>
<td>TRACK 00</td>
<td>42</td>
<td>26</td>
<td>TRACK 00</td>
</tr>
<tr>
<td>44</td>
<td>WRITE PROTECT</td>
<td>44</td>
<td>28</td>
<td>WRITE PROTECT</td>
</tr>
<tr>
<td>46</td>
<td>READ DATA</td>
<td>46</td>
<td>30</td>
<td>READ DATA</td>
</tr>
<tr>
<td>48</td>
<td>NC</td>
<td>48</td>
<td>32</td>
<td>SIDE SELECT</td>
</tr>
<tr>
<td>50</td>
<td>NC</td>
<td>50</td>
<td>34</td>
<td>READY</td>
</tr>
</tbody>
</table>

PINS 1-49 ODD ARE ALL GROUND RETURNS.
THEORY OF OPERATION

The DISK 1 board can be broken down into five subsections that will be discussed in detail in the following pages. These five subsections correspond to the five pages of the schematic, and include: (1) The Bus Interface and Boot Circuitry, (2) The DMA Counters and Address Drivers with the Serial Port, (3) The DMA Sequencing Logic and Priority Arbiter, (4) The Disk Read/Write Circuitry and Data Separator, (5) and The Floppy Disk Controller and Interface Circuitry. While reading this section it is suggested that the reader refer to the schematic and the data sheet on the controller chip.

SECTION (1): THE BUS INTERFACE AND BOOT CIRCUITY

This section includes the logic for the S-100 bus interface to the floppy controller, the boot circuitry, the strobe generators, the wait state circuitry and the data bus interface. Octal bus driver U41 buffers the address lines A0 thru A7 for on-board use by the strobe decoder (U11), the boot EPROM (U28), and the address decoder (U40). Octal comparator U40 uses DI8 switch S2, address lines A2 thru A7, and sOUT and sINP* to decode a valid four port board select signal BDSEL*, BDSEL*, A0 and A1, OUTPUT* (which is sWQ* buffered by U10A), and BUS STB (generated from pDBIN and pWR* by U23), are decoded by the 3-8 line decoder U11 to generate the strobes for the floppy disk controller, the DMA registers, and the serial port. Three of these strobes are multiplexed by U108, U9 and U16 with BC*, WE, and pDBIN to generate the strobes for the floppy disk controller (RD* and WR*) and the DMA clock (DMA CLK) depending on whether a DMA bus cycle (BC) is occurring or not. During a DMA cycle, WE and pDBIN generate the control strobes for the controller chip, and BC* clocks the DMA counters. During non-DMA cycles, U11 generates these strobes.

The boot circuitry consisting of two SR latches (U7A, C) and U24a, is initialized by INIT* (buffered PRESET* from U10A). When U7A is enabled by switch S1-4, INIT* generates BOOT, which together with sMEMR generates PROM ENA* to enable the boot EPROM whenever a memory read occurs. The boot software is contained in EPROM U28. One of eight routines within the EPROM is selected by positions 1 and 2 of switch S2 and J17. The data from the EPROM enters the internal data bus (D0-D7) and is buffered onto the S-100 bus by U45. Since PHANTOM* is generated by U38 whenever BOOT is asserted and a DMA bus cycle (BC*) is not occurring, and since system memory boards should be set to become disabled when PHANTOM* is asserted, the host CPU will read the BOOT EPROM during a boot sequence. When the boot is through, U7A is reset by Q of U24a with DO=0 and SER OUT STB* and BOOT is released.

Octal bi-directional bus drivers U44 and U45 buffer data to and from the controller board with steering from U8 and U21. When either a DMA bus cycle (BC*) or an OUTPUT* (command write to the FDC) occurs, U44 is enabled, and the DMA transfer line (XFER) determines the direction of the data. When XFER is high, data is transferred out of the board and onto the DO lines. When XFER is low, data is transferred from the DO bus onto the board (command write). When either a BDSEL*, PROM ENA* or a BC* occurs, the WEN line is asserted, and if BUS STB and OUTPUT* are also asserted, U45 is enabled. When XFER* is high, the internal data is output onto the DI lines (PROM read, FDC read, or DMA write). When XFER* is low, the data goes from the DI lines to the FDC for a disk write operation.
A wait state is left pending in shift register U50 at all times, however it is gated onto the bus only when S1-1 is closed and WEN is high. After BUS STB is asserted, U50 is allowed to shift its data once on each rising edge of CR during a bus strobe (BUS STB* = pDBIN or pWR*). The first low to inputs d-h of U50 will terminate the wait state after it has been shifted to Qh. Five cycles are required to terminate an EPROM wait state and 2, 3 or 4 cycles to terminate either an I/O or DMA wait state. The wait states are enabled only when switch S1-1 is closed (ON), and WEN is asserted (EPROM read, I/O operation, or DMA cycle).

SECTION (2) DMA COUNTERS AND ADDRESS DRIVERS

The six DMA counters (U12, U13, U25, U26, U29, and U30) form a parallel loading 24 bit counter for address generation during the DMA transfer cycle. When XFER is not asserted (low), and DMA CLK rises (from DMA STB*, non-DMA cycle), the counters are loaded from the internal data bus (U13, U30) or from the previous stage of counter (U12, U29 or U25, U26). When XFER is asserted (a DMA cycle), DMA CLK is generated by BC*, and the counters are incremented for the next byte transferred.

The address buffers (U39, 42, and 43) drive the 24 bits of information from the DMA counters out onto the bus whenever BC* is asserted (during a DMA transfer). Since a full 24 bits of counter are present in this circuit, DMA transfers become independent of the 64K boundaries normally present in 8 bit processors. This allows 16 bit processors with up to 24 bits of direct addressing to be fully supported.

The software controlled serial channel is supported through two sections of op-amp U6, "D" type latch U24B, and one section of Tri-state driver U9. Data bit 7 is latched by U24B on the rising edge of SER OUT STB*, and the Q and Q* outputs drive U6 to convert the levels to the +12V for RS-232 operation. The Q output also drives the MOTOR ENA line for motor control of minifloppy drives, and INIT* clears the latch on power-up. The RS-232 input levels are shifted to a TTL compatible level with the other section of U6 and this TTL level is gated onto the data bus by buffer U9 whenever a SER IN STB* occurs.

SECTION (3) THE DMA ARBITER AND SEQUENCER LOGIC

A DMA cycle is initiated when the floppy disk controller asserts the data request (DRQ) line, the pHOLD* line is not asserted, and the hold acknowledge line (HLDA) is not asserted. After a delay of up to 1.6 uSEC through U22, U7B, R36 and C19, U20A is preset and causes the assert priority line (APRIO) to be asserted along with the pHOLD* line. The priority is asserted onto the DMA0* - DMA3* lines as generated and checked by the logic of U35, 36, 37, and switch S1 positions 5 thru 8. The highest priority line DMA3* is asserted first depending on the switch setting, and if the DMA3* line agrees with the asserted priority (no one with higher priority is asserting the line), then the next lowest priority line (DMA2*) is asserted and checked as in the first case. This process repeats until either a priority mismatch occurs and the sequence is held or the IMHI line is asserted indicating that this board is the highest priority. U20A and the APRIO sequence is held while the processor acknowledges the hold by asserting HLDA line and the DMA cycle occurs. The sequence is terminated at the end of the DMA cycle with BC* and STB INH (U23) or when a reset occurs (INIT* -
As soon as HLDA and IMHI are asserted (U21), the transfer state is entered (XFER or XFER*) in U20B on the next rising edge of ♦. This state causes the S-100 control strobes to be driven onto the bus in an Idle state condition with all addresses, status, DO buffers, and control strobes disabled by buffer U27 and U38.

The transfer state is controlled by the sequencing logic of quad "P" latch U4, NOR gates of U3, and U21. Each new state is initiated on the meeting of several conditions and the rising edge of ♦. When XFER* is asserted, and STB INH is not, the bus cycle (BC, BC*) is initiated, the S-100 status lines (U46) and the DMA address lines (U39, 42, and 43) are driven onto the bus. In addition, BC* is fed back to the FDC as an acknowledge signal (DACK), allowing the FDC to enter the data transfer mode. In the next state after BC is asserted, the STB ENA and STB ENA* lines are asserted. This causes the strobes to be switched from the Idle state to either a read or write state depending on the WE* signal from the FDC. The strobes pDBIN* and pWR* are generated by U31A, pSYNC is generated from BC* and STB INH in U3, and pSTVAL* is generated from pSYNC and ♦ in U23. The READY state is constantly being generated by pRDY* and is updated every cycle of ♦. When either READY is asserted or STB INH is asserted (U3), and STB ENA* is asserted, the strobe inhibit state (STB INH or STB INH*) is entered. This causes the strobes to be returned to the Idle state as long as a wait state is not requested. If a wait state has been requested, the strobes will not be changed until the READY state occurs. STB INH also causes the APRIO line to be reset, and on the next rising edge of ♦, the bus cycle (BC) will be terminated causing the status and address lines to be removed from the bus. As soon as pHOLD* is released and HLDA stops being asserted, the next edge of ♦ will cause the termination of the transfer state (XFER) and the removal of the S-100 strobes and the Idle state on the bus.

SECTION (4) DISK READ/WRITE CIRCUITRY AND DATA SEPARATOR

The master clock for the FDC is generated by a crystal oscillator consisting of X1, L1, and U49. This clock is fed to the FDC and is divided by U47A to yield the WRITE CLK through U48 at the proper frequency determined by the signal MFM from the FDC. WRITE CLK is converted to a 250 nSEC pulse by U34B and is fed to the FDC. The two write precompensation signals P80 and P81 and the low current signal LC alter the value of the timing resistor of U34A by diode current gating, and allow a varying delay in the disk write data. WRITE DATA from the FDC is fed to U34A, and when enabled by WE and time varied by the precompensation logic, and variable length COMP WRITE* signal is generated. This pulse will have typical output length of 1.1, 1.3, and 1.5 uSEC. For an alteration from NORMAL, (200 nSEC), EARLY, and LATE precompensation. The COMP WRITE* signal is fed to U19B for conversion to a 250 nSEC pulse signal (WRITE PULSE*) for feeding to the disk.

A phase lock loop is formed by a charge pump consisting of U18, U17, diodes D1-3, and resistors R13 and R18, an error amplifier and integrator consisting U6, C5-6, and R6-8 and R35, and a voltage controlled oscillator (VCO) consisting of U5, R5, R9, and C7-8. The VCO is adjusted by R35 to oscillate at approximately 2.0 MHz when enabled by the signal VCO ENA from the FDC. The output VCO is divided by U47E, and the divided outputs are selected by multiplexor U48 for the proper frequency depending on the current mode (MFM) to generate the signals WINDOW and CELL CLK. Read data (READ DATA*) from the disk is fed to U19A for conversion to a 500 nSEC. or 1000 nSEC. pulse depending on
the state of the FM line (500 nSEC. in MFM, 1000 nSEC. in FM). DATA and DATA* along with CELL CLK and CELL CLK* are fed to the charge pump which determines the relative position of the CELL CLOCK with respect to the DATA and generates a voltage at node 5. This voltage represents the error in the positioning of the DATA signal with respect to the edge of CELL CLK. This error voltage is integrated and fed to the error amplifier which adjusts the frequency of the voltage controlled oscillator to bring the DATA pulse back in line with the CELL CLK and correspondingly adjust the WINDOW signal (which defines the data cell for the FDC). The DATA* and CELL CLK* signals set and clear U7D, and generate a constant 250 nSEC. read pulse for the FDC (RD DATA).

SECTION (5) THE FLOPPY DISK CONTROLLER AND INTERFACE CIRCUITRY

The floppy disk controller chip (U14) provides for the bridging of the previous four sections to the disk interface circuitry and the disk drives. The FDC is reset by INIT* inverted by U33, and is connected to the internal data bus through DO–D7. The FDC interface to the internal bus is controlled by A0, WR*, RD*, and XFER, which leave the FDC enabled at all times except during a transfer state, and steer the data with WR*, and RD*. DRQ initiates the DMA cycle, and BC* initiates the FDC data transfer. CLK and WCK are pulled up by R19 and R24 to achieve a greater voltage swing for the internal clocking logic of the FDC. WINDOW describes the data cell time of the RD DATA pulse from the data separator, and VCO ENA enables the voltage controlled oscillator and MFM describes whether the FDC is expecting single or double density data. WRITE DATA feeds the write precompensation circuitry with PS0 and PS1 describing the amount of precomp needed for the particular data pattern. The WE and WE* (inverted by U33) lines control the enabling of the write circuitry and are used to determine the direction of the data transfers to and from the FDC. The INT output from the FDC is the general interrupt signal that is fed to buffer U17 for driving the vectored interrupt lines (V10–V17) and pINT if jumpered. INT is also buffered by Tri-state buffer U9, which gates the interrupt status onto D7 when a STATUS STB* occurs.

The Drive interface signals are decoded and buffered as described below. The HD line is inverted by U33 and buffered by U32 to drive the SIDE SELECT* line to determine which head of a double sided drive to use. HDL is inverted and used to drive the READ LOAD* line of the drive. The RDY signal is controlled by the inverted (U33) READY* line and the IDX signal is controlled by the inverted (U33) INDEX* line from the drive. The unit select lines US0 and US1 are fed to decoder U31b to decode the one of four drives possible with this controller, and these four signals are buffered by four sections of U32 to drive the DR SEL0* through DR SEL3* lines of the drives. The four signals WP/TS, FLT/TR0, FR/STP, and LCT/DIR each have two functions which are determined by the RW/5K line (read-write/seek). During a read or write operation, the drive signals WRITE PROT*, and FAULT* are inverted and fed to the FDC lines WP/ and FLT/ and the FDC lines FR/ and LCT/ are inverted (U15) and buffered (U16) to drive the FAULT RESET* and LOW CURRENT* drive lines. During a seek operation, the drive signals TWO SIDED*, and TRACK 0* are inverted and fed to the FDC lines /TS and /TR0 and the FDC lines /STP and /DIR are inverted (U15) and buffered (U16) to drive the STEP* and DIRECTION* drive lines. These changes are controlled by the RW/5K line which determines which half of U15 will be enabled. The WRITE PULSE* line is buffered (U16) to drive the WRITE DATA* line and the READ DATA* line is terminated and fed directly to U19A. The MOTOR ENA signal is run through disable switch S1–3 and inverted to feed the NE line which becomes
MOTOR ON* on the minifloppy drives. All lines coming from the floppy drives are terminated by 150 ohm resistors, and jumpers J11-15 are used to select either 5.25" or 8" drives.

Regulators U1 and U2 provide the regulated +5 volts for the board, and U51 and U50 provide the regulated +12 volts for the op-amp. Diodes D10 and D11 insure that U50 and U51 do not shut each other down on power-up due to the op-amp not being ground referenced.

TEST ROUTINES FOR THE DISK 1 CONTROLLER

The following program contains primitive routines for (1) Loading the DMA address counters, (2) Specifying the drive characteristics to the controller, (3) Recalibrating the drive (seeking track 00), (4) Seeking a particular track on the drive, (5) Reading sectors from the drive in either single density or 1024 byte double density, and (6) Writing sectors to the drive in either single density or 1024 byte double density. The user should be familiar with the data sheet for the floppy disk controller since these routines are designed to give the user a greater understanding of the operation of the 8272/765A. These routines are by no means the basis for a disk operating system, and are designed for experimentation only.

This program should be treated as several callable subroutines using the jump table at the beginning for reference.

NOTE: This program was written to assemble under an ACT assembler and may require slight modification to assemble under CP/M-80 ASM.

```
TITLE 'TEST ROUTINES FOR COMPUPRO DISK CONTROLLER.'

;DTEST - Test Routines for CompuPro Disk Controller.
  +---------------------+

  DISK TEST

  +---------------------+
  COMPUPRO
  Oakland Airport
  Oakland, California 94611

  Copyright 1981, CompuPro Corporation.

  This product is a program product of CompuPro and is supplied for use with the CompuPro IEEE 696 Floppy Disk Controller.

  Version number: 1.1B Version date: April 13, 1981

BEGIN  EQU  0100h
  
; Assembly Constants
FDP0RT  EQU  OCOH  ;Base port address for Controller
FDCS   EQU  FDP0RT  ;Status register
FDCD   EQU  FDP0RT+1 ;Data register
```
FDMA EQU FDPRT+2 ;Dma address (when write)
INTS EQU FDPRT+2 ;Status Register (when read)
SER EQU FDPRT+3 ;Serial port

; Controller function definitions
; Specify (00) command
F.RTK = 02 ;Read track
F.SPEC = 03 ;Specify
F.DSTS = 04 ;Drive status
F.RDAT = 06 ;Read sector FM
F.DRDTS = 46H ;Read sector MFM
F.WRAT = 05 ;Write sector FM
F.WRDT = 45H ;Write sector MFM
F.RECA = 07 ;recalibrate
F.RSTS = 08 ;Read status
F.SEEK = 0Fh ;Seek

SRT = 16-8 ;= Shugart 800s (8 ms)
; = 16-3 ;= Shugart 850s (3 ms)
; = 16-3 ;= Remex (3 ms)
HUT = 240/16 ;Head unload = 240 ms
HLT = (35+1)/2 ;Head load = 35 ms
ND = 00 ;Set DMA mode

; JUMP TABLE FOR ROUTINES
; These routines are callable subroutines
; Some require parameters passed in the "A" and "C" registers

ORG BEGIN
START: JMP DDMA ;load DMA address
JMP DSPEC ;specify drive stat
JMP RCAL ;recalibrate (track 00)
JMP DSEEK ;seek a track
JMP READS ;read sector (FM)
JMP DREADS ;read sector (MFM)
JMP WRS ;write sector (FM)
JMP DWCDS ;write sector (MFM)

; DMA address load routine using 16 bit value in
; HL register for the 24 bit DMA value
DDMA: MVI A0 ;extended address
OUT FDMA ;output
MOV AH ;high byte
OUT FDMA ;output
MOV AL ;low byte
OUT FDMA ;output
RET

; Drive Specify Command
DSPEC: MVI ABLSPEC ;3 byte command
LXI DH,SPEC ;point to command bytes
IN FDQS ;get status
ANI 0COH
CPI 80H
JNZ SPEC1 ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D ;next byte
DCR B ;dec. counter
JNZ SPEC1 ;if more bytes
RET

; Recalibrate drive (seek track 0)
RCAL: MVI B,LRECAL ;2 byte command
LXI D,RECAL ;point to command bytes
RCAL1: IN FDCS ;get status
ANI 0COH
CPI 80H
JNZ RCAL1 ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ RCAL1 ;if more bytes
RET

; Seek a Track with cylinder number in "A"
DSEEK: MVI B,LSEEK ;3 byte command
LXI D,SEEK ;point to command bytes
STA CYLD ;store cylinder #
SEEK1: IN FDCS ;check status
ANI 0COH
CPI 80H
JNZ SEEK1 ;if not ready
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ SEEK1 ;if more bytes
RET

; FM Sector read command with sector in "A"
; and cylinder in "C"
READS: MVI B,LREAD ;9 byte command
LXI D,READ ;point to command bytes
STA RSEC ;store sector number
MOV A,C
STA RSCYL ;store cylinder number
READ1: IN FDCS ;check status
OK A
JP READ1 ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ READ1 ;if more bytes
READ2: IN INTS ;check interrupt status
ORA A ;for read complete
JP READ2 ;If not complete
READ3: IN FDCS ;in status
ORA A
JP READ3 ;if not ready
IN FDCD ;read result byte ST0
SUI 40h ;strip
MOV L,A ;save

READ4: IN FDCS ;in status
ORA A
JP READ4 ;if not ready
IN FDCD ;read result byte ST1
SUI 80h ;strip
MOV H,A ;save

READ5: MVI B,7-2 ;5 more bytes
IN FDCS ;in status
OR A
JP READ5 ;if not ready
IN FDCD ;read result byte
DEC B
JNZ READ5 ;wait until all done
MOV A,L ;check results
ORA H
RZ ;return no error
STC ;set carry
RET ;return from error

; MFM Sector read command with sector in "A"
; and cylinder in "C"
DREADs: MVI B,DLREAD ;9 byte command
LXI D,DREAD ;point to command bytes
STA DRSEC ;store sector number
MOV A,C
STA DCYL ;store cylinder number
DREAD1: IN FDCS ;check status
OR A
JP DREAD1 ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ DREAD1 ;if more bytes
JMP READ2

; FM Sector write command with sector in "A"
; cylinder number in "C"
WRS: MVI B,LWR ;9 byte command
LXI D,WR ;point to command bytes
STA WSEC ;store sector number
MOV A,C
STA WSCYL ;store cylinder number
WR1: IN FDCS ;check status
OR A
JP WR1 ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ WR1 ;if more bytes
JMP READ1

; MFM Sector write command with sector in "A"
; and cylinder in "C"
DWRs: MVI B,DLWR ;9 byte command
LXI D,DWR ;point to command bytes
STA DWSEC ;store sector number
MOV A,C
STA DWRCYL ;store cylinder number
DWRl: IN FDGS ;check status
OR A
JP DWRl ;if no master ready bit
LDAX D ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ DWR1 ;if more bytes
JMP READ2

; Function data for controller
SPEC DB F.SPEC ;specify command
VFD 4@SRT,4@HUT
VFD 7@HUT,1@ND
LSPEC = *-SPEC
RECAL DB F.RECA,0 ;recalibrate command
LRECAL = *-RECAL
SEEK DB F.SEEK ;seek command
DB 0
CYLD DB 0
LSEEK = *-SEEK
READ: DB F.RDAT ;read command (FM)
DB 0 ;hds,ds1,ds0
RSCYL DB 0 ;C = cylinder info
DB 0 ;Head
RSEC: DB 1 ;Record (first sector)
DB 0 ;N 128 BYTE SECTOR
DB 25 ;ROT (last sectors)
DB 7 ;GPL
DB 128 ;DTL
LREAD = *-READ
DREAD: DB F.DRDT ;read command (MFM)
DB 0 ;hds,ds1,ds0
DCYL DB 2 ;C = cylinder info
DB 0 ;Head
DRSEC: DB 1 ;Record (first sector)
DB 3 ;N 1024 BYTE SECTOR
DB 7 ;EOT (last sectors)
DB 35H ;GPF
DB 0 ;DTL
DLREAD = *-DREAD

WR: DB F.WRAT ;write command (FM)
 DB 0 ;hds,ds1,ds0
WSCYL DB 0 ;C = cylinder info
DB 0 ;Head
WSEC: DB 1 ;Record (first sector)
DB 0 ;N 128 BYTE SECTOR
DB 25 ;EOT (last sectors)
DB 7 ;GPF
DB 128 ;DTL
LWR = *-WR

DWR DB F.WRDT ;write command (MFM)
 DB 0 ;hds,ds1,ds0
DWRCYL DB 2 ;C = cylinder info
DB 0 ;Head
DNSEC: DB 1 ;Record (first sector)
DB 3 ;N 128 BYTE SECTUK
DB 7 ;EOT (last sectors)
DB 35H ;GPF
DB 0 ;DTL
DLWR = *-DWR
END
8272
SINGLE/DOUBLE DENSITY
FLOPPY DISK CONTROLLER

- IBM Compatible in Both Single and Double Density Recording Formats
- Programmable Data Record Lengths: 128, 256, 512, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drive Up to 4 Floppy Disks
- Data Scan Capability — Will Scan a Single Sector or an Entire Cylinder's Worth of Data Fields, Comparing on a Byte by Byte Basis, Data in the Processor's Memory with Data Read from the Diskette
- Data Transfers in DMA or Non-DMA Mode
- Parallel Seek Operations on Up to Four Drives
- Compatible with Most Microprocessors including 8080A, 8085A, 8086 and 8088
- Single-Phase 8 MHz Clock
- Single +5 Volt Power Supply
- Available in 40-Pin Plastic Dual-in-Line Package

The 8272 is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Double Density format (MFM) including double sided recording. The 8272 provides control signals which simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Drive Interface.

PIN CONFIGURATION

8272 INTERNAL BLOCK DIAGRAM

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITry OTHER THAN CIRCUITY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED.
INTEL CORPORATION, 1986
8722 SYSTEM BLOCK DIAGRAM

8722 REGISTERS — CPU INTERFACE

The 8722 contains two registers which may be accessed by the main system processor, a Status Register and a Data Register. The 8-bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register actually consists of several registers in a stack with only one register presented to the data bus at a time), stores data, commands, parameters, and FDC status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after execution of a command. The Status Register may only be read and is used to facilitate the transfer of data between the processor and 8722.

The relationship between the Status/Data registers and the signals RD, WR, and A0 is shown below:

<table>
<thead>
<tr>
<th>A0</th>
<th>RD</th>
<th>WR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Read Main Status Register</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Illegal</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Illegal</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Illegal</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Read from Data Register</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Write into Data Register</td>
</tr>
</tbody>
</table>

The bits in the Main Status Register are defined as follows:

<table>
<thead>
<tr>
<th>BIT NUMBER</th>
<th>NAME</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB3</td>
<td>FDD 0 Busy</td>
<td>DyB</td>
<td>FDD number 0 is in the Seek mode</td>
</tr>
<tr>
<td>DB4</td>
<td>FDD 1 Busy</td>
<td>DyB</td>
<td>FDD number 1 is in the Seek mode</td>
</tr>
<tr>
<td>DB5</td>
<td>FDD 2 Busy</td>
<td>DyB</td>
<td>FDD number 2 is in the Seek mode</td>
</tr>
<tr>
<td>DB6</td>
<td>FDD 3 Busy</td>
<td>DyB</td>
<td>FDD number 3 is in the Seek mode</td>
</tr>
<tr>
<td>DB7</td>
<td>FDC Busy</td>
<td>DcB</td>
<td>A read to write command is in 2nd</td>
</tr>
<tr>
<td>DB8</td>
<td>Non DMA write</td>
<td>DcB</td>
<td>The FDC is in the non-DMA mode</td>
</tr>
<tr>
<td>DB9</td>
<td>Sense Interrupt Status</td>
<td>SIS</td>
<td>Sense Interrupt Status</td>
</tr>
<tr>
<td>DB10</td>
<td>Sense Drive Status</td>
<td>SDS</td>
<td>Sense Drive Status</td>
</tr>
<tr>
<td>DB11</td>
<td>Data Input/Output DIO</td>
<td>DIO</td>
<td>Indicates direction of data transfer between FDC and Data Register. If DIO = 1, then transfer is from Data Register to the Processor. If DIO = 0, then transfer is from the Processor to Data Register.</td>
</tr>
<tr>
<td>DB12</td>
<td>Request for Master</td>
<td>RM</td>
<td>Indicates Data Register is ready to send or receive data to or from the Pro-</td>
</tr>
</tbody>
</table>

FEATURES

Address mark detection circuitry is internal to the FDC which simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The 8722 offers many additional features such as multiple sector transfers in both read and write modes with a single command, and full IBM compatibility in both single (FM) and double density (MFM) modes.
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>pins</th>
<th>CONNECTION TO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RST</td>
<td>1</td>
<td></td>
<td>Reset: Places FDC in idle state. Reverses output logic to FDD to "0" (low)</td>
</tr>
<tr>
<td>2</td>
<td>RD</td>
<td>1</td>
<td></td>
<td>Read: Control signal for transfer of data from FDC to Data Bus, when "0" (low)</td>
</tr>
<tr>
<td>3</td>
<td>WR</td>
<td>1</td>
<td></td>
<td>Write: Control signal for transfer of data to FDD via Data Bus, when "0" (low)</td>
</tr>
<tr>
<td>4</td>
<td>CE</td>
<td>1</td>
<td></td>
<td>Chip Select: Selected when "0" (low), allowing RD and WR to be enabled</td>
</tr>
<tr>
<td>5</td>
<td>A0</td>
<td>1</td>
<td></td>
<td>Data/Status Reg Select: Selects Data Reg (A2=1) or Status Reg (A2=0) content to be sent to Data Bus</td>
</tr>
<tr>
<td>6-13</td>
<td>D[9-0]: D[0]</td>
<td>1</td>
<td>Data Bus: 16-bit Data Bus</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DREQ</td>
<td>O</td>
<td>DMA</td>
<td>Data DMA Request: DMA request is being made by FDC when DREQ = "1"</td>
</tr>
<tr>
<td>15</td>
<td>DACK</td>
<td>I</td>
<td>DMA</td>
<td>DMA Acknowledge: DMA cycle is active when "0" (low) and Controller is performing DMA transfer</td>
</tr>
<tr>
<td>16</td>
<td>TD</td>
<td>I</td>
<td>DMA</td>
<td>Terminal Count: Indicates the termination of a DMA transfer when "1" (high)</td>
</tr>
<tr>
<td>17</td>
<td>IDX</td>
<td>I</td>
<td>FDD</td>
<td>Index: Indicates the beginning of a block transfer</td>
</tr>
<tr>
<td>18</td>
<td>INT</td>
<td>O</td>
<td>FDD</td>
<td>Interrupt (Request) Generated by FDC</td>
</tr>
<tr>
<td>19</td>
<td>CLK</td>
<td>I</td>
<td>Clock: Single Phase 0 MHz Sine Wave Clock</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>QNO</td>
<td></td>
<td>Ground: D.C. Power Return</td>
<td></td>
</tr>
</tbody>
</table>

Note: Disabled when CE = 1.

Table

<table>
<thead>
<tr>
<th>NO.</th>
<th>SYMBOL</th>
<th>pins</th>
<th>CONNECTION TO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>VCC</td>
<td>O</td>
<td>FDD</td>
<td>D.C. Power +5V</td>
</tr>
<tr>
<td>31</td>
<td>MFREEK</td>
<td>O</td>
<td>FDD</td>
<td>Read Write SEEK: When "1" high, seek mode selected and when "0" (low) Read/Write mode selected</td>
</tr>
<tr>
<td>32</td>
<td>LSTOR</td>
<td>O</td>
<td>FDD</td>
<td>Read Low Direction: Lowers drive current on inner tracks in Read/Write mode, determines direction head will step in Seek mode</td>
</tr>
<tr>
<td>33</td>
<td>FSTRT</td>
<td>O</td>
<td>FDD</td>
<td>Fault Re-Seek: Resets fault FF in FDD in Read/Write mode, provides slow pulses to move head to another cylinder in Seek mode</td>
</tr>
<tr>
<td>34</td>
<td>HOL</td>
<td>O</td>
<td>FDD</td>
<td>Head Lock: Prevents head in FDD from contacting disk surface</td>
</tr>
<tr>
<td>35</td>
<td>ROV</td>
<td>I</td>
<td>FDD</td>
<td>Ready: Indicates FDD is ready to send or receive data</td>
</tr>
<tr>
<td>36</td>
<td>WRITE</td>
<td>I</td>
<td>FDD</td>
<td>Write Protect: Two-Sided: Prevents Write operations in Read/Write mode, and Two-Sided Media in Seek mode</td>
</tr>
<tr>
<td>37</td>
<td>FACK</td>
<td>I</td>
<td>FDD</td>
<td>Fault/ACK: Selects FDD fault condition in Read/Write mode and Fault 0 condition in Seek mode</td>
</tr>
<tr>
<td>38</td>
<td>PS3/Reg</td>
<td>O</td>
<td>FDD</td>
<td>Prescan Compensation: Prescan Compensation Status during MMM mode. Determines seek time, latency, and normal times</td>
</tr>
<tr>
<td>39</td>
<td>VR DATA</td>
<td>O</td>
<td>FDD</td>
<td>Data: Data Serial clock and data bits to FDD</td>
</tr>
<tr>
<td>40</td>
<td>DS1/DS2</td>
<td>O</td>
<td>FDD</td>
<td>Drive Select: Selects FDD unit</td>
</tr>
<tr>
<td>41</td>
<td>HDEL</td>
<td>O</td>
<td>FDD</td>
<td>Head Select: Head 1 selected when "1" (high) and head 0 selected when "0" (low)</td>
</tr>
<tr>
<td>42</td>
<td>MFM</td>
<td>O</td>
<td>PLL</td>
<td>MFM Mode: MFM mode when "1", PM mode when "0"</td>
</tr>
<tr>
<td>43</td>
<td>WE</td>
<td>O</td>
<td>FDD</td>
<td>Write Enable: Enables write data into FDD</td>
</tr>
<tr>
<td>44</td>
<td>YCO</td>
<td>O</td>
<td>PLL</td>
<td>Write Sync Inhibit: YCO inhibits PLL when "0" (low), enables YCO when "1"</td>
</tr>
<tr>
<td>45</td>
<td>RD DATA</td>
<td>I</td>
<td>FDD</td>
<td>Read Data: Read data from FDD, containing clock and data bits</td>
</tr>
<tr>
<td>46</td>
<td>DNO</td>
<td>I</td>
<td>PLL</td>
<td>Data Window: Generated by PLL, and used to sample data from FDD</td>
</tr>
<tr>
<td>47</td>
<td>WR CLK</td>
<td>I</td>
<td>FDD</td>
<td>Write Clock: Write data is to FDD: PLL = 500 kHz, MFM = 1 MHz, with a pulse width of 256 ts for both FM and MFM</td>
</tr>
</tbody>
</table>
The DIO and ROM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus.

The 8272 is capable of executing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the 8272 and the processor, it is convenient to consider each command as consisting of three phases:

Command Phase: The FDC receives all information required to perform a particular operation from the processor.

Execution Phase: The FDC performs the operation it was instructed to do.

Result Phase: After completion of the operation, status and other housekeeping information are made available to the processor.

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. Bits D6 and D7 in the Main Status Register must both be 0 and 1 state, respectively, before each byte of the command word may be written into the 8272. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the 8272. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 = 1 and D7 = 1) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the 8272 is required in only the Command and Result Phases, and NOT during the Execution Phase.

During the Execution Phase, the Main Status Register need not be read. If the 8272 is in the Non-DMA Mode, then the receipt of each data byte (i.e., 8272 is reading data from FDD) is indicated by an interrupt signal on pin 18 (INT = 1). The generation of a Read signal (RD = 0) will reset the interrupt as well as output the Data onto the Data Bus. For example, if the processor cannot handle interrupts fast enough (every 13 μs for MFM mode) then it may poll the Main Status Register and then bit D7 (RQM) functions just like the interrupt signal: If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.

If the 8272 is in the DMA Mode, no interrupts are generated during the Execution Phase. The 8272 generates DMA's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK = 0 (DMA Acknowledge) and a RD = 0 (Read signal). When the DMA Acknowledge signal goes low (DACK = 0) then the DMA Request is reset (DRQ = 0). If a Write Command has been programmed then a WR signal will appear instead of RD. After the Execution Phase has been completed (Terminal Count has occurred) then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT = 0).

It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example, has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The 8272 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.

The 8272 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after successfully completing a command. The particular command which has been executed determines how many of the Status Registers will be read.

The bytes of data which are sent to the 8272 to form the Command Phase, and are read out of the 8272 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the 8272 the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the 8272 is ready for a new command. A command may be aborted by simply sending a Terminal Count signal to pin 16 (TC = 1). This is a convenient means of ensuring that the processor may always get the 8272’s attention even if the disk system hangs up in an abnormal manner.

Polling Feature of the 8272

After the Specify command has been sent to the 8272, the Drive Select Lines DS0 and DS1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the 8272 polls all four FDDs looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the 8272 will generate an interrupt. When Status Register 0x0700 is read (after Sense Interrupt Status is Issued), Not Ready (NR) will be indicated. The polling of the Ready line by the 8272 occurs continuously between instructions, thus notifying the processor which drives are on or off line.
<table>
<thead>
<tr>
<th>PHASE</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>W</td>
<td>MT MFM SK</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>EOF</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>DFL</td>
</tr>
<tr>
<td>Execution</td>
<td></td>
<td>Data transfer between the FDD and main system</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>ST 0</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>READ DELETED DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>W</td>
<td>MT MFM SK</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>EOF</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>DFL</td>
</tr>
<tr>
<td>Execution</td>
<td></td>
<td>Data transfer between the FDD and main system</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>ST 0</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>WRITE DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>W</td>
<td>MT MFM SK</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>EOF</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>DFL</td>
</tr>
<tr>
<td>Execution</td>
<td></td>
<td>Data transfer between the FDD and main system</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>ST 0</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>WRITE DELETED DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>W</td>
<td>MT MFM SK</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>EOF</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>DFL</td>
</tr>
<tr>
<td>Execution</td>
<td></td>
<td>Data transfer between the FDD and main system</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>ST 0</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ST 3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>N</td>
</tr>
</tbody>
</table>

Note:
1. SYMBOl used in this table are described at the end of this section.
2. Ag = 1 for all operations.
3. X = Don't care, usually made to equal Binary 0.
<table>
<thead>
<tr>
<th>PHASE</th>
<th>RW</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>W</td>
<td>MFM</td>
<td>1 1 0 1 1 0 1 0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>W</td>
<td>G</td>
<td>R</td>
<td>H</td>
</tr>
<tr>
<td>Execution</td>
<td>R</td>
<td>ST</td>
<td>ST</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SCAN LOW OR EQUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>RW</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>W</td>
<td>MFM</td>
<td>1 1 0 1 1 0 1 0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>W</td>
<td>G</td>
<td>R</td>
<td>H</td>
</tr>
<tr>
<td>Execution</td>
<td>R</td>
<td>ST</td>
<td>ST</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SCAN HIGH OR EQUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>RW</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>W</td>
<td>0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1</td>
<td>Command Codes</td>
</tr>
<tr>
<td>W</td>
<td>ST</td>
<td>ST</td>
<td>ST</td>
</tr>
<tr>
<td>Execution</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SEEK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>RW</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>W</td>
<td>0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0</td>
<td>Command Codes</td>
</tr>
<tr>
<td>W</td>
<td>ST</td>
<td>ST</td>
<td>ST</td>
</tr>
<tr>
<td>Execution</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>INVALID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>RW</th>
<th>DATA BUS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>W</td>
<td>0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0</td>
<td>Command Codes</td>
</tr>
<tr>
<td>W</td>
<td>ST</td>
<td>ST</td>
<td>ST</td>
</tr>
<tr>
<td>Execution</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Result</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>PRELIMINARY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2. COMMAND MNEMONICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Address Line 0</td>
<td>A0 selects opcode of Main Status Register (A2 is Data Register A0).</td>
</tr>
<tr>
<td>C</td>
<td>Cylinder Number</td>
<td>C stands for the current selected cylinder track number 0 through 255 of the medium.</td>
</tr>
<tr>
<td>D</td>
<td>Data</td>
<td>D stands for the data pattern which is going to be written into a sector.</td>
</tr>
<tr>
<td>D'y-D'y</td>
<td>Data Bus</td>
<td>D'y Data Bus where D'y is the most significant bit, and D'y is the least significant bit.</td>
</tr>
<tr>
<td>GSD, DS1</td>
<td>Drive Select</td>
<td>GSD stands for a selected drive number 0 or 1.</td>
</tr>
<tr>
<td>GTL</td>
<td>Data Length</td>
<td>GTL stands for the drive length which users are going to read out or write into the Sector.</td>
</tr>
<tr>
<td>EQT</td>
<td>End of Track</td>
<td>EQT stands for the final Sector number of a Cylinder.</td>
</tr>
<tr>
<td>GFL</td>
<td>Gap Length</td>
<td>GFL stands for the length of Gap 3 existing between sectors excluding VCO Sync Bytes.</td>
</tr>
<tr>
<td>N</td>
<td>Head Address</td>
<td>N stands for head number 0 or 1, as specified in the field.</td>
</tr>
<tr>
<td>HDS</td>
<td>Head Select</td>
<td>HDS stands for a selected head number 0 or 1 (H in HDS in all command words).</td>
</tr>
<tr>
<td>HLT</td>
<td>Head Load Time</td>
<td>HLT stands for the head load time in the SPC (2 to 254ms in 2ms increments).</td>
</tr>
<tr>
<td>HUT</td>
<td>Head Unload Time</td>
<td>HUT stands for the head unload time after a read or write operation has occurred (16 to 254ms in 2ms increments).</td>
</tr>
<tr>
<td>MFM</td>
<td>FM or MFM mode</td>
<td>MFM = 0 or, FM mode is selected and if it is high, MFM mode is selected.</td>
</tr>
<tr>
<td>MT</td>
<td>Multi-Track</td>
<td>MT is high, a multi-track operation is to be performed a cylinder under both PCW and HDS will be read or written.</td>
</tr>
<tr>
<td>N</td>
<td>Number</td>
<td>N stands for the number of data bytes written in a Sector.</td>
</tr>
<tr>
<td>NCN</td>
<td>New Cylinder Num</td>
<td>NCN stands for a new Cylinder Number, which is going to be the maximum position of the Seek operation. Desired position of Head.</td>
</tr>
<tr>
<td>ND</td>
<td>Non-DMA Mode</td>
<td>ND stands for operation in the Non-DMA Mode.</td>
</tr>
<tr>
<td>PCN</td>
<td>Present Cylinder</td>
<td>PCN stands for the Cylinder Number at the completion of SEEK, INTRUPT COMMAND, or the Position of Head at present time.</td>
</tr>
<tr>
<td>R</td>
<td>Record</td>
<td>R stands for the Sector number, which will be read or written.</td>
</tr>
<tr>
<td>RW/W</td>
<td>Read/Write</td>
<td>RW/W stands for either Read (R) or Write (W) signal.</td>
</tr>
<tr>
<td>SC</td>
<td>Sector</td>
<td>SC indicates the number of sectors per Cylinder.</td>
</tr>
<tr>
<td>SK</td>
<td>Skip</td>
<td>SK stands for Skip Detected Data Address Mark.</td>
</tr>
<tr>
<td>SRT</td>
<td>Step Rate Time</td>
<td>SRT stands for the Stepping Rate for the FPD (2 to 254ms in 2ms increments). Stepping Rate applies to all drives.</td>
</tr>
<tr>
<td>ST 0</td>
<td>Status 0</td>
<td>ST 0 is a bit for one of four registers which stores the status information after a command has been executed. This information is available during the execution of the command. The status register should not be used with ST 3 to 7. The status register (except for the lower 16 bits) may be read only after a command has been executed and contains information related to that particular command.</td>
</tr>
<tr>
<td>ST 1</td>
<td>Status 1</td>
<td>ST 1 is a bit for one of four registers which stores the status information after a command has been executed. This information is available during the execution of the command. The status register should not be used with ST 3 to 7. The status register (except for the lower 16 bits) may be read only after a command has been executed and contains information related to that particular command.</td>
</tr>
<tr>
<td>ST 2</td>
<td>Status 2</td>
<td>ST 2 is a bit for one of four registers which stores the status information after a command has been executed. This information is available during the execution of the command. The status register should not be used with ST 3 to 7. The status register (except for the lower 16 bits) may be read only after a command has been executed and contains information related to that particular command.</td>
</tr>
<tr>
<td>ST 3</td>
<td>Status 3</td>
<td>ST 3 is a bit for one of four registers which stores the status information after a command has been executed. This information is available during the execution of the command. The status register should not be used with ST 3 to 7. The status register (except for the lower 16 bits) may be read only after a command has been executed and contains information related to that particular command.</td>
</tr>
<tr>
<td>STP</td>
<td>Stop</td>
<td>During a Scan operation, STP=1, the data in contiguous sectors is compared byte by byte with data sent from the controller to the processor. In DMA mode, if STP=2, alternate sectors are read and compared.</td>
</tr>
</tbody>
</table>

TABLE 3. TRANSFER CAPACITY

<table>
<thead>
<tr>
<th>MultiTrack</th>
<th>MMF/FM</th>
<th>Bytels/Sector</th>
<th>N</th>
<th>Maximum Transfer Capacity (Bytes/Sector)</th>
<th>Final Sector Read from Diskette</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>20 at Sector 1</td>
</tr>
</tbody>
</table>

COMMAND DESCRIPTIONS

During the Command Phase, the Main Status Register must be polled by the CPU before each byte is written into the Data Register. The DIO (DB6) and RQM (DB7) bits in the Main Status Register must be in the "0" and "1" states respectively, before each byte of the command may be written into the 6272. The beginning of the execution phase for any of these commands will cause DIO and RQM to switch to "1" and "0" states respectively.

READ DATA

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number ("N") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-by-byte to the main system via the data bus.

After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count bytes), and then at the end of the sector terminate the Read Data Command.

The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MFM (MFM/FM), and N (Number of Bytes/Sector). Table 2 below shows the Transfer Capacity.
The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 0, Slide 0 and completing at Sector L, Slide 1 (Sector L is last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.

When N = 0, then DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads internally the complete Sector performing the CRC check and depending upon the manner of command termination to perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to OFFH.

At the completion of the Read Data Command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.

If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (Incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error In Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit 5 in the first Command Word) is set (SK = 0), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. After reading all the data in the Sector, if SK = 1, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector.

During disk data transfers between the FDC and the processor, via the Data Bus, the FDC must be serviced by the processor every 27 µs in the FM Mode, and every 13.5 µs in the MFM Mode, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.

If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 4 shows the values for C, H, R, and N, when the processor terminates the Command.

<table>
<thead>
<tr>
<th>MT</th>
<th>EOT</th>
<th>Read Sector Transferred</th>
<th>ID Information at Result Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Sector 1 to 25 at Side 0</td>
<td>NC, NC, R = 1, NC</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Sector 1 to 14 at Side 0</td>
<td>NC, NC, R = 27, NC</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Sector 1 to 25 at Side 0</td>
<td>NC, NC, R = 1, NC</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Sector 1 to 14 at Side 0</td>
<td>NC, NC, R = 27, NC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Sector 1 to 25 at Side 0</td>
<td>NC, NC, R = 1, NC</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Sector 1 to 14 at Side 0</td>
<td>NC, NC, R = 27, NC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Sector 1 to 25 at Side 0</td>
<td>NC, NC, R = 1, NC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Sector 1 to 14 at Side 0</td>
<td>NC, NC, R = 27, NC</td>
</tr>
</tbody>
</table>

Notes: 1. NC (No Change): The same value as the one at the beginning of command execution.
2. LSB (Least Significant Bit): The least significant bit of R is complemented.

WRITE DATA

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Fields. When the current sector number ("R"), stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.

After writing data into the current sector, the Sector Number stored in "R" is incremented by one, and the next data field is written into. The FDC continues this "Multi-sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).

The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) flag of Status Register 0 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

The Write Command operates in much the same manner as the Read Command. The following items are the same; refer to the Read Data Command for details:
- Transfer Capacity
- EN (End of Cylinder) Flag
- ND (No Data) Flag
- Head Unload Time Interval
- ID Information when the processor terminates command (see Table 2)
- Definition of DTL when N = 0 and when N = 0

In the Write Data mode, data transfers between the processor and FDC must occur every 31 μs in the FM mode, and every 15 μs in the MFM mode. If the interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command.

WRITE DELETED DATA

This command is the same as the Write Data Command except that a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

READ DELETED DATA

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field (and SK = 0 (low)), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If SK = 1, then the FDC skips the sector with the Data Address Mark and reads the next sector.

READ A TRACK

This command is similar to READ DATA Command except that the entire data field is read continuously from each of the sectors of a track. Immediately after encountering the Index Hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when EOF number of sectors have been read. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (Missing Address Mark) flag in Status Register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

READ ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID Field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND flag is also set in Status Register 1 to a 1 (high) and the command is terminated.

FORMAT A TRACK

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette: Gaps, Address Marks, ID Fields, and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which is written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with bytes of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and N (Number of Bytes/sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

After formatting each sector, the processor must send new values for C, H, R, and N to the 8272 for each sector on the track. The contents of the R register is incremented by one after each sector is formatted, thus, the R register contains a value of R + 1 when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.

If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes command termination.

Table 5 shows the relationship between N, SC, and GPL for various sector sizes.

<table>
<thead>
<tr>
<th>TABLE 5. SECTOR SIZE RELATIONSHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMAT</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>FM Mode</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note 1: Suggested values of GPL in Read or Write Commands to avoid noise point between data field and ID field of contiguous sections.

Note 2: Suggested values of GPL in format command.
SCAN COMMANDS

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system (Processor in NON-DMA mode, and DMA Controller in DMA mode). The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of

\[\text{Byte = Processor} \times \text{Data} < \text{Processor} \times \text{Data} \times \text{Ones complement arithmetic is used for comparison (FF = largest number, 00 = smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented (R = STP = ++R), and the scan operation is continued. The scan operation continues until one of the following conditions occur: the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received. If the conditions for scan are met then the FDC sets the SH (Scan Halt) flag of Status Register 2 to 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 6 shows the status of bits SH and SN under various conditions of SCAN.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>STATUS REGISTER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Equal</td>
<td>Bit 2 = SM</td>
<td>Bit 3 = SH</td>
</tr>
<tr>
<td>Scan End</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Scan Low or Equal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Scan High or Equal</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SA = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to 1 (high) and terminates the command. If SK = 1, the FDC skips the sector, sets the Delected Address Mark, and reads the next sector. In the second case (SK = 1), the FDC sets the CM (Control Mark) flag of Status Register 2 to 1 (high) in order to show that a Deleted Sector had been encountered.

When either the STP (contiguous sectors STP = 01, or alternate sectors STP = 02 sectors are read) or the MT (Multi-Tracks) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP = 02, MT = 0, the sectors are numbered sequentially 1 through 26, and we start the Scan Command at sector 21, the following will happen: Sectors 21, 23, and 25 will be read, then the next sector (28) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command.

If the EOT had been set at 25 or the scanning started at sector 26, then the Scan Command would be completed in a normal manner.

During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than 27 μs (FM Model) or 13 μs (MFM Model), or an Overrun occurs the FDC terminates the command.

SEEK

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and performs the following operation if there is a difference:

- PCN < NCN: Direction signal to FDD set to 1 (high), and Step Pulses are issued. (Step In)
- PCN > NCN: Direction signal to FDD set to 0 (low), and Step Pulses are issued. (Step Out)

The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to 1 (high), and the command is terminated.

During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once.

If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to 1 (high), and the command is terminated.
RECALIBRATE

This command causes the read/write head within the FDD to retract to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 1 (high) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulses have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1s (highs), and terminates the command.

The ability to overlap RECALIBRATE Commands to multiple FDDs, and the loss of the READY signal, as described in the SEEK Command, also applies to the RECALIBRATE Command.

SENSE INTERRUPT STATUS

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
 a. Read Data Command
 b. Read a Track Command
 c. Read ID Command
 d. Read Deleted Data Command
 e. Write Data Command
 f. Format a Cylinder Command
 g. Write Deleted Data Command
 h. Scan Commands

2. Ready Line of FDD changes state

3. End of Seek or Recalibrate Command

4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. However, interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This command when issued resets the interrupt signal and via bits 5, 6, and 7 of Status Register 0 identifies the cause of the interrupt.

<table>
<thead>
<tr>
<th>SEEK END</th>
<th>INTERRUPT CODE</th>
<th>CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT 8</td>
<td>BIT 6</td>
<td>BIT 7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of the head position (PCN).

SPECIFY

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 1 to 256 ms in increments of 16 ms (01 = 16 ms, 02 = 32 ms ... OF = 240 ms). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms (F = 1 ms, E = 2 ms, D = 3 ms, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254 ms in increments of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms ... FE = 254 ms).

The time intervals mentioned above are a direct function of the clock (CLK on pin 1). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.

The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND = 1) the NON-DMA mode is selected, and when ND = 0 the DMA mode is selected.

SENSE DRIVE STATUS

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information.

INVALID

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command. No interrupt is generated by the 8272 during this condition. Bit 6 and bit 7 (DIO and ROM) in the Main Status Register are both high ("1") indicating to the processor that the 8272 is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find a 80H indicating an invalid command was received.

A Sense Interrupt Status Command must be sent after a Seek or Recalibrate interrupt, otherwise the FDC will consider the next command to be an Invalid Command.

In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.
TABLE 8. STATUS REGISTERS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Interrupt</td>
<td>Code</td>
<td>IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Seek End</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Equipment</td>
<td>Check</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Not Ready</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Head Address</td>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>Unit Select</td>
<td>US1</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>Unit Select</td>
<td>US2</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>End Cylinder</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>Data Error</td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>Over Run</td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>Not Data</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 9. STATUS REGISTERS 1 (CONT.)

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>Not Variable</td>
<td>NV</td>
<td>During execution of WRITE DATA, WRITE DELETED DATA or FORMAT A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.</td>
</tr>
<tr>
<td>D6</td>
<td>Missing Address Mark</td>
<td>MA</td>
<td>If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.</td>
</tr>
<tr>
<td>D3</td>
<td>Control Mark</td>
<td>CM</td>
<td>During execution of the READ DATA or SCAN Command, if the FDC encounters a Sector which contains a Delected Data Address Mark, this flag is set.</td>
</tr>
<tr>
<td>D4</td>
<td>Data Error in Data Field</td>
<td>DE</td>
<td>If the FDC detects a CRC error in the data field, then this flag is set.</td>
</tr>
<tr>
<td>D5</td>
<td>Wrong Cylinder</td>
<td>WC</td>
<td>This bit is related with the NO bit and when the content of C:0 of the medium is different from that stored in the IDR, this flag is set.</td>
</tr>
<tr>
<td>D6</td>
<td>Scan Equal Init</td>
<td>SE</td>
<td>During execution of the SCAN Command, if the condition of "equal" is satisfied, this flag is set.</td>
</tr>
<tr>
<td>D7</td>
<td>Scan Not Satisfied</td>
<td>SN</td>
<td>During execution of the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.</td>
</tr>
<tr>
<td>D8</td>
<td>Bad Cylinder</td>
<td>BC</td>
<td>This bit is related with the NO bit and when the content of C:0 of the medium is different from that stored in the IDR, this bit is FF, then this flag is set.</td>
</tr>
<tr>
<td>D9</td>
<td>Missing Address Mark in Data Field</td>
<td>MD</td>
<td>When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.</td>
</tr>
</tbody>
</table>

TABLE 10. STATUS REGISTERS 2

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Unit Select</td>
<td>US1</td>
<td>This bit is used to indicate the status of the Unit Select 1 signal from the FDD.</td>
</tr>
<tr>
<td>U2</td>
<td>Unit Select</td>
<td>US2</td>
<td>This bit is used to indicate the status of the Unit Select 2 signal from the FDD.</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS*
Operating Temperature −10°C to +70°C
Storage Temperature −40°C to +125°C
All Input Voltages −0.5 to +7 Volts
Supply Voltage V_{CC} −0.5 to +7 Volts
Power Dissipation 1 Watt

*T_A = 25°C

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
T_A = 0°C to +70°C; V_{CC} = +5V ± 5%

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>LIMITS</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>−0.5</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>2.0</td>
<td>V_{CC} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>(CLK & WR CLK)</td>
<td>−0.5</td>
<td>0.65</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>(CLK & WR CLK)</td>
<td>2.4</td>
<td>V_{CC} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage</td>
<td>0.45</td>
<td>V</td>
<td>I_{OL} = 2.0 mA</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage</td>
<td>2.4</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>V_{CC} Supply Current</td>
<td>150</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Load Current (All Input Pins)</td>
<td>10</td>
<td>μA</td>
<td>V_{IN} = V_{CC}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−10</td>
<td>μA</td>
<td>V_{IN} = 0V</td>
</tr>
<tr>
<td>I_{LOH}</td>
<td>High Level Output Leakage Current</td>
<td>10</td>
<td>μA</td>
<td>V_{OUT} = V_{CC}</td>
</tr>
<tr>
<td>I_{LOL}</td>
<td>Low Level Output Leakage Current</td>
<td>−10</td>
<td>μA</td>
<td>V_{OUT} = +0.45V</td>
</tr>
</tbody>
</table>

CAPACITANCE
T_A = 25°C; f = 1 MHz; V_{CC} = 0V

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>LIMITS</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN(H)}</td>
<td>Clock Input Capacitance</td>
<td>20</td>
<td>pF</td>
<td>All Pins Except Pin Under Test</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>10</td>
<td>pF</td>
<td>Tied to AC Ground</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>Output Capacitance</td>
<td>20</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>
A.C. CHARACTERISTICS

\(T_a = 0^\circ \text{C} \text{ to } 70^\circ \text{C} \), \(V_{CC} = 5.0 \text{V} \pm 5\% \)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCY</td>
<td>Clock Period</td>
<td>125</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCH</td>
<td>Clock High Period</td>
<td>40</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tRST</td>
<td>Reset Time</td>
<td>14</td>
<td></td>
<td>tCY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Cycle</td>
<td>Select Setup to RD</td>
<td>0</td>
<td></td>
<td>ns</td>
<td>(C_y = 100 \text{ pF})</td>
</tr>
<tr>
<td>WR</td>
<td>Select Hold from RD</td>
<td>0</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tHRC</td>
<td>RD Pulse Width</td>
<td>250</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tRD</td>
<td>Data Delay from RD</td>
<td>200</td>
<td>200</td>
<td>ns</td>
<td>(C_y = 100 \text{ pF})</td>
</tr>
<tr>
<td>tDF</td>
<td>Output Float Delay</td>
<td>20</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Write Cycle

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tAW</td>
<td>Select Setup to WR</td>
<td>0</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tWA</td>
<td>Select Hold from WR</td>
<td>0</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tWH</td>
<td>WR Pulse Width</td>
<td>250</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDW</td>
<td>Data Setup to WR</td>
<td>150</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tWD</td>
<td>Data Hold from WR</td>
<td>5</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Interrupts

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRI</td>
<td>INT Delay from RD</td>
<td>500</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tWI</td>
<td>INT Delay from WR</td>
<td>500</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

DMA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tQCY</td>
<td>DRQ Cycle Period</td>
<td>13</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tXDRQ</td>
<td>DRQ to DRQ</td>
<td>200</td>
<td></td>
<td>µs</td>
<td>8 MHz clock</td>
</tr>
<tr>
<td>tWDR</td>
<td>WRDR from RD</td>
<td>500</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tWDRW</td>
<td>DRQ to WR</td>
<td>250</td>
<td></td>
<td>µs</td>
<td>8 MHz clock</td>
</tr>
</tbody>
</table>

FDD Maximum Interface

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tWCT</td>
<td>WCK Cycle Time</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 0</td>
</tr>
<tr>
<td>tWH</td>
<td>WCK High Time</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tCP</td>
<td>Pre-shift Delay from WCK</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tCD</td>
<td>WDA Delay from WCK</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tWD</td>
<td>Write Data Width</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tWTE</td>
<td>WET to WCK or WDR to WCK Delay</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tWCY</td>
<td>Window Cycle Time</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 0</td>
</tr>
<tr>
<td>tWHS</td>
<td>Window Setup to RD</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tWHD</td>
<td>Window Hold from RD</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
<tr>
<td>tRCH</td>
<td>RDCH Active Time (HIGH)</td>
<td></td>
<td></td>
<td></td>
<td>MPM = 1</td>
</tr>
</tbody>
</table>

FDD/SEEK/STEP DIRECTION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>tS6</td>
<td>Setup to RD</td>
<td>12</td>
<td></td>
<td>µs</td>
<td>8 MHz clock</td>
</tr>
<tr>
<td>tS4</td>
<td>Hold from RD</td>
<td>15</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tS0</td>
<td>RDSE Setup to LCST / DP</td>
<td>7</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tS30</td>
<td>RDSE Hold from LCST / DP</td>
<td>30</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tST0</td>
<td>LCST / DP Setup to FRST / SE</td>
<td>1</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tST1</td>
<td>LCST / DP Hold from FRST / SE</td>
<td>24</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tST</td>
<td>RCX Hold from FMD0</td>
<td>5</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tSTP</td>
<td>Step Active Time (High)</td>
<td>5</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tSP</td>
<td>Step Cycle Time</td>
<td>23</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tFSP</td>
<td>FAULT RESET Active Time (High)</td>
<td>8</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tISP</td>
<td>INDEX Pulse Width</td>
<td>625</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>tIC</td>
<td>Terminal Clock Width</td>
<td>1</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Typical values for \(T_a = 25^\circ \text{C} \) and nominal supply voltage.
2. The former values are used for standard floppy and the latter values are used for mini-floppy.
3. \(t_{DC} = 30 \mu \text{s} \) min. is for different drive units. In the case of same unit, \(t_{DC} \) can be ranged from 4 ms to 16 ms with 8 MHz clock period, and 2 ms to 32 ms with 4 MHz clock, under software control.
SEEK OPERATION

FLT RESET

INDEX

FDD READ OPERATION

NOTE: EITHER POLARITY DATA WINDOW IS VALID.

TERMINAL COUNT

RESET

A.C. TIMING MEASUREMENT CONDITIONS

INPUT WAVEFORM

2.4V

2.4V

MEASUREMENT POINT
INPUT: 2.4V = 0.8V
OUTPUT: 2.4V = 0.8V
PARTS LIST

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>UNIT#</th>
<th>PART#</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>7805</td>
</tr>
<tr>
<td>U2</td>
<td>7805</td>
</tr>
<tr>
<td>U3</td>
<td>74LS02</td>
</tr>
<tr>
<td>U4</td>
<td>74LS175</td>
</tr>
<tr>
<td>U5</td>
<td>74LS221</td>
</tr>
<tr>
<td>U6</td>
<td>4136</td>
</tr>
<tr>
<td>U7</td>
<td>74LS279</td>
</tr>
<tr>
<td>U8</td>
<td>74LS10</td>
</tr>
<tr>
<td>U9</td>
<td>74LS125</td>
</tr>
<tr>
<td>U10</td>
<td>74LS244</td>
</tr>
<tr>
<td>U11</td>
<td>74LS138</td>
</tr>
<tr>
<td>U12</td>
<td>74LS163</td>
</tr>
<tr>
<td>U13</td>
<td>74LS163</td>
</tr>
<tr>
<td>U14</td>
<td>765/8272</td>
</tr>
<tr>
<td>U15</td>
<td>74LS240</td>
</tr>
<tr>
<td>U16</td>
<td>7407</td>
</tr>
<tr>
<td>U17</td>
<td>7406</td>
</tr>
<tr>
<td>U18</td>
<td>74LS74</td>
</tr>
<tr>
<td>U19</td>
<td>74LS221</td>
</tr>
<tr>
<td>U20</td>
<td>74LS74</td>
</tr>
<tr>
<td>U21</td>
<td>74LS08</td>
</tr>
<tr>
<td>U22</td>
<td>74LS04</td>
</tr>
<tr>
<td>U23</td>
<td>74LS00</td>
</tr>
<tr>
<td>U24</td>
<td>74LS74</td>
</tr>
<tr>
<td>U25</td>
<td>74LS163</td>
</tr>
<tr>
<td>U26</td>
<td>74LS163</td>
</tr>
<tr>
<td>U27</td>
<td>74LS244</td>
</tr>
<tr>
<td>U28</td>
<td>2758/2716</td>
</tr>
<tr>
<td>U29</td>
<td>74LS163</td>
</tr>
<tr>
<td>U30</td>
<td>74LS163</td>
</tr>
<tr>
<td>U31</td>
<td>74LS139</td>
</tr>
<tr>
<td>U32</td>
<td>7407</td>
</tr>
<tr>
<td>U33</td>
<td>74LS04</td>
</tr>
<tr>
<td>U34</td>
<td>95LS02</td>
</tr>
<tr>
<td>U35</td>
<td>74LS221</td>
</tr>
<tr>
<td>U36</td>
<td>74LS08</td>
</tr>
<tr>
<td>U37</td>
<td>74LS38</td>
</tr>
<tr>
<td>U38</td>
<td>74LS38</td>
</tr>
<tr>
<td>U39</td>
<td>74LS244</td>
</tr>
<tr>
<td>U40</td>
<td>23LS221</td>
</tr>
<tr>
<td>U41</td>
<td>74LS244</td>
</tr>
<tr>
<td>U42</td>
<td>74LS244</td>
</tr>
<tr>
<td>U43</td>
<td>74LS244</td>
</tr>
<tr>
<td>U44</td>
<td>74LS245</td>
</tr>
<tr>
<td>U45</td>
<td>74LS245</td>
</tr>
</tbody>
</table>

RESISTOR

<table>
<thead>
<tr>
<th>UNIT#</th>
<th>PART#</th>
</tr>
</thead>
<tbody>
<tr>
<td>U46</td>
<td>74LS244</td>
</tr>
<tr>
<td>U47</td>
<td>74LS393</td>
</tr>
<tr>
<td>U48</td>
<td>74LS157</td>
</tr>
<tr>
<td>U49</td>
<td>74LS04</td>
</tr>
<tr>
<td>U50</td>
<td>74LS165</td>
</tr>
<tr>
<td>U51</td>
<td>78L12</td>
</tr>
<tr>
<td>U52</td>
<td>79L12</td>
</tr>
</tbody>
</table>

RESISTOR

- R1: 4.7K ohm
- R2: 4.7K ohm
- R3: 33K ohm
- R4: 4.7K ohm
- R5*: 1.5K ohm
- R6*: 1.0K ohm
- R7: 47K ohm
- R8: 33K ohm
- R9*: 1.5K ohm
- R10: 1.2K ohm
- R11: 150 ohm
- R12: 150 ohm SLP
- R13*: 3.9K ohm
- R14: 4.7K ohm
- R15: 4.7K ohm
- R16*: 5.1K ohm
- R17*: 5.1K ohm
- R18*: 3.9K ohm
- R19: 1.2K ohm
- R20*: 1.8K ohm
- R21: not used
- R22: not used
- R23: 150 ohm
- R24: 1.2K ohm
- R25: 15K ohm
- R26: 2.4K ohm
- R27: 75K ohm

CAPACITOR

- C1-C4: 39 uF
- C5: .01 uF
- C6: .1 uF
- C7: 220 pF
- C8: 220 pF
- C9: 270 pF
- C10: 220 pF
- C11: 250 pF
- C12: 600 pF
- C14-C17: 1.0 uF
- C18: 220 pF
- C19: .0027 uF
- (31): .01 uF

CRYSTAL

- X1*: 8.00 MHz or 4.00 MHz

INDUCTOR

- L1*: 2.2 uH or 10 uH

TRANSISTOR

- Q1: 2N3906

DIODE

- D1-D9: 809-36
- D10-D11: 1N914

*Part alteration for 5.25" drives
SOFTWARE SECTION

1.0 INTRODUCTION

The purpose of this manual is to describe the software supplied with the Godbout Electronics / CompuPro Disk I Floppy Disk Controller for the standard IEEE 696 (S-100) bus. In addition, a section of this manual is devoted to describing how a modified CompuPro CP/M 2.2 CB IOS can be integrated into the CP/M system.

This manual is written for purchaser who are familiar with the CP/M BIOS customizing techniques. If CP/M 2.2 was purchased with the Disk 1 controller then all corrective patches have been installed. On the other hand if the CP/M was purchased for a different controller then be sure to obtain and install all CP/M corrective patches.

The information contained within the document is divided as follows:

a. Software User’s Guide
b. Software Features
c. Software Internal Design
d. CB IOS Customization Guide

The Software User’s Guide describes how to use the following software packages:

a. FORMAT.com -- disk formatter
b. COPY.com / CONVERT.com -- disk copy utility
c. DSK.COM -- CP/M 1.4 compatibility toggle

The next section describes the external features of the supplied software. This section describes the enhancements and assumptions made by the CompuPro CB IOS routines and utility routines.

The Software Internal Design section describes the design of the supplied software. This section should help the user understand how the software components work; thus enabling the purchaser to modify the software for his hardware configuration.

The final section has a step-by-step method describing how to modify and integrate the CompuPro Disk 1 CB IOS into a CP/M system.

2.0 APPLICABLE DOCUMENTS

The reader should be familiar with the following documents.

a. NEC uPD765 Floppy Disk Controller Application Note
b. CompuPro Disk 1 Floppy Disk Controller Description
c. An Introduction to CP/M Features and Facilities
d. CP/M 2.0 User's Guide for CP/M 1.4 Owners
e. CP/M 2.0 Alteration Guide
f. CP/M 2.0 Interface Guide
3.0 SOFTWARE USER'S GUIDE

The following paragraphs describe the operating features for the supplied utility programs.

3.1 FORMAT.COM -- Floppy Disk Format Utility

The FORMAT.COM utility program is supplied so that purchasers of the Disk 1 board can change the density of his disk (data is destroyed). The FORMAT.COM utility formats floppy disk in IBM compatible formats; not all disk controllers are IBM compatible.

The FORMAT utility contains the Diskl board interface routines allowing the user to run under a current IEEE 696 CP/M 2.2 system.

The FORMAT utility has simple and straightforward operating instructions. The user is prompted for input as needed to control the utilities flow. The user initiates the FORMAT utility by entering the following:

```
FORMAT
```

or

```
FORMAT drive
```

If the drive is not specified on the command line then the FORMAT utility prompts the user with the following line:

```
Specify drive (A: - D:) :
```

The user now enters the drive (A thru D) and the FORMAT utility proceeds.

After the user has specified the drive to be formatted, FORMAT attempts to determine the specified disk's format. The disk format or lack thereof is displayed for the user and a message requesting the new format selection is displayed. The format of these displays are as follows:

```
Disk is Formatted as 1024 byte sectors.
```

```
Select Disk format mode (0,1,2,3):
  0 = 128   2 = 512
  1 = 256   3 = 1024 > _
```

The user now enters the disk formatting selection and the FORMAT utility begins formatting the disk. As each track is formatted an F appears on the screen (total of 77). After formatting all the tracks the FORMAT utility begins a verify operation. This verify operation informs the user of possible bad spots on the floppy disk. These displays and a description of the output follows:

```
Confirm ready for format on disk drive B (y)_
```

```
1     2     6     7
012345678901234567890 . . 012345678901234567
FFFFFFFFFFFFFFFFFFFFFFY 
VVVVVVVVVVVVVVVVVVVVVVVV
```

56
These symbols have the following meaning:

F -- successful format operation.
V -- read verified.
S -- error occurred by retry worked.
E -- hard failure.

After the verification, the FORMAT utility asks the user if another disk is to be formatted. The user response will result in one of three actions as follows:

1. Return to CP/M
2. Formatting another disk with the same parameters.
3. Change formatting parameters.

The FORMAT utility uses a lot of user interactions to control the utilities flow. The user can get a general idea of the inputs required by entering the following command line:

```
FORMAT ?
```

This will result in the following display:

```
FORMAT will format a diskette to be used with the CompuPro disk subsystem.

The FORMAT program is initiated by:

```
FORMAT <dr:><cr>
```

Where <cr> is the Carriage Return.  
If the drive <dr:> is not specified, it will be prompted for.

3.2 COPY.com / CONVERT.com -- Disk Copy Utilities.

The COPY.com and CONVERT.com utility programs perform diskette copy functions. The CONVERT program inverts the data while copying, because some controllers record the data inverted from normal form.

These programs are intended to be used to copy an entire diskette to another diskette. They perform this by reading in a track of data, write it out, reading it back in and comparing.

The user must tell these programs the following information:

1. Area of Diskette to be copied.  
2. Source drive.  
3. Destination drive.

These programs get this information by prompting the user with the following messages:

```
CompuPro COPY Utility Version 2.X.

Do you want to copy:
```
SYSTEM tracks only? (type S)
DATA tracks only? (type D)
ALL of the disk? (type A)
Exit back to system? (type X)

Source drive? (A, B, C, or D)
Destination drive? (A, B, C, or D)

Put source disk on X
Put destination disk on Y
Then type <return>

As with the FORMAT program the following is available:

COPY

This will result in the following display:

Copy will copy disks on the CompuPro
disk subsystem. To start, type:

COPY <portion><cr>

Where <cr> is Carriage Return
and <portion> is S = system, D = data or
A = all. If not entered, a prompting message
will be output.

The source and destination drive prompts occur.

A similar message will be output by the CONVERT program.

3.3 DSK-com — CP/M 1.4 Compatibility Toggle.

The DSK routine is used to toggle 256 byte double density disks between CP/M
1.4 and CP/M 2.0. The differences between the two modes only affects files
which are larger than 16K bytes long. There are no real operating instructions
and the code is self explanatory.

4.0 SOFTWARE FEATURES

This section describes the features and the assumptions made in the
following routines:

- DISK1 ROM / BOOT
- DISK1 CBIO$s
- DISK1 FORMAT
- COPY / CONVERT Programs

The above programs assure a disk which has been formatted by the DISK1
FORMAT utility. The DISK1 FORMAT utility always formats side 0 cylinder 0 in
128 bytes sectors, FM, 26 sectors per track. The rest of the disk is formatted
in one of the following optional formats:

∞
- 128 byte sectors, FM, 26 sectors per track.
- 256 byte sectors, MFM, 26 sectors per track.
- 512 byte sectors, MFM, 15 sectors per track.
- 1024 byte sectors, MFM, 8 sectors per track.

Also note that due to the size of the DISK1 CBIOS; a CP/M System disk must be recorded in one of the MFM modes.

4.1 CompuPro DISK1 ROM / BOOT

The CompuPro DISK1 ROM code must reside within 256 bytes and contain no memory data references. The ROM code is therefore straight line code performing the following functions:

- Reads the first four sectors (BOOT program).
- Disables the ROM.
- Begin executing the BOOT program.

The CompuPro DISK1 ROM will probably not have to be modified while the BOOT code will vary depending upon the memory configuration.

The BOOT program resides in the first four sectors of the disk (512 bytes). It is read by the ROM code into location 0100h and performs the following functions:

- Reads in the CBIOS.
- Jumps to the Cold Start entry of the CBIOS.

The CBIOS resides in the 5th thru 26th sectors of the disk. The code for the ROM and BOOT is very similar and assumes FM disk read (side 0 head 0 is always FM).

The supplied MOVCPM utility program performs the relocation of the BOOT code depending upon the memory size specification.

4.2 CompuPro DISK1 CBIOS

The CompuPro DISK1 CP/M CBIOS implements all of the jump vectors described in the CP/M 2.2 Alteration Guide. An additional jump vector was added to allow for the extended addressing available on the IEEE 696 bus.

Since the CompuPro CBIOS uses Blocker / Debloacker code to handle the MFM recorded disks; assumptions are required because CP/M 2.2 does not inform the CBIOS when to flush the disk buffer. Floppy disks are removable media and before a disk can be safely removed the disk buffer must be flushed. Before a change of disk is performed one of the following sequences must be performed:

1. A warm start.
2. Closing all files and a disk reset.
3. Call the CBIOS HOME routine.

Failure to perform one of the above sequences might result in disk data being written on the newly inserted disk.
4.2.1 Cold Start

The Cold Start code performs the following functions:

- Initialize, Location 3 -- IOBYTE
- Location 4 -- Current Flexible disk
- Outputs a sign-on message.
- Performs the Warm Boot function.

4.2.2 Warm Boot

The Warm Boot code loads the CP/M CCP and BDOS modules and transfer control to the CCP.

4.2.3 Unit Record

The Standard Unit Record Input / Output routines are:

```
Console Status. List Output.
Console Input. List Status.
Console Output. Punch Output.
Reader input. Reader input.
```

The code included in the CompuPro DISK1 BIOS assumes the purchaser has a CompuPro Interfacer I. The Console ports are 0 and 1 while the reader, punch, and list are ports 2 and 3. Other serial Input / Output controllers are quite similar and require very little modifications, however parallel or memory mapped video is a different subject and extensive modifications might be required.

4.2.4 Home

The HOME routine flushes the BLOCKER / DEBLOCKER buffer and sets the selected track to zero (0).

4.2.5 Select Disk

The Select Disk routine performs the following functions:

- Checks for Valid drive selection.
- Computes the specified drive's DPB address.
- If this is a "first time call" then the disk type is determined.

4.2.6 SET Track

Sets the selected track to the specified value for a subsequent disk transfer.

4.2.7 Set Sector

Sets the selected sector to the specified value for a subsequent disk transfer.

4.2.8 Set Disk Memory Address

Sets the disk memory buffer address for the next disk transfer.
4.2.9 Set Extended Address

This routine allows the user to set the high order byte of the DMA address. This allows the CP/M user to assess the entire memory address range available on the IEEE 696 bus.

4.2.10 Set Number of Sectors

This routine allows the user to access more than one sector on a track at a time. This feature is only useful for individuals who perform direct transfers with the CompuPro CHOS.

4.2.11 READ from disk

A 128 byte record is transferred from the disk previously specified by the Select Disk, Set Track, and Set Sector routines, into the memory buffer defined by the Set Disk memory address routine.

4.2.12 Write to disk

A 128 byte record is transferred from the memory buffer to the previously selected disk track and sector.

4.2.13 Translate Sector Number

A sector translation function is performed on the specified sector using the translation table specified the the caller.

4.3 DISK1 FORMAT

The DISK1 FORMAT utility has some important features. One of these features is the automatic determination of the number of sides the disk supports. The FORMAT utility will adjust the formatting parameters for a two-sided disk.

Another feature of the DISK1 FORMAT utility is to perform a read verify which gives the user a check on the ability of the disk to retain data. We have found disks which will have read errors at one density but not a another. If a disk has hard or soft errors at all densities, then this could indicate one of the following problems:

1. Disk media is bad.
2. Drive heads are dirty.
3. Drive is out of adjustment.
4. Controller is out of adjustment.

The ability of the FORMAT program to repeat the identical format on another disk saves time when formatting batches of flexible disks.

Some features the purchaser might want to add to the DISK1 FORMAT utility are:

- Formatting System Tracks only.
- Formatting Selected Tracks only.
4.4 COPY / CONVERT Utilities

The COPY routine performs a track by track copy of the source disk to the user specified destination disk. The CONVERT utility is provided to support the user that currently has disks that have been written with controllers that invert the data before written (i.e. Western Digital usage).

Both COPY and CONVERT use the standard CB IOS call formats for reading and writing the data. The only known restriction with these programs is that the format of the disk must be compatible with the NEC definition for FM and MFM.

5.0 SOFTWARE INTERNAL DESIGN

This section describes the general flow and philosophy of the supplied components.

5.1 CompuPro DISK1 ROM / BOOT

The DISK1 ROM and BOOT routines are vary straightforward. They are both straight line code routines with few loops. The important item to remember when reviewing the listing is the following system disk layout:

Cylinder 0, Head 0 - FM recording; 128 byte sectors 1-4 reserved for CompuPro DISK1 BOOT. Sectors 5-26 reserved for CompuPro DISK1 CB IOS

Cylinder 0, Head 1 - MFM recording; 256, 512, or 1024 byte sectors. Sectors 1-n not used.

Cylinder 1, Head 0 - MFM; 256, 512, or 1024 byte sectors. Sectors 1-n reserved for CCP and BDOS

Cylinder 1, Head 1 - MFM; 256, 512, or 1024 byte sectors. Sectors 1-n not used.

The value of 'n' which equals sectors per track is: 26 for 256 byte sectors, 15 for 512 byte sectors, 8 for 1024 byte sectors.

5.2 CompuPro DISK1 CB IOS

The CompuPro DISK1 CB IOS quite literally makes CP/M work. The CompuPro DISK1 CB IOS uses a modified version of the CP/M DEBLOCK routines. The modification stems from the fact that multiple sector formats are supported. All CP/M disk transfers are 128 bytes in length, and a method for combining the 128 byte transfers into a single, transfer is required.

The description of tables and variables used in the CompuPro DISK1 CB IOS are key to its understanding; therefore the following paragraphs describe the key tables and variables.

The DDBASE table contains a CP/M Disk Parameter Header (DPH) for each logical disk drive. The DPH is described in the CP/M 2.0 Alteration Guide, but a few comments here are appropriate. The DPH is used mostly by CP/M, but four entries are of interest to the CompuPro DISK1 CB IOS -- the Translation Table Address, the Disk Parameter Block (DPB) Address, the Check Vector Address, and the Allocation Vector Address. The Check Vector Address and Allocation Vector
Address are mentioned here, because storage within the CompuPro DISK I BIOS must be reserved for these CP/M tables.

The Translation Table Address is used to translate CP/M consecutive sectors into software interlaced external sectors. In order to maintain compatibility between single density disks, a six sector interlace table is used; but for other sector formats different tables are used.

The most important entry within the DPH is the Disk Parameter Block. This address points to a table -- one table for each disk type -- which describes the storage characteristics of the associated disk type. The CP/M 2.0 Alteration Guide describes the entries within the DPH, but the Guide does not describe why the CompuPro DISK I BIOS has defined the DPH values. The format of the CompuPro DISK I BIOS DPHs follows:

Disk type definition blocks for each particular mode. The format of these areas are as follows:

8 bit = Disk type code
16 bit = Sectors per track
8 bit = Block shift
8 bit = BS mask
8 bit = Extent mask
16 bit = Disk size/1024 - 1
16 bit = Directory size
16 bit = Allocation for directory
16 bit = Check area size
16 bit = Offset to first track

The Sector translation tables contain values which are CP/M compatible or compatible with other popular CP/M implementations.

Now that the description of the tables is complete, the key variables need to be described. The variables contain information about various stages of a disk transfer. The following variables:

ACTDSK -- Disk Selection Value
ACTRTRK -- Track Number
ACTTYP -- Disk Type
ACTSEC -- Sector in Track

The information about the data contained within the host disk deblocking buffer is contained in a corresponding set of variables called HSTDSDK, HSTTYP, HSTTRK, and HSTSEC. The SEKxxxx variables contain the initial CP/M data transfer request. The variables might result in an actual physical transfer, or the data requested could be contained in the host disk deblocking buffer. Each time CP/M calls the WRITE routine, the C register contains a value which indicates one of the following:

0 -- Write to a allocated block
1 -- Write to the directory
2 -- First write to a previously unallocated block

How the CompuPro DISK I BIOS uses these values and other variables reduces the number of unnecessary pre-reads.
The following paragraphs describe the differences between the CB IOS described in the CP/M 2.0 Alteration Guide and the CompuPro DISK1 CB IOS implementation. The reader should be especially familiar with Sections 6 and 12.

The SECTRAN routine differs from the Alteration Guide by testing register DE. If register DE is zero, then no sector translation is performed. Otherwise, DE contains the translation table address.

Since the CompuPro DISK1 CB IOS attempts to detect the density and number of sides of a floppy disk contains, the SELDSK diverges significantly from the Alteration Guide. When the SELDSK is invoked by CP/M, the disk selection value is saved. SELDSK calculates the DPH address, and the least significant of DE is tested for zero. If the bit is non-zero, then the disk type is extracted and saved, and the DPH address is returned.

The more complicated process begins when the bit is zero. The SELDSK routine calls TREAD to try and determine the floppy disk type. If TREAD returns with the zero flag set, then the type was determined. SELDSK then computes the appropriate DPH address and initializes the translation table and DPH address in the DPH.

The READ routine appears simplified, but this is a result of modularizing its code. This routine first calls the CHKBDK routine, which checks the disk type for single density floppy. If the disk is a single density floppy, then the READ routine jumps to the physical sector reading routine FINAL. If the disk is not a single density floppy, then the host buffer is filled by the FILL routine, and the appropriate 128 byte sector is moved to the user's buffer.

The WRITE routine is significantly more complicated than the READ routine. This complication results from the attempt to reduce the number of unnecessary pre-reads of the disk.

The WRITE routine calls CHKBDK to determine the disk type. If the disk type is a single density floppy, a jump to the physical WRITE routine is performed. If the disk type is not a single density, then the logic parallels the WRITE routine documented in the Alteration Guide.

CompuPro DISK1 CB IOS is written fairly straightforward, and only two places are "sneaky". The first sneaky portion is in the FILL routine. The FILL routine returns two parameters on the stack: the host buffer address, and the caller's buffer address. The code to place these two addresses into the stack starts with the XTHL instruction. The other "sneaky" code is in SETUP. SETUP pushes the transfer routine address onto the stack so that the EXEC routine jumps directly to the appropriate disk transfer routine.

This concludes the description of the CompuPro DISK1 CB IOS. If the reader wishes more detailed information, he should refer to the listings and source of the supplied CompuPro DISK1 CB IOS.
APPLICABLE TO CP/M 2.2K ONLY

6.0 CompuPro CBiOS Customization Guide

This portion of the manual describes a step-by-step method for installing and customizing the CompuPro released CBiOS. The following paragraphs and operations must be performed in a sequential manner.

6.1 Creating the CompuPro BOOT.hex File

The CompuPro BOOT.hex file is created by assembling the GBBOOT.asm file. Before assembling two equates must be altered: MSIZE and the controller's base port address. The released configuration has the following default values preset into the source:

MSIZE = 20k
Controller Port Numbers = C0h,...,C3h

The supplied MOVCPM.com will alter the memory size dependent locations and if the controller's port is set to the default this step can be by-passed.

6.2 Creating the CompuPro CBiOS.hex file

If alterations to the CompuPro CBiOS are required, then the controller's port and MSIZE values must be set. Alterations to the CompuPro CBiOS are required if the user wishes to support unit record (CONSOLE, LIST, PUNCH and READER) which do not use the CompuPro "bit-banger", System Support 1, Interfacer 1/2, or Interfacer 3/4 Boards. The use of these serial interfaces are included within the released CompuPro CBiOS.

After the alterations to the source file(s) are made then a check to insure the resultant CBiOS is not larger than 1000 bytes is required. If the CBiOS is larger than 1000 bytes then the BIOSLN value must be altered appropriately. In addition, a cell within the MOVCPM.com file must be altered. The altered cell contains the CBiOS length (rounded to next 256 byte page). The location of this cell is 805H and 806H as shown in the following figure.

6.3 Understanding the CompuPro MOVCPM.com

The next step in creating the modified CompuPro CP/M 2.2 system is the understanding of how MOVCPM.com works and the key to how MOVCPM.com works is its structure.

The MOVCPM.com file is composed of two parts: a relocating program and a Page Relocatable (PRL) file. The relocating program occupies the first 700h bytes of the MOVCPM.com file and is of little concern. The PRL file on the other hand is of the utmost concern, because it contains not only the binary image of the CP/M system but also the relocating information.

A PRL file allows any byte in the program to have a constant value added to it. This constant is the page offset and is added to the high order byte of the instruction address. That is a sequence of byte C3 25 14 would have the page offset added to the 14 thus "relocating" jump target by a number of pages. In order for the relocating program to know which bytes to add the constant page offset to a bit map is appended to the binary image, one bit for each byte. In addition, there is a header which contains the binary portions length and offset. The header for the CP/M PRL has an additional field indicating the CBiOS's length.
The format of the CP/M PRL portion of the MOVCPM.com file is depicted below:

<table>
<thead>
<tr>
<th>800</th>
<th>+</th>
<th>+</th>
<th>CBIOS LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C00</td>
<td></td>
<td></td>
<td>BOOT byte relocation bit map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C40</td>
<td></td>
<td></td>
<td>CBIOS byte relocation bit map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2DA0</td>
<td></td>
<td></td>
<td>CP/M 2.2 byte relocation bit map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is important to note here that the above description applies only to the CompuPro released MOVCPM.com and not to other vendors. The unique way the CompuPro System Disks are layed out requires a unique MOVCPM.com and SYSGEN.com.

6.4 Creating the CPMxx.com file

The creation of the CPMxx.com file is a multi-step operation. The goal of this operation is to create a binary image which can be used by the SYSGEN.com program. The format of this image can be "SAVED" on a disk file for later input to the SYSGEN program. The format of this image is as follows:

<table>
<thead>
<tr>
<th>100</th>
<th>+</th>
<th>+</th>
<th>(Required padding NOT used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8FA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15FA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2BFA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to create this binary image MOVCPM, DDT, GBOOT.hex, and GBIOS.hex will be used. The following paragraphs describe the use of these files to create the required binary image.
The first step in building the binary image is to create a CP/M 2.2 relocated for the appropriate memory size. In the following examples we will illustrate using a 32K CP/M.

A>MVC32

CONSTRUCTING 32K CP/M vers 2.2
READY FOR "SYSGEN" OR
"SAVE 43 CPM32.COM"
A>SAVE 43 CPM32.COM

We have now built a standard released CompuPro 32K CP/M 2.2 binary image on the file CPM32.COM. The next step is to combine the GBBBOOT.hex, GBBIOS.hex, and CPM32.com files into a new binary image. To do this one enters the following:

A>ODT CPM32.COM
DDT VERS 2.2
NEXT PC
2C00 0100
-LB00
OB00 JMP E2B3
OB03 JMP E2C3

-f100,15FF,0 -----------------> Clear out old image
-iGBBOOT.HEX
-r800 ---------------------------> Bias of 800h
NEXT PC
2C00 0000
-iGBBIOS.HEX
-hOB00,EC00 --------------------------> Compute bias (EC00 start of jump table)
-7800 9B00
-r9B00

NEXT PC
2C00 0000

The next step is to do a quick verify that everything is in its proper place.

-L0900 ---------------------> list first few locations of BOOT.
  .  
  .  

-L0B00 ---------------------> list first few locations of CBIOS.
  .  
  .  

Now exit and save the binary image on a file as follows:

-G0 --------------------------> exit via jump to warm boot.
A>SAVE 43 CPM32K.COM
The new CP/M binary image is now on the CPM32X.com file and is ready for input into the SYSGEN program as follows:

A>SYSGEN CPM32X.com
SYSGEN Version 2.2B

Destination drive name (or RETURN to terminate). B <- drive $;
Destination on B, the type return.
Function complete. <- new system disk has now been made
Destination drive name (or RETURN to terminate). <- RETURN to exit

The system has now been written out on the specified disk and is ready for checkout. Some hints about checking out a new CP/M system. Be sure and check out the disk functions on a test disk before inserting a disk with needed information. Nothing is more upsetting than wiping out a disk by accident.
ALERTATION GUIDE FOR INTERFACER 1/2 I/O ROUTINES

The current version of CP/M-80 has routines that support the serial ports on INTERFACER 1/2 boards as the CONSOLE, LIST, and U11 devices. The PUNCH and READER routines are covered through the LIST port. The port addresses for these devices are shown in the table below. Since the INTERFACER 1/2 boards are configured under hardware control by programming shunts, the baud rates and serial parameters are not specified in the following code section.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PORT BASE</th>
<th>EQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSOLE</td>
<td>00H</td>
<td>GBPO:</td>
</tr>
<tr>
<td>LIST</td>
<td>02H</td>
<td>GBPI:</td>
</tr>
<tr>
<td>READER/PUNCH</td>
<td>02H</td>
<td>GBPI:</td>
</tr>
<tr>
<td>U11: LIST</td>
<td>04H</td>
<td>GBPO:</td>
</tr>
</tbody>
</table>

To alter the base port addresses, simply alter the equate statement value to the desired base.

INTERFACER 1/2 I/O ROUTINES

; CompuPro Interfacer board equates.

GBPO: EQU 0  ;Serial port zero
GBPI: EQU 2  ;Serial port one
GBP2: EQU 4  ;Serial port two
GBDATA: EQU 0  ;Data on even I/O unit
GBSTAT: EQU 1  ;Status on odd I/O unit
GKTBNMT: EQU 00000001b  ;Transmit buffer empty
GBDAV: EQU 00000010b  ;Data available
GBOPT: EQU 00000100b  ;Optional status line
GBPE: EQU 00001000b  ;Parity error
GBOR: EQU 00010000b  ;Overrun error
GBFE: EQU 00100000b  ;Framing error
GBCC: EQU 01000000b  ;RS 232 CC input
GBCR: EQU 10000000b  ;RS 232 CR input
GRIE: EQU 00000011b  ;Receiver interrupt enable
GBTIE: EQU 00000101b  ;Transmitter interrupt enable
GBCD: EQU 00000100b  ;RS 232 CD output
GBCA: EQU 00001000b  ;RS 232 CA output
GBTSB: EQU 00010000b  ;Number of stop bits
GBNP: EQU 00100000b  ;No parity
GBEP: EQU 01000000b  ;Even parity
GBBSI: EQU 10000000b  ;Number of bits/character

; CONSOLE STATUS

; This routine samples the Console status and returns the following values in the A register.
; EXIT A = 0 (zero), means no character currently ready to read.
; A = FFh (255), means character currently ready to read.

CONSTRUCT: IN GBPO GBSTAT  ;Input from port
ANL GBDAV  ;Mask data available
NZ
ORI OFFh
RET

; CONSOLE INPUT
;
; Read the next character into the A register, clearing the high order
; bit. If no character currently ready to read then wait for a character
; to arrive before returning.
;
EXIT A = character read from terminal.
CONIN: IN GBP0+GBSTAT
ANI GBDAV
JZ CONIN ; If data not available
IN GBP0+GBDATA
ANI 7Fh
RET

; CONSOLE OUTPUT
;
; Send a character to the console. If the console is not ready to receive
; a character wait until the console is ready.
;
ENTRY C = ASCII character to output to console.
CONOUT: IN GBP0+GBSTAT
ANI GBDTBM
JZ CONOUT ; If transmit buffer not empty
MOV A,C
OUT GBP0+GBDATA
RET

; Punch Output.
;
; Send a character to the punch device. If no punch device exists
; then immediately return.
;
ENTRY C = ASCII character to output.
PUNCH: IN GBP1+GBSTAT
ANI GBDTBM
JZ PUNCH ; If transmit buffer full
MOV A,C
OUT GBP1+GBDATA
RET

; Reader Input.
;
; Read the next character from the currently assigned reader device
; into the A register.
;
EXIT A = character read from the reader device.
READER: IN GBP1+GBSTAT ; Input from port
ANI GBDAV ; Mask data available
JZ READER ; If data not available
IN GBP1+GBDATA
RET

70
 ; List Output.
 ;
 ; Send a character to the list device. If the list device is not ready
 ; to receive a character wait until the device is ready.
 ;
 ; ENTRY C = ASCII character to be output.

LIST: LDA IOBYTE ;Get IOBYTE status
ANI OCOH ;Check for UL1:
SUI OCOH
JZ UL1

LIST1: IN GBP1+GBSTAT ;Get status
ANI GBCC+GBTBMT
SUI GBTBMT
JNZ LIST1
MOV A,C
OUT GBP1+GBDATA
RET

; UL1: LIST OUTPUT
;
; Send a character to the second interfacer
;

UL1: IN GBP2+GBSTAT ;Get status
ANI GBCC+GBTBMT
SUI GBTBMT
JNZ UL1
MOV A,C
OUT GBP2+GBDATA
RET

; List Status.
;
; Return the ready status for the list device.
;
; EXIT A = 0 (zero), list device is not ready to accept another
 ; character.
 ; A = FFh (255), list device is ready to accept a character.

LISTST: LDA IOBYTE ;Check for UL1:
ANI OCOH
SUI OCOH
JZ ULIST
IN GBP1+GBSTAT

LSTAT: ANI GBCC+GBTBMT
SUI GBTBMT
EZ
OKI OFFh ;If ready
RET

ULIST: IN GBP2+GBSTAT
JMP LSTAT

END
ALTERATION GUIDE FOR SYSTEM SUPPORT 1 I/O ROUTINES

The current version of CP/M-80 has routines that support the serial port on the SYSTEM SUPPORT 1 as the CONSOLE device and the serial ports on INTERFAZER 1/2 boards as the LIST, and ULI devices. The PUNCH and READER routines are covered through the LIST port. The port addresses for these devices are shown in the table below. The SYSTEM SUPPORT 1 board has a software programmable USART that must be initialized before it can be used. To alter the baud rates and the serial parameters, you must substitute new mode and command words in the sINITI routine of the CONSOLE INITIALIZATION section below. (Refer to your SYSTEM SUPPORT 1 manual for these values.) Since the INTERFAZER 1/2 boards are configured under hardware control by programming shunts, refer to the proper manual for modification settings.

Since the CONSOLE is the only device supported on the SYSTEM SUPPORT 1 board, this code only covers the CONSOLE 1/I0 routines. To alter the LIST, READER/PUNCH, or ULI code, refer to the ALTERATION GUIDE FOR INTERFAZER 1/2 I/O ROUTINES.

| DEVICE       | PORT BASE | EQUATE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSOLE</td>
<td>05H</td>
<td>GBSS:</td>
</tr>
<tr>
<td>LIST</td>
<td>02H</td>
<td>GBR1:</td>
</tr>
<tr>
<td>READER/PUNCH</td>
<td>02H</td>
<td>GBR1:</td>
</tr>
<tr>
<td>ULI: LIST</td>
<td>04H</td>
<td>GBP2:</td>
</tr>
</tbody>
</table>

To alter the base port addresses, simply alter the equate statement value to the desired base.

SYSTEM SUPPORT 1 CONSOLE I/O ROUTINE

IF SYSSUP
; CompaPro System Support 1 equates.

GBSS: EQU 50H ;System Support starting port
GBMP0: EQU GBSS+0 ;Master PIC port 0
GBM1: EQU GBSS+1 ;Master PIC port 1
GBSP0: EQU GBSS+2 ;Slave PIC port 0
GBSP1: EQU GBSS+3 ;Slave PIC port 1
GT0: EQU GBSS+4 ;Timer number 0
GT1: EQU GBSS+5 ;Timer number 1
GT2: EQU GBSS+6 ;Timer number 2
GT3: EQU GBSS+7 ;Timer control port
GBFPPD: EQU GBSS+8 ;Floating point processor data port
GBFPPC: EQU GBSS+9 ;Floating point processor command port
GBCLKC: EQU GBSS+10 ;Clock command port
GBCLKD: EQU GBSS+11 ;Clock data port
GBUD: EQU GBSS+12 ;UART data port
GBUS: EQU GBSS+13 ;UART status port
GBUM: EQU GBSS+14 ;UART modem port
GBUC: EQU GBSS+15 ;UART command port
SSIDAV: EQU 00000010b ;System Support Data Available
SSIDTMT: EQU 00000010b ;System Support Transmit Buffer Empty

; CONSOLE INITIALIZATION
;
; This routine performs the initialization required by
; the System Support USART.
:STINIT:
MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GBUM       ;Set up mode register 1
MVI A,01111110b ;9600 baud
OUT GBUM       ;Set up mode register 2
MVI A,00100111b ;Trans. on, dtr low, rec. on, no break,
                 ;no reset, rts low
OUT GBUC       ;Set up command port
RET

:CONSOLE STATUS

This routine samples the Console status and returns the following
values in the A register.
EXIT A = 0 (zero), means no character currently ready to read.
A = FFh (255), means character currently ready to read.
sCONST:
IN GBUS       ;Input from port
ANI SSDAV     ;Mask data available
RZ            ;If data not available
ORI OFFH
RET

:CONSOLE INPUT

Read the next character into the A register, clearing the high order
bit. If no character currently ready to read then wait for a character
to arrive before returning.
EXIT A = character read from terminal.
sCONIN:
IN GBUS       ;Get status from uart
ANI SSDAV
JZ sCONIN
IN GBUD
ANI ?Fh
RET

:CONSOLE OUTPUT

Send a character to the console. If the console is not ready to receive
a character wait until the console is ready.
ENTRY C = ASCII character to output to console.
sCONOUT:
IN GBUS       ;Get uart status
ANI SSSTBM     ;Test if buffer empty
JZ sCONOUT
MOV A,C
OUT GBUD
RET

ENDIF
ALTERATION GUIDE FOR INTERFACER 3/4 I/O ROUTINES

The current version of CP/M-80 has routines that support the serial ports on the INTERFACER 3/4 as the CONSOLE, LIST, and ULL devices. The PUNCH and READER routines are covered through the LIST port of the INTERFACER 1/2 code. The port addresses for the INTERFACER 3/4 are 10H-17H. The USER number for these devices are shown in the table below. The INTERFACER 3/4 board has software program-17able UARTs that must be initialized before it can be used. To alter the baud rates and the serial parameters, you must substitute new mode and command words in the I3INIT routine of the CONSOLE INITIALIZATION section below. (Refer to your INTERFACER 3/4 manual for these values.)

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>PORT BASE</th>
<th>USER NUMBER</th>
<th>EQUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSOLE</td>
<td>10H</td>
<td>$7</td>
<td>CON:</td>
</tr>
<tr>
<td>LIST</td>
<td>10H</td>
<td>$6</td>
<td>PRN:</td>
</tr>
<tr>
<td>READER/PUNCH</td>
<td>02H</td>
<td>NONE</td>
<td>GBF:</td>
</tr>
<tr>
<td>ULL: LIST</td>
<td>10H</td>
<td>$5</td>
<td>ULS:</td>
</tr>
</tbody>
</table>

To alter the base port addresses, simply alter the GBI3: equate statement value to the desired base. To alter the USER NUMBER, simply alter the CON:, PRN:, or ULS: equate statement to the desired USER.

INTERFACER 3/4 CONSOLE I/O ROUTINE

IF INTER3
  ; CompuPro Interfacer 3/4 support routines
  GBI3: EQU 10h ;Interfacer 3/4 Base address
  GBI3D: EQU GBI3+0 ;Uart data location
  GBI3S: EQU GBI3+1 ;Uart status
  GBI3M: EQU GBI3+2 ;Uart mode register
  GBI3C: EQU GBI3+3 ;Uart command register
  GBI3U: EQU GBI3+7 ;User select register
  GBI3DV: EQU 00000010b ;Interfacer 3/4 Data Available
  GBI3MT: EQU 00000001b ;Interfacer 3/4 Transmit Buffer Empty
  GBI3DS: EQU 10000000b ;Interfacer 3/4 Data Set Ready
  CON: EQU 7 ;Interfacer 3/4 Console Select
  PRN: EQU 6 ;Interfacer 3/4 Printer Select
  ULS: EQU 5 ;Interfacer 3/4 ULL Select
  
  ; CONSOLE INITIALIZATION
  ;
  ; This routine performs the initialization required by the Interfacer 3/4.
  ;
  I3INIT:
  MVN A,CON ;Console select
  OUT GBI3U ;Select Uart 7
  MVN A,11101111b ;Async, 16x, 8 bits, no parity, 2 stops
  OUT GBI3M ;Set up mode register 1
  MVN A,01111111b ;9600 baud
  OUT GBI3M ;Set up mode register 2
  MVN A,00101111b ;Trans. on, dtr low, rec. on, no break,
  ; no reset, rts low
  OUT GBI3C ;Set up command port
  MVN A,PRN ;Printer Select
  OUT GBI3U ;Select Uart 0
MVI A,11101110b ;Async, 16x, 8 bits, no parity, 2 stops
OUT GBI3M ;Set up mode register 1
MVI A,0111110b ;9600 baud
OUT GBI3M ;Set up mode register 2
MVI A,0010011lb ;Trans. on, dtr low, rec. on, no break,
                  ; no reset, rts low
OUT GBI3C ;Set up command port
MVI A,ULS ;User list 1 Select
OUT GBI3U ;Select Uart 0
MVI A,1110110b ;Async, 16x, 8 bits, no parity, 2 stops
OUT GBI3M ;Set up mode register 1
MVI A,0111110b ;9600 baud
OUT GBI3M ;Set up mode register 2
MVI A,0010011lb ;Trans. on, dtr low, rec. on, no break,
                  ; no reset, rts low
OUT GBI3C ;Set up command port
RET

CONSOLE STATUS
;
This routine samples the Console status and returns the following
values in the A register.
;
EXIT
A = 0 (zero), means no character currently ready to read.
A = FFh (255), means character currently ready to read.

I3CONST:
MVI A,CON
OUT GBI3U
IN GBI3S ;Input from port
ANI GBI3DV ;Mask data available
RZ ;If data not available
OPI OFFH
RET

CONSOLE INPUT
;
Read the next character into the A register, clearing the high order
bit. If no character currently ready to read then wait for a character
to arrive before returning.
;
EXIT A = character read from terminal.
I3CONIN:
MVI A,CON
OUT GBI3U
IN GBI3S ;Get status from uart
ANI GBI3DV
JZ I3CONIN
IN GBI3D
ANI 7Fh
RET

CONSOLE OUTPUT
;
Send a character to the console. If the console is not ready to receive
a character wait until the console is ready.
ENTRY C = ASCII character to output to console.

I3CONOUT:
MVI A, CON
OUT GBI3U
IN GBI3S ; Get uart status
ANI GBI3MT ; Test if buffer empty
JZ I3CONOUT
MOV A, C
OUT GBI3D
RET

List Output.

Send a character to the list device. If the list device is not ready
receive a character wait until the device is ready.

ENTRY C = ASCII character to output.

I3LIST: LDA IOBYTE ; Get IOBYTE status
ANI OCOH ; Check for UL:
SUI OCOH
MVI A, ULS
JZ I3UL1
MVI A, PRN
I3UL1: OUT GBI3U
I3LST1: IN GBI3S
ANI GBI3MT+GBI3DS
SUI GBI3MT+GBI3DS
JNZ I3LST1
MOV A, C
OUT GBI3D
RET

List Status.

Return the ready status for the list device.

EXIT A = 0 (zero), list device is not ready to accept another charac.
A = FFH (255), list device is ready to accept a character.

I3LST: LDA IOBYTE
ANI OCOH ; Check for UL:
SUI OCOH
MVI A, ULS
JZ I3LST1
MVI A, PRN
I3LST1: OUT GBI3U
IN GBI3S
ANI GBI3MT+GBI3DS
SUI GBI3MT+GBI3DS
MVI A, OFFH
EZ XRA A
RET

ENDIF

76
DISCLAIMER

CompuPro makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, CompuPro reserves the right to revise this publication and to make any changes from time to time in the content hereof without obligation of CompuPro to notify any person of such revision or changes.

; CBIOS - Sorcin CompuPro CP/M 2.2 CBIOS.

CompuPro
Oakland, CA
Sorcim Corp.
Santa Clara, CA

This product is a copyright program product of Sorcis Corp. and is supplied for use with the CompuPro Disk controllers.

Version number: 2.2K

80-10-27    Ver 2.2A Seek fixes. dwd.
81-03-05    Ver 2.2E Add Bit Banger. phm.
81-03-30    Ver 2.2F Add System Support, two list devs. bkg.
81-04-25    Ver 2.2G Add flushing fixes. dwd
81-05-21    Ver 2.2H Add Interfacer 3 support routines. bkg.
81-09-08    Ver 2.2I Add list device for interfacer 3. bkg.
81-10-26    Ver 2.2K Fix deblocking in SETTRK

The following code is supplied to customers who purchase a hard/floppy disk system from CompuPro. The intent of the following code is to illustrate how to create a CB10S for the user supplied CP/M 2.2. Lines of code beginning with ";+" were modified for assembly with Digital Research's ASM assembler. Syntax changes and comments can be found near the modified lines.

CompuPro IEEE 696 Floppy Disk Controller.
CompuPro IEEE 696 chassis and motherboards.
CompuPro IEEE 696 Dual Processor board.
CompuPro IEEE 696 RAM 20 boards (2).
CompuPro IEEE 696 Interfacer II (assigned port 0 thru 3).

OPARM: EQU 32 ; Memory size in Kbytes, or Bios load address
VERS: EQU 22
CBIOSV: EQU 11 ; CBIOS revision level (2.2K)
FALSE: EQU 0
TRUE: EQU NOT FALSE
Z80: EQU FALSE ;Set to true if processor is Z80.
C8080: EQU NOT Z80 ;Otherwise processor is 8080 type.
HARD: EQU FALSE ;Set to true if hard disk code
BANG: EQU TRUE ;False to eliminate Bit Banger.
SYSSUP: EQU TRUE ;Set to true to include System Support code.
INTER3: EQU TRUE ;Set to true to include Interfacer 3 support.
BIOSLN: EQU 01000H ;Bios length
CK: EQU 0Dh
LF: EQU 0Ah
DELCNT: EQU 5*1000 ;Delay count for 5 MHz CPU
K: EQU 1024
;+ IF OPARM < (64+2) ;If absolute
option: set false
if oparm/(64+1)
option: set true
endif
if not option
MSIZE: EQU OPARM ;Size of CP/M memory
BIOS: EQU MSIZE*K-BIOSLN ;Start of CP/M jump table
LWAMRM: EQU MSIZE*K-1
ENDIF
;+ IF OPARM > (64+1) ;If PRL generation
if option
MSIZE: EQU (OPARM+BIOSLN)/K ;Size of CP/M memory
BIOS: EQU OPARM ;Start of CP/M jump table
LWAMRM: EQU OPARM+BIOSLN-1
ENDIF
BDOS: EQU BIOS-0800h+6 ;BDOS entry point
CCP: EQU BIOS-1600h

; Page Zero Definitions.
I0BYTE: EQU 3 ;Location of I0BYTE
CDISK: EQU 4 ;Location of current disk
BIORAM: EQU 40h ;16 ram cells
OPTS: EQU BIORAM ;GBC DISK1 board switch options
; BIORAM+1 ;GBC (cell before TICK)
TICK: EQU BIORAM+2 ;GBC Sample period
DBUF: EQU 80h ;Default sector buffer

; CP/M to host disk constants
HSTSIZ: EQU 1024 ;Blocking/Deblocking buffer size
CMM81B: EQU 1024/128 ;Standard sectors in block
FPYS1B: EQU 2048/128 ;Sectors in floppy disk block
CP/M disk control block equates which define the disk types and maximum storage capability of each disk type.

DSK1: EQU 0 ;Single density, single sided.
DSK2: EQU 1 ;Single density, double sided.
DSK3: EQU 2 ;Double density, single sided.
DSK4: EQU 3 ;Double density, double sided.
DSK5: EQU 4 ;Double density, single sided.
DSK6: EQU 5 ;Double density, double sided.
MAXTP: EQU DSK6 ;Maximum floppy type.
DSK81: EQU 8 ;SA 1002 and first half SA 1004.
DSK82: EQU 9 ;last half SA 1004.
DSK8M1: EQU 10 ;First half of Memorex 8 inch drive.
DSK8M2: EQU 11 ;Last half of Memorex 8 inch drive.

SIDM1: EQU ((77-2)*26)/CPMSIB
SZSDM: EQU ((77-2)*26)/FPYSIB
DIDSM: EQU ((77-2)*2*26)/FPYSIB
D2DSM: EQU ((77-2)*2*2*26)/FPYSIB
D3DSM: EQU ((77-2)*4*15)/FPYSIB
D4DSM: EQU ((77-2)*2*4*15)/FPYSIB
D5DSM: EQU ((77-2)*8*8)/FPYSIB
D6DSM: EQU ((77-2)*2*8*8)/FPYSIB

BDOS constants on entry to write

WRALL: EQU 0 ;write to allocated
WRDIR: EQU 1 ;write to directory
WRUAL: EQU 2 ;write to unallocated

Macro for generating Control Blocks for disk drives.
The format of these disk control blocks are as follows:
16 bits = -> translation table.
48 bits = Work area for CP/M.
16 bits = -> DIRBUF.
16 bits = -> Parameter block.
16 bits = -> check vector.
16 bits = -> allocation vector.

NDSK: SET 0 ;Number of disk drives
NOHDD: SET 0 ;Number of hard disk drives
NDFDD: SET 0 ;Number of floppy disk drives
ALVS: SET 0 ;Allocation vector size
CSVS: SET 0 ;Check vector size

The following jump table defines the entry points into the CBIO$ for use by CP/M and other external routines; therefore the order of these jumps cannot be modified. The location of these jumps can only be modified by 400h locations, which is a restriction of MOVCPM.
ORG  BIOS

JMP  CBOOT ;Cold boot
JMP  WBOOT ;Warm boot
J$ CST  JMP  CONST ;Console status (input)
J$ CIN  JMP  CONIN ;Console input
J$ COUT  JMP  CONOUT ;Console output
J$ LIST  JMP  LIST ;List output
JMP  PUNCH ;Punch output
JMP  READER ;Reader input
JMP  HOME ;Set track to zero
JMP  SELDSK ;Select disk unit
JMP  SETTRK ;Set track
JMP  SETSEC ;Set sector
JMP  SETDMA ;Set Disk Memory Address
JMP  READ ;Read from disk
JMP  WRITE ;Write onto disk
J$ LST  JMP  LISTST ;List status (output)
JMP  SECTR N ;Translate sector number
JMP  SETNUM ;Set number of sectors to read
JMP  SETXAD ;Set extended address bank.

;   Extended bank addresses.
CXADR:  EQU  00h ;CP/M Bank
BXADR:  EQU  00h ;BIOS Bank

;   Disk Input / Output port assignments.
FDPOR T  EQU  0C0h ;Base port address for Controller
FDGS  EQU  FDPOR T ;Status register
FDCCD  EQU  FDPOR T+1 ;Data register
DMA  EQU  FDPOR T+2 ;Dma address (when write)
INTS  EQU  FDPOR T+2 ;Status Register (when read)
SER  EQU  FDPOR T+3 ;Serial port

;   Controller function definitions
F$SPEC  equ  03 ;Specify
F$ DST S  equ  04 ;Drive status
F$WR T  equ  05 ;Write data
F$RDAT  equ  06 ;Read data
F$RECA  equ  07 ;recalibrate
F$RSTS  equ  08 ;Read status
F$RDIRD  equ  10 ;Read ID
F$SEEK  equ  15 ;Seek

;   Disk drive constants
;
; To alter step rate times from the selected 8 ms to a
; lower rate, simply comment out (";") the 8 ms rate and

80
; remove the ";" from in front of the faster rate.
; 8 ms step rate is selected as shipped.

STEPR:  equ 8            ; Shugart SA 800 or other 8 ms drive

; 3 ms step rate for QUHE and other drives with 3 ms step
; rates should be set for 4 ms due to problem in 8272 and
; 765A controller chip.

;STEPR:  equ 4            ; 4 ms step rate

SKT:    equ 16-STEPR      ; Controller value

HUT:    equ 240/16        ; Head unload = 240 ms

HDLT:   equ 35            ; Head load = 35 ms

ND:     equ 0b            ; Set DMA mode

7 6 5 4 3 2 1 0

ST0 | IC | SE | EC | NR | HD | US |

ST1 | EN | DE | OR | ND | NW | MA |

ST2 | CM | DD | WC | SH | SN | BC | MD |

ST3 | FT | WP | RY | T0 | TS | HD | US |

IC - Interrupt code.
  00 - Normal termination by TC signal.
  01 - Abnormal termination.
  10 - Invalid command.
  11 - Abnormal termination (READY dropped).

SE - Seek end, indicates end of seek.

EC - Equipment Check.

NR - Not ready.

HD - State of the head select.

US - State of the unit select.

EN - End of Cylinder, Read BOT sector.

DE - CRC error in ID or data fields.

OR - Over run.

ND - No Data.

NW - Not writable (write protect detected)

MA - Missing address mark.

CM - Control Mark (deleted data address mark).
DD - CRC error in data field.
WC - Wrong cylinder.
SH - Scan equal hit.
SN - Scan not satisfied.
BC - Bad cylinder.
MD - Missing data mark.
FT - Fault.
WP - Write protect signal.
RY - Ready.
T0 - Track zero.
TS - Two sided disk is inserted.

Morrow Designs Hard Disk Controller Equates.

HDPORT: EQU 050h ; Base port address
HDSTAT: EQU HDPORT+0 ; Status and control
HDCMD: EQU HDPORT+1 ; Command channel
HDFNC: EQU HDPORT+2 ; Function
HDDATA: EQU HDPORT+3 ; Data port

IN HDSTAT 7 6 5 4 3 2 1 0
| | | | | | | |
Mhl <-|--| | | | | | |
ILEVEL <-|--| | | | | | |
NRADY <-|--| | | | | |
NFAULT <-|--|--|--| | | |
TIMOUT <-|--|--|--|--|--|
COMPLT <-|--|--|--|--|--|
OFPONE <-|--|--|--|--|--|
TRACKO <-|--|--|--|--|--|

IN HDCMD 7 6 5 4 3 2 1 0
| | | | | | | |
RI <-|--|--|--|--|--|--|
RO <-|--|--|--|--|--|--|
RETRY <-|--|--|--|--|--|--|
SDONE <-|--|--|--|--|--|--|

OUT HDSTAT 7 6 5 4 3 2 1 0
| | | | | | | |
WPROT <-|--|--|--|--|--|--|
DSKCLK <-|--|--|--|--|--|--|
RUN <-|--|--|--|--|--|--|
FRENBL <-|--|--|--|--|--|--|
; Hard disk commands (OUT HDCMD).

HSRBPT: EQU 00h ;reset buffer pointer (data)
HSRSDT: EQU 01h ;Read sector data
HSRSHD: EQU 03h ;Read sector header
HSWSBT: EQU 05h ;Write sector data
HSWSHD: EQU 07h ;Write sector header
HSRHPY: EQU 08h ;Reset header pointer
ENDIF

; STEPMS: DB (SRT SHR 4)+0

; Sector Translation Tables.

XTABLE: DW XLTS ;Single 128
        DW XLTD1 ;Double 256
        DW XLTD2 ;Double 512
        DW XLTD3 ;Double 1024

XLTS:   DB 0,6,12,18,24,5,10,16,22,2,8,14,20
        DB 1,7,13,19,25,5,11,17,23,3,9,15,21

XLTD1:  DB 0,1,18,19,36,37,2,3,20,21,38,39
        DB 4,5,22,23,40,41,6,7,24,25,42,43
        DB 8,9,26,27,44,45,10,11,28,29,46,47
        DB 12,13,30,31,48,49,14,15,32,33,50,51
        DB 16,17,34,35

XLTD2:  DB 0,1,2,3,16,17,18,19
        DB 32,33,34,35,48,49,50,51
        DB 4,5,6,7,20,21,22,23
        DB 36,37,38,39,52,53,54,55
        DB 8,9,10,11,24,25,26,27
        DB 40,41,42,43,56,57,58,59
        DB 12,13,14,15,28,29,30,31
        DB 44,45,46,47

XLTD3:  DB 0,1,2,3,4,5,6,7
        DB 24,25,26,27,28,29,30,31
        DB 48,49,50,51,52,53,54,55
        DB 8,9,10,11,12,13,14,15
        DB 32,33,34,35,36,37,38,39
        DB 56,57,58,59,60,61,62,63
        DB 16,17,18,19,20,21,22,23
        DB 40,41,42,43,44,45,46,47
Disk selection masks.

DSKM SK: DB 00h,01h,02h,03h,00h,00h,00h,00h

Control Blocks for disk drives

DPBASE:

```
ndsk set ndsk+1
dw xltg,0,0,0,dirbuf,dpbsl+1,csv+csvs,alv+alvs
nofdd set nofdd+1
csvs set csvs+(256/4)
alvs set alvs+((ddsm+7)/8)
ndsk set ndsk+1
dw xltg,0,0,0,dirbuf,dpbsl+1,csv+csvs,alv+alvs
nofdd set nofdd+1
csvs set csvs+(256/4)
alvs set alvs+((ddsm+7)/8)
ndsk set ndsk+1
dw xltg,0,0,0,dirbuf,dpbsl+1,csv+csvs,alv+alvs
nofdd set nofdd+1
csvs set csvs+(256/4)
alvs set alvs+((ddsm+7)/8)
```

IF HARD

ENDIF

Disk type definition blocks for each particular mode.

DPBS1:

```
; Single density, single sided.

db dsk1
dw 26
db 3,7,0
```

DPBS2:

```
; Single density, double sided.

db dsk2
dw 26
```

```
DPBD1: ;Double density, single sided.
 db dskd1
 dw 2*26
 db 4,15,0
 dw d1ds=1,128-1
 db 11000000b,00000000b
 dw (128+3)/4
 dw 2

DPBD2: ;Double density, double sided.
 db dskd2
 dw 2*26
 db 4,15,0
 dw d2ds=1,256-1
 db 11110000b,00000000b
 dw (256+3)/4
 dw 2*2

DPBD3: ;Double density, single sided.
 db dskd3
 dw 4*15
 db 4,15,0
 dw d3ds=1,128-1
 db 11000000b,00000000b
 dw (128+3)/4
 dw 2

DPBD4: ;Double density, double sided.
 db dskd4
 dw 4*15
 db 4,15,0
 dw d4ds=1,256-1
 db 11110000b,00000000b
 dw (256+3)/4
 dw 2*2

DPBD5: ;Double density, single sided.
 db dskd5
 dw 8*8
 db 4,15,0
 dw d5ds=1,128-1
 db 11000000b,00000000b
 dw (128+3)/4
 dw 2

DPBD6: ;Double density, double sided.
 db dskd6
 dw 8*8
 db 4,15,0
```assembly
; d6dsm=1,256-1
; d6dsm=1,256-1
; d6dsm=1,256-1
; d6dsm=1,256-1

IF HARD
; Shugart SA 1000, first half.
DPBS81: 
; Shugart SA 1000, last half.
DPBS82: 
; Memorex 8 inch. first half.
DPBM81: 
; Memorex 8 inch. last half.
DPBM82: 

ENDF

; CompuPro Interfacer board equates.

GBP0: EQU 0 ; Serial port zero
GBP1: EQU 2 ; Serial port one
GBP2: EQU 4 ; Serial port two
GBDATA: EQU 0 ; Data on even I/O unit
GBSTAT: EQU 1 ; Status on odd I/O unit
GBTBMT: EQU 00000001b ; Transmit buffer empty
GBDAV: EQU 00000010b ; Data available
GBOPT: EQU 00000100b ; Optional status line
GBPE: EQU 00001000b ; Parity error
GBOR: EQU 00010000b ; Overrun error
GBFE: EQU 00100000b ; Framing error
GBCC: EQU 01000000b ; RS 232 CC input
GBCB: EQU 10000000b ; RS 232 CB input
GBRIE: EQU 00000001b ; Receiver interrupt enable
GBTIE: EQU 00000010b ; Transmitter interrupt enable
GBCD: EQU 00000100b ; RS 232 CD output
GBCA: EQU 00001000b ; RS 232 CA output
GBTSB: EQU 00010000b ; Number of stop bits
GBNF: EQU 00100000b ; No parity
GBFPS: EQU 01000000b ; Even parity
GBNH1: EQU 10000000b ; Number of bits/character

; ; CONSOLE STATUS
; ; This routine samples the Console status and returns the following values in the A register.
; ; EXIT A = 0 (zero), means no character currently ready to read.
; ; A = FFh (255), means character currently ready to read.
CONST: IN GBP0+GBSTAT ; Input from port
ANI GBDAV ; Mask data available
RZ ; If data not available
ORI OFFh
```
CONSOLE INPUT

Read the next character into the A register, clearing the high order bit. If no character currently ready to read then wait for a character to arrive before returning.

EXIT A = character read from terminal.

CONIN: IN GBPO+GBSTAT
ANI GBDAV
JZ CONIN ;If data not available
IN GBPO+GBDATA
ANI 7Fh
RET

CONSOLE OUTPUT

Send a character to the console. If the console is not ready to receive a character wait until the console is ready.

ENTRY C = ASCII character to output to console.

CONOUT: IN GBPO+GBSTAT
ANI GBTSMT
JZ CONOUT ;If transmit buffer not empty
MOV A,C
OUT GBPO+GBDATA
RET

Punch Output.

Send a character to the punch device. If no punch device exists then immediately return.

ENTRY C = ASCII character to output.

PUNCH: IN GBPI+GBSTAT
ANI GBTSMT
JZ PUNCH ;If transmit buffer full
MOV A,C
OUT GBPI+GBDATA
RET

Reader Input.

Read the next character from the currently assigned reader device into the A register.

EXIT A = character read from the reader device.

READER: IN GBPI+GBSTAT ;Input from port
ANI GBDAV ;Mask data available
JZ READER ;If data not available
IN GBP1+GBDATA
RET

; LIST Output.
; Send a character to the list device. If the list
; device is not ready to receive a character wait
; until the device is ready.
; ENTRY C = ASCII character to be output.

LIST: LDA IOBYTE ;Get IOBYTE status
 ANI 0COH ;Check for UL1:
 SUI 0COH
 JZ UL1
LIST1: IN GBP1+GBSTAT ;Get status
 ANI GBCC+GBTRMT
 SUI GBTRMT
 JNZ LIST1
 MOV A,C
 OUT GBP1+GBDATA
 RET

; UL1: LIST OUTPUT
; Send a character to the second interfacer
;
UL1: IN GBP2+GBSTAT ;Get status
 ANI GBCC+GBTRMT
 SUI GBTRMT
 JNZ UL1
 MOV A,C
 OUT GBP2+GBDATA
 RET

; List Status.
; Return the ready status for the list device.
; EXIT A = 0 (zero), list device is not ready to
; accept another character.
; A = FFh (255), list device is ready to acce
; a character.

LISTST: LDA IOBYTE ;Check for UL1:
 ANI 0COH
 SUI 0COH
 JZ UL1
 IN GBP1+GBSTAT
LIST: ANI GBCC+GBTRMT
 SUI GBTRMT
 RE ;If ready
 ORI OFFh
 RET
ULIST: IN GBP2+GBSTAT
 JMP LSTAT
 IF BANG
;
;+ TITLE 'Bit Banger for CompuPro DISK1'
; Bit Banger for CompuPro DISK1.
;
81-03-28 phm

<table>
<thead>
<tr>
<th>Baud</th>
<th>uSec/bit</th>
<th>2MHz</th>
<th>5MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4800</td>
<td>208</td>
<td><<<</td>
<td>25</td>
</tr>
<tr>
<td>2400</td>
<td>416</td>
<td>18</td>
<td>46</td>
</tr>
<tr>
<td>1200</td>
<td>833</td>
<td>38</td>
<td>92</td>
</tr>
<tr>
<td>600</td>
<td>1667</td>
<td>75</td>
<td>215</td>
</tr>
<tr>
<td>300</td>
<td>3333</td>
<td>102</td>
<td>>>></td>
</tr>
<tr>
<td>110</td>
<td>can't</td>
<td>>>></td>
<td>>>></td>
</tr>
</tbody>
</table>

Restriction on higher rates is due to the fact that we can only adjust speed by integral TICK counts: Unless number > 100, cannot tune in closer than one percent.

Timing for the Bit Banger is via programmed delays, so be very careful if changes are contemplated.
Baud = Bit per second of serial data.
Cycle = Machine cycle (clock period, T-State).
Tick = 1/n of a bit time (PERIOD of sample).

1200 baud = 833 uSec/bit
2 MHz = 1667 cycles/bit
/ 16 sample rate= 104 cycles/Tic

yBANG: EQU SER ;Serial bit latch port

samp: db Offh
 DS 10 ;buckets for Space counts
 db Offh
;
CONSOLE STATUS
BitBanger has no status available, so always replies NO. This means that Ctrl-S will not work when using the BitBanger.
Exit A= FFh means character available.
KONST:
 xra a
 RET

; Output 1 Character.
; Entry C= Character to output.
; Line assumed marking.
; Exit Line marking, but stop time not elapsed.
; Transmission format:
; Data bits inverted;
; Start(0), D0, D1, ..., D6, Stop(1), Leaves marking
; Note: Cannot destroy DE or HL.
; Uses AF, BC.

KONOUT:
 push h
 push d
 MOV A,C
 anl 7fh ; use Bit7 as Start bit (0)
 xri 0Ffh ; invert data
 RLC
 MOV C,A
 mvi B,7+1+1 ; 7 bit data, 1 Start, 1 fudge

; Write 8 bits.
; outer loop time:
; N = 8
; NT = (N * MT+6) + (N+1)*(37) - 3
; N = 8
; NT = 8*MT + 48+333-3
; = 378 + 8*43*(TICK-3)
; = 378 - 24 + (344*TICK)
; = 354 + 344*TICK
; = 10 + 344*TICK+1

; for each bit:
; Nl = 43*MT-3 + 6 + 37 - 3
; = 37 + 43*M
; = -6 + 43*(TICK+1)

procl$n:
 lda tick ;(7 7
 MOV E,A ;(5 4
 MOV A,C ;(5 4
 RRC
 MOV C,A ;(5 4
 dcr B ;(5 4
 JZ procl$m ;if enuf bits read
 inx h ;(5 6

; Begin output Loop for this bit.

procl$m:
 OUT yBANG ;(10 10 11
 anl 80h ;(7 7
 RLC ;(4 4
 RRC ;(4 4
 MOV D,A ;(5 4
```
dcr E    ;(5     4     4)
JNZ proc1$6 ;(10 10(7)  10)
        ;(22*4M)
; inner loop=
;
JMP proc1$n
proc1$6:
mvi B,2 ;2 Stop bits
proc1$62:
    lda TICK
    MOV E,A
    inr e
proc1$65:
mvi A,0 ;Stop bit= Mark= 1
    OUT yBANG ;(10 10     11)
    ani 80h  ;(7     7
    RLC     ;(4     4
    RRC     ;(4     4
    MOV D,A ;(5     4
    dcr E  ;(5     4     4
    JNZ proc1$65 ;(10 10(7)  10
    dcr B
    JNZ proc1$62 ;if more stoppers
    POP D
    POP H
    RET
;
; Bit Banger Input.
;
; Exit A= Character read.
; Bit7 clear.
; Uses AF, BC, DE, HL.
;
; Timing for 8080 8085 z80
KONIN:
lxi H,SAMP
mvi E,9+1
;
; Wait for Start bit.
proc2$10:
    IN yBANG
    RLC
    JNC proc2$10 ;if line still Marking
;
; Now take 7 uniform samples.
; The number of peeks in each determines the sample width.
proc2$n:
    lda TICK ;(13 13
    MOV E,A ;(5  4
    mov m,d ;(7  7
    mvi d,0 ;(7  7
    dcr B  ;(5  4
    JZ proc2$n ;(10 if enuf bits read
    inx H  ;(5  6
```
; Begin sampling loop for this bit.
proc2$3m:
 IN yBANG ;(10 10 11)
 ani 80h ;(7 7
 RLC ;(4 4
 ADD D ;(4 4
 MOV D,A ;(5 4
 dcr E ;(5 4 4)
 JNZ proc2$3m ;(10 10(7) 10)
 JMP proc2$3n ;(10 10 10)
 ; (22*1M)

; inner loop= 43*1M-3
; 21*1M)

; Reduce sample counts to data bits.
; Note that due to DISK1 inversion,
; 0 Space = Count[i] > Threshold
; 1 Mark = Count[i] < Threshold
; Actually, all counts "near" mid-range are probably errors.

proc2$3n:
 lxi h,SAMP+8 ;-> Data bit 6
 lda TICK-1
 MOV D,A ;C= Threshold for Mark versus Space
 lxi B,0700h
proc2$64:
 MOV A,C
 RLC
 MOV C,A
 mov a,m
 CMP D
 JNC proc2$66 ;if large count
 inc C ;set bit for Mark
proc2$66:
 dcr x
 dcr b
 JNZ proc2$64 ;if more bits to reduce
 MOV A,C
 RET

; Determine speed of terminal.
; User must input a 'U'
; Relies on being able to measure the width of the Start bit. Therefore, needs an odd-numbered ASCII
; to be input.
; Consecutive samples look like this:
; ...111111111110000001xxxxxxx...
; 1 Mark Space Mark
; ...Idle Start Data0 (ignore...)

baud:
 lxi h,SAMP
 mv1 B,3
 lxi D,1
; Wait for Start bit.
proc3$10:
 IN yBANG
 RLC
 JNC proc3$10 ;if line still Marking

; Now measure width of next several pulses.
; The number of peaks in each determines the sample width.
proc3$m:
 MOV C,E ;(5 4
 lda TICK ;(13 13
 mov m,d ;(7 7
 mvi D,0 ;(7 7
 dcr B ;(5 4
 JZ proc3$6 ;(10) if enuf bits read
 inx H ;(5 6

; Begin sampling loop for this bit.
proc3$m:
 inr D ;(5 4 4)
 IN yBANG ;(10 10 11)
 ani 50h ;(7 7
 RLC ;(4 4
 CMP C ;(4 4
 MOV E,A ;(5 4
 JZ proc3$m ;(10 10(7) 10)
 JMP proc3$n ;(10 10 10)
 ; (22*4)
; inner loop= 43*4-3
; 21*4)

; Reduce sample counts to data bits.
proc3$6:
 lda SAMP+1
 sta TICK ;set nominal bit width
 ora a ;clear carry
 RAR ;width / 2 = threshold
 sta TICK-1
 RET

ENDIF

IF SYSSUP

; CompuPro System Support 1 equates.
GBSS: EQU 50h ;System Support starting port
GBMP0: EQU GBSS+0 ;Master PIC port 0
GBMP1: EQU GBSS+1 ;Master PIC port 1
GBSP0: EQU GBSS+2 ;Slave PIC port 0
GBSP1: EQU GBSS+3 ;Slave PIC port 1
GT0: EQU GBSS+4 ;Timer number 0
GBT1: EQU GBSS+5 ;Timer number 1
GBT2: EQU GBSS+6 ;Timer number 2
GBTc: EQU GBSS+7 ;Timer control port
GBFPPD: EQU GBSS+8 ;Floating point processor data port
GBFPFC: EQU GBSS+9 ;Floating point processor command port
GBCLKC: EQU GBSS+10 ;Clock command port
GBCLKD: EQU GBSS+11 ;Clock data port
GBUD: EQU GBSS+12 ;Uart data port
GBUS: EQU GBSS+13 ;Uart status port
GBUM: EQU GBSS+14 ;Uart modem port
GBUC: EQU GBSS+15 ;Uart command port
SSDAV: EQU 00000010b ;System Support Data Available
SSTRMT: EQU 00000001b ;System Support Transmit Buffer Empty

; This routine performs the initialization required by
; the System Support UART.

sTINIT:
MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GBUM ;Set up mode register 1
MVI A,01111110b ;9600 baud
OUT GBUM ;Set up mode register 2
MVI A,00100111b ;Trans. on, dtr low, rec. on, no break,
; no reset, rts low
OUT GBUC ;Set up command port
RET

; This routine samples the Console status and returns the
; following values in the A register.

sCONST:
IN GBUM ;Input from port
ANI SSDAV ;Mask data available
NZ QFFH ;If data not available
ORI QFFH
RET

; Read the next character into the A register, clearing
; the high order bit. If no character currently ready to
; read then wait for a character to arrive before returning.
; EXIT A = character read from terminal.

sCONIN:
IN GBUS ;Get status from uart
ANI SSDAV
JZ sCONIN
IN GBUS
ANI 7Fh
RET

; CONSOL OUTPUT

; Send a character to the console. If the console
; is not ready to receive a character wait until
; the console is ready.
;
ENTRY C = ASCII character to output to console.

sCONOUT:
IN GBUS ;Get uart status
ANI SSRMT ;Test if buffer empty
JZ sCONOUT
MOV A,C
OUT GBUS
RET

ENDIF

IF INTER3

; CompuPro Interfacer 3 support routines

GBI3: EQU 10h ;Interfacer 3 Base address
GBI3D: EQU GBI3+0 ;Uart data location
GBI3S: EQU GBI3+1 ;Uart status
GBI3M: EQU GBI3+2 ;Uart mode register
GBI3C: EQU GBI3+3 ;Uart command register
GBI3U: EQU GBI3+7 ;Uart select register

GBI3DV: EQU 00000010b ;Interfacer 3 Data Available
GBI3MT: EQU 00000001b ;Interfacer 3 Transmit Buffer Empty
GBI3DS: EQU 10000000b ;Interfacer 3 Data Set Ready
CON: EQU 7 ;Interfacer 3 Console Select
PRN: EQU 6 ;Interfacer 3 Printer Select
ULS: EQU 5 ;Interfacer 3 ULI Select

; CONSOLE INITIALIZATION

; This routine performs the initialization required by
; the Interfacer 3.

; I3INIT:
MVI A,CON ;Console select
OUT GBI3U ;Select Uart 7
MVI A, 11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GBI3M ;Set up mode register 1
MVI A, 01111110b ;9600 baud
OUT GBI3M ;Set up mode register 2
MVI A, 00100111b ;Trans. on, dry low, rec. on, no break,
; no reset, rts low
OUT GBI3C ;Set up command port

MVI A, PRN ;Printer Select
OUT GBI3U ;Select Uart 0
MVI A, 11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GBI3M ;Set up mode register 1
MVI A, 01111110b ;9600 baud
OUT GBI3M ;Set up mode register 2
MVI A, 00100111b ;Trans. on, dry low, rec. on, no break,
; no reset, rts low
OUT GBI3C ;Set up command port

MVI A, ULS ;User list 1 Select
OUT GBI3U ;Select Uart 0
MVI A, 11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GBI3M ;Set up mode register 1
MVI A, 01111110b ;9600 baud
OUT GBI3M ;Set up mode register 2
MVI A, 00100111b ;Trans. on, dry low, rec. on, no break,
; no reset, rts low
OUT GBI3C ;Set up command port
RET

; CONSOLE STATUS
; This routine samples the Console status and returns the
; following values in the A register.
; EXIT A = 0 (zero), means no character
; currently ready to read.
; A = FFh (255), means character
; currently ready to read.

I3CONST:
MVI A, CON
OUT GBI3U
IN GBI3S ;Input from port
ANI GBI3DV ;Mask data available
RZ
ORI OFFH
RTS
the high order bit. If no character currently ready to
read then wait for a character to arrive before returning.

EXIT A = character read from terminal.

I3CONIN:
MVI A,CON
OUT GBI3U
IN GBI3S
ANI GBI3DV
JZ I3CONIN
IN GBI3D
ANI 7Fh
RET

CONSOLE OUTPUT

Send a character to the console. If the console
is not ready to receive a character wait until
the console is ready.

ENTRY C = ASCII character to output to console.

I3CONOUT:
MVI A,CON
OUT GBI3U
IN GBI3S
ANI GBI3MT
JZ I3CONOUT
MOV A,C
OUT GBI3D
RET

LIST OUTPUT

Send a character to the list device. If the list
device is not ready to receive a character wait
until the device is ready.

ENTRY C = ASCII character to be output.

I3LIST: LDA IOBYTE
ANI OCOM
SUI OCOM
MVI A,ULS
JZ I3UL1
MVI A,PRN
I3UL1: OUT GBI3U
I3LIST1: IN GBI3S
ANI GBI3MT+GBI3DS
SUI GBI3MT+GBI3DS
JNZ I3LIST1
MOV A,C
OUT GB13D
RET

; List Status.
; Return the ready status for the list device.
; EXIT A = 0 (zero), list device is not ready to
; accept another character.
; A = FFh (255), list device is ready to accept
; a character.
I3LST: LDA IOBYTE
 ANI OC0H
 SUI OC0H
 MVI A,ULS
 JZ I3LS1
 MVI A,PRN
I3LS1: OUT GBI3U
 IN GBI3S
 ANI GBI3MT+GBI3DS
 SUI GBI3MT+GBI3DS
 MVI A,DPH
 RZ
 XRA A
 RET

ENDIF

; File is BIOS4.asm
; SELECT DISK DRIVE
; Select the disk drive for subsequent disk transfers and
; return the appropriate DPH address. This routine
; diverges from the normal CP/M implementation of just
; saving the disk selection value until the transfer is
; performed. This divergence is required because floppy
; disks are a removable media and come in more than one
; format. This routine determines the correct format and
; initializes the DPH with the appropriate values for the
; format type.
; ENTRY C = disk selection value.
; DE and l = 0, must determine disk type.
; = 1, drive type has been determined.
; EXIT HL = 0, if drive not selectable.
; HL = DPH address if drive is selectable.
; DPH is initialized for the appropriate floppy
; disk format.
SK1.DSK: MOV A,C
 CPI NDSK
JNC SELL1 ; If invalid drive
PUSH D ; Save drive selection mask
MVI B,0
LXI H,DRMSK
DAD B
MOV A,M
STA SEKDSK ; Save selection code
MOV L,C ; Compute DPH address
MOV H,B
DAD H ; *2
DAD H ; *4
DAD H ; *16
LXI D,DPBASE
DAD D ; HL = DPH address
LXI D,5*2
XCHG
DAD D ; HL = DPH(DPB)
MOV A,M
INX H
MOV H,M
MOV L,A
XCHG ; DE = DPB address
DCX D
LDAX D
STA SEKTP ; Save disk type
POP D ; Restore Drive selection mask
CPI MAXTP+1
RNC ; If hard disk
MOV A,E ; Mask selected bit
ANI 1
RNZ ; If drive previously selected
PUSH H ; Save DPH address
CALL TREAD ; Determine disk type
POP H ; Restore DPH address
JNZ SELL1 ; If disk type not determined
STA SEKTP ; Save disk type
XCHG
MOV L,A ; Move type
MVI H,0
DAD H ; *2
DAD H ; *4
DAD H ; *8
DAD H ; *16
LXI B,DPBS1+1
DAD B ; DE = DPB address
XCHG
PUSH H
LXI B,5*2
DAD B ;Compute DPH DPB address
MOV M,E ;Set DPB address into DPH
INX H
MOV M,D
ANI OFEh ;Remove sided bit
MOV E,A
MVI D,0
LXI H,XTABLE
DAD D
XCHG
POP H
LDAH D ;Set translation table
MOV M,A ;address into DPH
INX H
INX D
LDAH D
MOV M,A
DCX H
RET

SGET1: LXI H,0
MOV A,L
STA CDISK
RET

HOME:
CALL FLUSH ;Flush host buffer
XRA A
STA HSTACT ;Clear host active flag
STA UNACNT ;Clear sector count
STA SEKTRK
STA SEKTRK+1
RET

SETTRACK:
SET
IF Z80
db 0edh,43h
dw sektrak
ENDIF
IF C8080
MOV L,C

MOV H,B
SHLD SEKTRK
ENDIF

LHLD UNATRK
MOV A,L
XRA C
MOV C,A
MOV A,H
XRA B
ORA C
RZ

; If same track
;
; Clear Unallocated block count (force pre-reads).

CUNACT: XRA A
 STA UNACNT
 ; Clear unallocated block count
 RET

; Set the sector for later use in the disk transfer. No
; actual disk operations are performed.
; Entry BC = sector number.

SETSEC: MOV A,C
 STA SAVSEC
 ; sector to seek
 RET

; Set Disk memory address for subsequent disk read or
; write routines. This address is saved in DMAADR until
; the disk transfer is performed.
;
ENTRY BC = Disk memory address.
;
EXIT DMAADR = BC.

SETDMA:
IF Z80
 db 0edh,43h
 dw dmaadr
 RET
ENDIF

IF C8080
 MOV H,B
 MOV L,C
 SHLD DMAADR
 RET
ENDIF

; Translate sector number from logical to physical.
;
ENTRY DE = 0, no translation required.
; DE = translation table address.
; BC = sector number to translate.
; EXIT HL = translated sector.

SECTRN:
 LDA UNASEC
 CMP C
 CNZ CUNACT ; If sectors do not match
 MOV A,C
 STA LOGSEC
 MOV L,C
 MOV H,B
 MOV A,D
 ORA E
 RZ ;If no translation
 DAD D
 MOV L,M
 MVI H,0
 RET

; SET SECTOR COUNT
; Set the number of continuous sectors to transfer.
; ENTRY C = Number of sectors to transfer.
; EXIT NUMSEC = C

SENUM:
 MOV A,C
 STA NUMSEC
 RET

; SET EXTENDED BANK
; Set the extended bank data transfer address.
; ENTRY C = Extended address bank.
; EXIT DMAADE = C.

SETXAD:
 MOV A,C
 STA DMAADE
 RET

; Boot CP/M from disk.
; The CB00T entry point gets control from the cold start
; loader and is responsible for the basic system initialization. This includes outputting a sign-on message and
; initializing the following page zero locations:
; 0,1,2: Set to the warmstart jump vector.
; 3: Set to the initial IOBYTE value.
; 4: Default and logged on drive.
5, 6, 7: Set to a jump to BDOS.
40: (Set by BOOT) Board switch options.

If BANG is true (DISK1 bit serial latch is to be supported), then board switch option 1 means to use the BitBanger for console I/O.
Register C must contain the selected drive, which is zero to select the A drive. The exit address is to the CCP routine.

The WBOOT entry point gets control when a warm start occurs, a 'C from the console, a jump to BDOS (function 0), or a jump to location zero. The WBOOT routine reads the CCP and BDOS from the appropriate disk sectors.
WBOOT must also re-initialize locations 0, 1, 2 and 5, 6, 7.
The WBOOT routines exits with the C register set to the appropriate drive selection value. The exit address is to the CCP routine.

Disk layout Definition.
Cylinder 0 Head 0
0 thru 3 Boot program
4 thru 26 Reserved for CBiOS

256 byte sectors -- Cylinder 1 Head 0:
0 thru 7 CCP
8 thru 21 BDOS
22 thru 26 **Reserved for CP/M expansion**

512 byte sectors -- Cylinder 1 Head 0:
0 thru 3 CCP
4 thru 11 BDOS
12 thru 15 **Reserved for CP/M expansion**

1024 byte sectors -- Cylinder 1 Head 0:
0 thru 1 CCP
2 thru 5, 7 BDOS
6 **Reserved for CP/M expansion**

CBOOT: LXI SP, DBUF
 lde opts
 IF BANG
 CPI 1
 JNZ CBOOT4 ;if BitBanger not selected
 lxi H, KONST ; shld J$CST+1
 lxi H, KONIN ; shld J$CIN+1
 lxi H, KONOUT ; shld J$COUT+1
 CALL BAUD ; get terminal speed
 JMP CBOOTX

CBOOT4:
 ENDF
 IF SYSSUP
 CPI 2
JNZ CBOOT5 ; If System support not selected
LXI H, eCONST 1 SHLD J$CST+1
LXI H, eCONIN 1 SHLD J$CIN+1
LXI H, eCONOUT 1 SHLD J$COUT+1
CALL sINIT ; Initialize System Support
JMP CBOOTX

CBOOT5:
ENDIF
IF 3
CPI 3
JNZ CBOOT6 ; If Interfacer 3 not selected
LXI H, 12CONST 1 SHLD J$CST+1
LXI H, 12CONIN 1 SHLD J$CIN+1
LXI H, 12CONOUT 1 SHLD J$COUT+1
LXI H, 12LIST 1 SHLD J$LIST+1
LXI H, 12LIST 1 SHLD J$LIST+1
CALL I3INIT ; Initialize Interfacer 3

CBOOT6:
ENDIF

CBOOTX: LXI H, SIGNON
CALL PRINT ; Output Banner
XRA A
STA CDISK ; Force A drive
STA IORYTE ; Clear I/O byte

WBOOT:
LXI SP, DBUF
CALL BCPM ; Boot CP/M
JNZ WBOOT ; If error
LXI B, DBUF ; Set default data transfer address
CALL SETDMA
MVI A, 0C3h
STA 0
STA 5
LXI H, BIOS+3
SHLD 1
LXI H, BDOS
SHLD 6
LDA CDISK
MOV C, A
JMP CCP ; Go to CPM

SIGNON:
DB CR, LF, LF
DB 'CompuPro Systems'
DB CR, LF, MSIZE/10+0 \ MSIZE mod 10 + 0'
DB 'K CF/H \ VERS/10+0', \ VERS mod 10 + 0'
DB CBIOSV+8', CR, LF, 0
;
; Exit A = 0, load successful.
; Z bit = 1, load successful.

BCPM: CALL HOME ; Force buffer flush
mvi C, 'A'- 'A' ; Select Disk 'A'
lxr D,0 ;Force disk type determination
CALL SELDISK
MOV A,L
ORA H
JZ BCPME ;If drive not selected
LDA SEKTYP ;Get disk type
RAR ;Remove sided bit
DCR A
JM BCPME ;If invalid boot type

MOV C,A
lxr H,BSECT ;Boot sector table
DAD B
mov A,M ;Get number of sectors
STA NUMSEC
lxr H,CMP
shld DMAADR ;Set buffer address
MVI A,CXADR ;Set extended address
sta DMAADE
LDA SEKTYP
ani 1b ;Mask sided bit
Adi 1
mvi H,0
MOV L,A
shld SEKTSEK ;Set track
MVI A,0 ;Set boot sector
sta SAWSEC

CALL SETACT ;Move SEK to ACT
mvi A,FSRDAT+040h ;Read data
CALL FINAL
JNZ BCPME ;If read errors
mvi A,1
sta NUMSEC
LDA SEKTYP
cpi dskd5
JC BCPM1 ;If not 1024 byte
lxr H,CMP+5*1024-512
SHLD BUFADR
mvi A,7
STA ACTSEC
mvi A,FSRDAT+040h ;Read data
JMP FINAL

BCPM1: XRA A ;Clear error indicator
RET

BCPME: lxr B,500
CALL DELAY ;Delay 500 milli-seconds
ORI 1 ;Set error indicator
RET

BSECT: DB 22*256/256 ;double 256 byte sectors
DB 22*256/512 ;double 512 byte sectors
DB 22*256/1024 ;double 1024 byte sectors
IF HARD
DB 22*256/256 ;SA 1000 hard disk
DB 22*256/128 ;Memorex 8 inch
ENDIF

; Read a CP/M 128 byte sector.
; EXIT A = 0, successful read operation.
; A = 1, unsuccessful read operation.
; Z bit = 1, successful read operation.
; Z bit = 0, unsuccessful read operation.
READ:
CALL CHKRED ;Check for blocked drive
MVI A,F$RDAT ;Read from single density floppy
JC FINAL ;If non-blocked transfer
XRA A ;Set flag to force a read
STA UNACNT ;Clear sector counter
CALL FILL ;Fill buffer with data
POP H
POP D
IF G8080
MVI C,128
CALL MOVDTA ;Move 128 bytes
endif
IF Z80
LXI B,128 ;Move 128 bytes
db 0edh,0b0h
endif
LDA ERFLAG
ORA A ;If no error
RZ
XRA A
STA HSTACT ;Clear host active
ORI 001h ;Set error flag
RET

; Write the selected 128 byte CP/M sector.
;
ENTRY C = 0, write to a previously allocated block.
C = 1, write to the directory.
C = 2, write to the first sector of unallocated
data block.
;
EXIT A = 0, write was successful.
A = 1, write was unsuccessful.
Z bit = 1, write was successful.
Z bit = 0, write was unsuccessful.
WRITE:
CALL CHKRED ;Check for blocked drive
MVI A,F$WRD ;Write to single density floppy
JC FINAL ;If non-blocked transfer
MOV A,C
STA WRTYPE
CPI WRTUAL
JNZ WRIT2
LDA SEKTyp
CPI MAXITP
NVI A,2048/128
JC WRIT1
NVI A,4096/128

WRIT1: STA UNACNT
LHLD SEKTRK
SHLD UNATRK
;UNATRK = SEKTRK
LDA LOGSEC
INR A
JMP WRIT3

WRIT2: LDA UNACNT
ORA A
JZ WRIT4
DCK A
STA UNACNT
LDA SEKTyp
RAR
MOV L,A
MVII E,0
LXI D,LSITT-1
DAD D
LDA UNASEC
;Increment logical sector
INR A
CMP M
JNZ WRIT3
;Last sector in track table
INX H
SHLD UNATRK
XRA A

WRIT3: STA UNASEC
MVII A,OFFh

WRIT4: CALL FILL
POP D
POP H
IF C8080
MVII C,128
CALL MOVDTA
endif
IF Z80
LXI B,128
DB Gehb,0b0h
endif

MVII A,1
STA HSTWRT
;HSTWRT = 1
LDA ERFLAG
ORA A
RNZ ;If any errors occurred
LDA WRTYPE ;Write type
CPI WRDIR ;To directory?
CZ FLUSH ;Force write of directory
LDA ERFLAG
ORA A
RET

LSITT: DB 2*26 ;Double 256 byte
DB 4*15 ;Double 512 byte
DB 8*8 ;Double 1024 byte
DB 2*32 ;Shugart 8 inch (256 byte)
DB 4*21 ;Memorex 8 inch (512 byte)

; TREAD - Determine floppy disk type.
; ENTRY C = Selected drive.
; Exit Zbit set = no error
; A = disk type (0-3)

TREAD: MOV A,C
ADI 'A'
STA NRDM2 ;Set drive into message
CALL SPECIFY ;Set disk parameters
lxi b,240 ;Time delay for selecting sides
call delay
LDA SEKDSK ;Move drive to command buffer
STA ACTDSK ;Set into ACTDSK
lxi H,DSTS
mvi B,DSTSL
CALL EXECF ;Perform command
mvi B,1
CALL GCMS ;Get the one status byte
ANI 020h ;Mask ready bit
JNZ TRD1 ;If drive is ready
lxi H,NRDM1
CALL PRINT
ORI OFFh ;Clear zero flag
RET

TRD1: LDA TEMPBF ;Get status byte
ANI 008h ;Mask TS bit
RRC
RRC
RRC
STA SEXTYP ;Save sided flag
lxi H,RECAL ;Do a test seek
mvi B,RECAL
CALL MOVETO ;Process command
RNZ
mvfi A,2 ;Seek to track two
CALL DOSEEK ;Do seek
RNZ ;If error

mvfi A,FSRDRID
STA DRID

TRD2: lxix H,DRID
mvbi B,DRIDL
mvci C,7
CALL EXECX ;Process command
JZ TRD3 ;If read valid
LDA DRID
XRI 040h ;Compliment MFM bit
STA DRID
ANI 040h
JNZ TRD2 ;If MFM not tried
ORI OFFh
RET

TRD3: LDA TEMPBF+6 ;Get number of bytes
ADD A
MOV B,A
LDA SEKTYP
ORA B ;Combine N with sided flag
CMP A ;Set zero flag
RET

DSTS: DB FS$DSTS,0
DSTSL: equ $-DSTS

RECAL: DB FS$RECA,0
LRECAL: equ $-RECAL

DRID: DB FS$DRID,0
DRDID: equ $-DRID

NRDYM1: DB CR,LF, 'Drive '
NRDYM2: DB ' , not ready.', 0

; ; FILL - fill host buffer with appropriate host sector.
; ; ENTRY A = 0, Read required if not in buffer.
; ; Otherwise read not required.
; ; EXIT On exit the stack will contain the following
; ; values:
; ; POP x ; x = host record address.
; ; POP y ; y = caller’s buffer address.

FILL: STA RD$FLAG ;Save read flag
LDA SEKTYP ;Get disk type
CPI MAXFTP+1
JC FILL1 ;If floppy disk
SUI DSK$8S1-2

FILL1: RRC ;divide by 2
 ANI 3h
 MOV B,A
 LXI D,NSBUF ;initial offset
 LXI H,128 ;128 byte records
 LDA SEKSEC ;Get logical sector
FILL2: XCHG
 RRC
 JNC FILL3 ;If low bit not set
 DAD D ;Add bias to offset
FILL3: XCHG
 DAD H
 ANI 07Fh ;Mask sector
 DCR B
 JNZ FILL2 ;If not all bits checked
 STA SEKSEC
 LHLB DAAADR
 XTHL
 PUSH D ;Set return parameters
 PUSH H ;Set return address
 LXI H,HSTACT ;host active flag
 MOV A,M
 MVI M,1 ;always becomes 1
 ORA A
 JZ FILL6 ;If host buffer inactive
 LXI H,HTSEK
 LXI D,SEKSEC
 MVI C,SEKTYPE-SEKSEC+1
FILL4: LDAX D
 CMP M
 JNZ FILL5 ;If mis-match
 INX H
 INX D
 DCR C
 JNZ FILL4 ;If all bytes‘not checked
 RET
FILL5: CALL FLUSH ;Flush host buffer
FILL6: LHLB SEKDSK ;Move disk and type
 SHLD HSTDSK
 SHLD ACTDSK
 LHLB SEKTRK
 SHLD HSTRK
 SHLD ACTRK
 LDA SEKSEC
 STA HTSEK
 STA ACTSEC
 LDA RDFLAG
 ORA A
 Rnz ;If no read required
 MVI A,FSRDAT+040h ;Read double density
JMP BLXXFR

; FLUSH - Write out active host buffer onto disk.

FLUSH:
 LXI H, HSTWRT
 MOV A, M
 ORA A
 RZ
 MVI M, 0
 LHLH HSTDSK ; If host buffer already on disk
 SHLD ACTDSK ; Move disk and type
 LHLH HSTTRK
 SHLD ACTTRK
 LDA HSTSEC
 STA ACTSEC
 MVI A, F$WRT+040h ; Write double density

; BLXXFR -- blocked mode transfer.

; ENTRY A = command.

BLXXFR:
 MOV C, A
 LXI H, HSTBUFF ; Set buffer address
 SHLD BUFADR
 MVI A, BXADR
 STA BUFADD
 MOV A, C
 JMP FINAL

; FINAL -- Perform final transfer processing.

; ENTRY A = Command.

FINAL:
 CALL PRCRDCH ; Process command, drive, cylinder
 LXI H, CIOFB+0 ; Set buffer address
 MOV m, C ; Set command
 INX H
 MOV m, B ; Set drive
 INX H
 MOV m, E ; Set cylinder
 INX H
 MOV m, D ; Set head
 INX H
 MOV E, A ; Save N field
 LDA ACTSEC ; Get sector
 MOV C, A
 INX A
 MOV m, A ; Set beginning sector
 INX H
 MOV A, E ; Get type
 CPI 4
 JP HDFNL ; If hard disk
 MOV m, A ; Set N field
 INX H
ADD A
ADI CMDIYP and Offh
MOV E,A
MVI A,0
AGI CMDIYP/256
MOV D,A
LDA NUMSEC ;Compute ending sector number
ADD C
mov m,A ;Set EOT
INX H
LDAX d
mov m,A ;Set GPL field
INX D
INX H
LDAX d
mov m,A ;Set DIL
MVI A,MRTRY ;Set retry count
STA RTRY ;Clear retry count
LDA CIOPB+2 ;Get cylinder number
CALL DOSEEK ;Seek to proper track
JNZ FNL3 ;If seek error
lxi H,BUFFD
mvi B,3
FNL2:
mov A,m ;get ext adr
OUT IMA
Dcx H ;data is backward in memory
dcr B
JNZ FNL2 ;If not all 3 bytes
lxi H,CIOPB
mvi B,CIOFL ;Set command buffer length
mvi C,7
CALL EXEC ;perform operation
Cpi 01h
JNZ FNL3 ;If error
LDA TEMPBF+1
SUI 80h
STA ERFLAG
RZ ;If no errors
FNL3:
LDA RTRY ;Get retry counter
DCR A
JNZ FNL1 ;If not permanent error
ORI 01h
STA ERFLAG ;Set error flag
RET

;HDFNL -- Hard disk final command processing.
;

HDFNL:
IF NOHRD
CALL HDSEL
STA ERFLAG ;If select error
RNZ A,MRTRY ;Set retry count
HDFNL1: STA RTRY
 CALL HDSEEK ;Seek to correct track
 CALL HDXFER ;Perform hard disk transfer
 STA ERFLAG
 RZ
 LDA RTRY
 DCR A
 JNZ HDFNL1 ;If attempts left
 LDA ACTDSK
 MVI D,0
 MOV E,A
 LXI H,HDCYL
 DAD D
 MVI M,(-1) ;Force track zero seek
endif
XRA A
 ORI 001h
 STA ERFLAG
RET

RTRY: DB 0
MRTRY: EQU 10 ;Maximum retry count

; Command buffer disk type dependent values.

CMDDYP: ; GIDL DIL
DB 007h,128 ;Single density
DB 00Eh,255 ;Double density 256 bytes
DB 018h,255 ;Double density 512 bytes
DB 035h,255 ;Double density 1024 bytes

; PROCDCCH — Process Command, Drive, Cylinder, and Head.
ENTRY A = command.
EXIT A = N field (0..4).
 B = drive.
 C = command.
 D = head.
 E = cylinder.

PROCDCCH: MOV C,A ;Save Command
 LDA ACTDSK
 MOV B,A
 LHLD ACTTRK ;Get track number
 LDA ACTTYP ;Get type
 CPI MAXFTP+1
 JNC CDCH2 ;If hard disk
 XCHG
 MOV H,A ;Save type
 ANI 1
 JZ CDCH1 ;If single sided
MOV A,E
ANI 1
MOV D,A
;Set head
RLC
RLC
ORA B
;Combine head with drive
MOV B,A
MOV A,E
;Adjust track for cylinder
MOV E,A

CDCH1:
MOV A,H
ANI OFEH
;Remove sided bit
RMC
RET

CDCH2:

IF NOHRD
MOV A,L
ANI 003h
MOV D,A
;Save head
DAD H
;*2
DAD H
;*4
DAD H
;*8
DAD H
;*16
MOV A,L
;head * 16
CMA
ANI 030h
ORA B
;Combine with drive
MOV B,A
DAD H
;*32
DAD H
;*64
MOV E,H
;track*64/256 = track/4
MOV A,C
ANI 00Ph
CPI FSRDAT
MVI A,4
MVI C,H$RSDT
RZ
;If read command
MVI C,H$SWST
ENDIF
RET

; Seek to specified Track/Sector
;
; Entry A = Track

DOSEEK:
sta DSEKC+2
ldi H,DSEKC
mvi B,DSEKL

; Move head according to command.
;
ENTRY HL = address of command buffer.

ENTRY B = length of command buffer.

ENTRY Z bit set if no error.

MOVETO:
CALL EXECP ;Perform seek

MVTO1:
IN INTS
ORA A
JP MVTO1 ;if not complete

mv1 A,FSRSTS
OUT FDCD ;request status

mv1 B,2
CALL GMPS ;Get status

Cpi 20h
RZ

LDA TEMPBF ;Get true status byte

ANI 3h ;Mask disk unit

MOV C,A
LDA ACTDSK

CMP C

JNZ MVTO1 ;If not proper unit

ORI 001h ;Clear zero flag

RET

; SPECIFY - Specify disk drive characteristics.

SPECIFY:
lxi H,SPEC+i

mv1 B,LSPEC

mv1 C,0

LDA STEPMS

ORI HUT

mov m,A
dcx H

JMP EXECP ;Specify disk command

DSEKC DB F$SEEK,0,0

DSEKL: EQU $-DSEKC

SPEC DB F$SPEC

db (srl shr 4)+hut

db (hdrt shr 1)+nd

LSPEC equ $-SPEC

; EXE C

; Entry HL = FWA of command buffer.

; B = # of bytes to output

; C = # of bytes for status

; Exit If C <> 0 then see GMPS.

EXECP: mv1 C,0 ;Set no status byte

EXECX: INX H
LDA ACTDSK ;Set drive into command buffer
MOV M,A
DCX H

EXEC:
EXEC1:
IN FDCS
ORA A
JP EXEC1 ;if no master ready bit
mov A,m ;command byte
OUT FDCD ;to controller
INx H
DCR B
JNZ EXEC1 ;if more bytes
MOV A,C ;# of status bytes+1
ORA A
RZ ;if no status bytes
MOV B,C ;# of status bytes

EXEC2:
IN INTS
ORA A
JP EXEC2 ;If operation not complete

; Get completion status.
;
; Entry B= # of status bytes to read
; Exit TEMPB = status bytes read in.
; A = [TEMPS] and OF8h.
; Flags set according to above value in A.

GCMPS:
Lxi H,TEMPBF ;Set status buffer address

GCMPS2:
IN FDCS
ORA A
JP GCMPS2 ;if not ready
IN FDCD ;Get status byte
mov m,A
INx H
DCR B ;decrement counter
JNZ GCMPS2 ;wait until all done
LDA TEMPB ;Get first status byte
ANI OF8h
RET

; If C8080
; MOVDTA - Move data in memory.
;
; ENTRY C = number of bytes to move
; DE = destination address.
; HL = source address.

MOVDTA:
MOV A,m ;Source character
STAX D ;to destination
INX H
INX D ;loop 128 times
DCR C
JNZ MOVDTA ;If transfer not complete
RET
ENDIF

; Check blocked disk transfer.
;
; EXIT Cbit set, unblocked device.
; Cbit clear, blocked device.

CHKBD:
XRA A ;Clear error flag
STA ERFLAG
LDA SEKTYP
CPI DSKD1
JC CBKD2 ;If not blocked device
CPI MAXTP+1
JNC CBKD1 ;If hard disk
LHLDA SEKTRK
MOV A,H
ORA L
MVI A,0SKS1 ;A = Single density
JZ CBKD2 ;If zero force non-blocked
CBKD1 LDA SAVSEC
STA SEKSEC
XRA A ;Clear carry flag
RET

SETACT: LDA SEKTYP ;Clear carry flag
RET

CBKD2: STA ACTTYP ;Set actual disk type
LHLDA DMAADR
SHLD BUFADR
LDA DMADE
STA BUFADE
LDA SEKDSK
STA ACTDSK
LHLDA SEKTRK
SHLD ACTTRK
LDA SAVSEC
STA ACTSEC
STC ;Set carry flag
RET

; Delay Delay the millisecond count contained in BC.
; Destroys A and flags.
DELAY: MVI A, DELCNT/26
DLY1: DEX B
INX B
DCR B
JNZ DLY1 ;If not 1 millisecond
DCX B
MOV A,C
ORA B
JNZ DELAY ;If not desired count
RET

; Print message terminated by zero byte.
; ENTRY HL -> message buffer, terminated by zero.
; EXIT HL -> zero byte + 1.
; A = 0.
; Z bit set.
; Destroys only HL, Flags, and A registers.

PRINT: MOV A,M ;Get a character
ORA A
INX H
RZ
PUSH B ;If zero the terminate
MOV C,A
CALL JSOUT ;Output to the console
POP B
JMP PRINT

; Physical data buffer address ((DMAADR) or HSTBUF)

BUFADR: DW 0 ;Lower 16 bits (least, middle)
BUFADRE: DB 0 ;Extended address

; User data buffer address

DMAADR: DW 0 ;Lower 16 bits (least, middle)
DMAADRE: DB 0 ;Extended address
 ; space 4,10
; BIOS blocking / deblocking flags.

HSTACT: DB 0 ;host active flag
HSTWRT: DB 0 ;host written flag
UNACNT: DB 0 ;unalloc rec CNT
UNATRX: DW 0 ;Track
UNASEC: DB 255 ;Sector
LOGSEC DB 0 ;Logical sector
 ; space 4,10
; Area for storage of hard disk cylinders.

HDCYL:
if hard
 db (-1),(-1),(-1),(-1)
endif

; CP/M disk work space.

ALV: DS ALVS
CSV: DS CSV5

; Disk access information.
; This area is organized into the following groups
; sector number
; track number
; disk drive
; drive type
; Each of these groups has three cells for the
; current disk request, ACTual disk transfer,
; and active host disk.

SEKSEC: DS 1 ;Current request
SEKTRK: DS 2 ;Current request
SEKDSK: DS 1 ;Current request
SEKITYP: DS 1 ;Current disk's type

ACTSEC: DS 1 ;Actual transfer operation
ACTTRK: DS 2 ;Actual transfer operation
ACTDSK: DS 1 ;Actual transfer operation
ACTITYP: DS 1 ;Actual disk's type

HSTSEC: DS 1 ;Active host disk
HSTTRK: DS 2 ;Active host disk
HSTDSK: DS 1 ;Active host disk
HSTITYP: DS 1 ;Active disk's type
; space 4,10
; Disk transfer flags and counters.
RDFLAG: DS 1 ;Read flag
ERFLAG: DS 1 ;Error reporting
WRTYPE: DS 1 ;Write operation type

SAVSEC: DS 1 ;Save sector
NUMSEC: DS 1 ;Number of sectors

CIOPL: EQU 9
CIOPLB: DS CIOPL ;Disk command buffer
TEMPBF: DS 8 ;Result status cells

ORG LWAMEM-HSTSZ-128

DIRBUF: DS 128 ;Directory buffer
HSTBUF: DS HSTSZ-1 ;Host buffer
END
TITLE 'Sorcin ColdStart Boot for GBC DISK1.'
;BOOT ColdStart Boot load for CP/m 2.2
; on CompuPro DISK1.

Copyright 1981, Sorcin Corp.

This product is a copyright program product of
SORCIM and is supplied for use with the GBC 171
series controllers.

CompuPro Sorcin Corp.
Oakland, CA Santa Clara, CA

Version number: 2.2F
Version date: 1981 March 31

The following code is supplied to customers who
purchase a hard/floppy disk system from CompuPro.
The following code is written onto track 0 sector 0
of the hard disk. This routine is read into memory
at location 0 by the user's PROM. This routine then
loads the rest of the system into memory.

The format of the Floppy Disk Boot sectors are as follows:

<table>
<thead>
<tr>
<th>Sector</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 thru 3</td>
<td>Boot program (this routine)</td>
</tr>
<tr>
<td></td>
<td>BIOS</td>
</tr>
<tr>
<td>1 0 thru 7</td>
<td>CCP</td>
</tr>
<tr>
<td>8 thru 21</td>
<td>BDOS</td>
</tr>
<tr>
<td>22 thru 25</td>
<td>reserved</td>
</tr>
</tbody>
</table>

;OPARM: EQU "0 " ;Capture 0 parameter
OPARM: EQU 32 ;Memory size in Kbytes, or
VERS: EQU 22 Bios load address
FALSE: EQU 0
TRUE: EQU NOT FALSE
K: EQU 1024
biosln: equ 1000h
;+ IF OPARM < (64+2) ;If absolute
option: set false
if oparm/(64+1)
option: set true
endif
if not option
MSIZE: EQU OPARM ;Size of CP/M memory
CBIOS: EQU MSIZE*K-biosln ;Start of CP/M jump table
ENDIF
;+ IF OPARM > (64+1) ;If PRL generation
if option
MSIZE: EQU (OPARM+OE00h)/K ;Size of CP/M memory
CBIOS: EQU OPARM ;Start of CP/M jump table
ENDIF
BDOS: EQU CBIOS-OE00h+6 ;Start of BDOS
CCP: EQU CBIOS-1600h ;Start of CCP
OPTS: EQU 40h ;Option selections byte

; Assembly Constants
FDPOR T EQU 0C0h ;Base port address for Controller
FDCS EQU FDPOR T ;Status register
FDCD EQU FDPOR T+1 ;Data register
DMA EQU FDPOR T+2 ;Data address (when write)
INTS EQU FDPOR T+2 ;Status Register (when read)
; Input on port disables boot rom.
SER EQU FDPOR T+3 ;Serial port
;++ DELCNT = 5000 ;Delay count
DELCNT EQU 5000 ;Delay count

; Controller function definitions
; Specify (00) command
;++ NSEC = 0 ;Sect verify number
;++ F.ATK = 02 ;Read track
;++ F.SPEC = 03 ;Specify
;++ F.DSTS = 04 ;Drive status
;++ F.RDAT = 06 ;Read data
;++ F.RECA = 07 ;Recalibrate
;++ F.RSTS = 08 ;Read status
;++ F.SEEK = 0Fh ;Seek
NSEC equ 0 ;Sect verify number
FSRTK equ 02 ;Read track
FS$SPEC equ 03 ;Specify
FS$DSTS equ 04 ;Drive status
FS$RDAT equ 06 ;Read data
FS$RECA equ 07 ;Recalibrate
FS$RSTS equ 08 ;Read status
FS$SEEK equ 0Fh ;Seek
SRT equ 16-8 ;* Shuggart 800s
SRT equ 16-8 ;* Shuggart 800s
; 16-3 ;* Shuggart 850s
; 16-3 ;* Remex
;+ HUT: = 240/16 ;Head unload = 240 ms
;+ HL: = (35+1)/2 ;Head load = 35 ms
;+ ND= = 00 ;Set DMA mode
HUT: equ 240/16 ;Head unload = 240 ms
HDLT: equ (35+1)/2 ;Head load = 35 ms
ND: equ 00 ;Set DMA mode
+ space 4,10

; Bootstrap load.
; Do not change any addresses from here to START:
; Entry C= Board switches from ROM (0 .. 3)
ORG 100h
BOOT:
JMP START ;invariance
+ space 4,10

; Function data for controller to boot
DATA DB 0 ;Extended
;+ ENTRY: DB high CB IOS
ENTRY: DB CB IOS shr 8
;+ DB low CB IOS
DB CB IOS and 0ffh
;+ LDMA EQU *=DATA
LDMA EQU $=DATA
;+ SPEC DB F.SPEC
SPEC DB F$SPEC
;+ VFD 4\SRT,4\HUT
;+ VFD 7\HLT,1\ND
 db art shl (8-4) + hut
db (hdlt shl (8-7)) + nd
;+ LSPEC = *=SPEC
LSPEC equ $=SPEC

;+ RECAL DB F.RECA,0
;+ RECAL = *=RECAL
RECAL DB F$RECA,0
LRECAL equ $=RECAL

;+ READ: DB F.RDAT
READ: DB F$RDAT
DB 0 ;head,ds1,ds0
DB 0 ;C - sector ID info
DB 0 ;head
DB 5 ;Record (sector)
DB 0 ;N
DB 26 ;Read to end of track
DB 7 ;GFL
DB 128 ;DTL
;+LREAD = $-READ
LREAD equ $-READ

START:
 MOV A,C ;Save board options
 STO A,OPTS
 STA OPTS
RETRY:
 ;+LDK D,E,DATA
 LXI D,DATA
 ;+LDK B,LDMA
 MVI B,LDMA
 ; Output beginning DMA address
 ;+ADDR: LD A,[de]
 ADDR: LDA d
 OUT DMA ;set DMA
 INX D
 DCR B
 JNZ ADDR ;If NOT all 3 bytes
 ; Load Specify Command
 ;+LDK B,LSPEC
 MVI B,LSPEC
 SPEC1: IN FDCS
 ;+OR A
 ORA A
 JP SPEC1 ;If no master ready bit
 ;+LD A,[de] ;Load command byte
 LDA d
 OUT FDCD ;To controller
 INX D
 DCR B
 JNZ SPEC1 ;If more bytes
 ; Recalibrate drive
 ;+LDK B,LERCAL
 MVI B,LERCAL
 CALL1: IN FDCS
 ;+OR A
 ORA A
 JP RCALL1 ;If no master ready bit
 ;+LD A,[de] ;Load command byte
 LDA d
 OUT FDCD ;To controller
 INX D
DCR
JNZ

RCAL2:
IN
ORA
JP

RCAL3:
IN
ORA
JP
IN
SUI
MOV

RCAL4:
IN
ORA
JP
IN
ORA
JNZ

; Now set-up read command

LDK

READ1:
IN
OR
ORA
JP

READ2:
IN
ORA
JP

READ3:
IN
ORA
JP
IN
SUI
MOV

READ4:
IN
OR
JP
IN
SUI
MOV

; if more bytes

; If not complete

; If not complete

; If not complete

; If not complete

;}
LDX B,7-2
LDI B,7-2
READ5: IN FDCS
++; OR A
++; ORA A
++; JP READ5 ;if not ready
++; IN FDCD ;read status
++; DEC B
++; DCR B
++; JNZ READ5 ;wait until all done
++; MOV A,L
++; ORA H
++; JNZ RETRY ;if problems
++; LD HL,ENTRY
++; LDH ENTRY
++; MOV D,H
++; MOV H,L ;reverse
++; MOV L,D
++; JMP [hl] ;enter CB1OS
++; PCHL ;enter CB1OS

END
TITLE 'ROM Boot for CompuPro DISK1 Controller.

ROM BOOT

COMPUMO
Oakland, CA

Copyright 1981, Sorcim Corporation.

This product is a copyright program product of Sorcim and is supplied for use with the CompuPro IEEE 696 Floppy Disk Controller.

Version number: 2.2F
Version date: 81 March 31

;+ ROMFWA EQU *0 * 100h
romfwa equ 0

; Assembly Constants
FDCS EQU 0COH ; Base port address for Controller
FDCD EQU FDCS+1 ; Data register
DMA EQU FDCD+2 ; Dma address (when write)
INTS EQU FDCD+2 ; Status Register (when read)

; Input on port disables boot rom.
SER EQU FDCD+3 ; Serial port

;+ DELCNT = 5*1000 ; 5 MHz processor
delcnt equ 5*1000 ; 5 Mhz processor

; Controller function definitions
; Specify (00) command
;+ NSEC = 0 ; Sect verify number
;+ F.BRK = 02 ; Read track
;+ F.SPEC = 03 ; Specify
;+ F.DSTS = 04 ; Drive status
;+ F.RDAT = 06 ; Read data
;+ F.RECA = 07 ; recalibrate
;+ F.RSTS = 08 ; Read status
;+ F.TSK = 08 ; Seek
NSEC equ 0 ; Sect verify number
FSTFBK equ 02 ; Read track
F$SPEC equ 03 ; Specify
FSDSTS equ 04 ; Drive status
FSRDAT equ 06 ; Read data
FSRECA equ 07 ; recalibrate
FSRSTS equ 08 ; Read status
F$SEEK equ 0Fh ;Seek

SRT equ 16-8 ;= Shuggart 800s
; 16-8 ;= Shuggart 800s
; 16-3 ;= Shuggart 850s
; 16-3 ;= Remex
;+ HUT = 240/16 ;Head unload = 240 ms
;+ HLT = (35+1)/2 ;Head load = 35 ms
;+ ND = 00 ;Set DMA mode
HUT equ 240/16 ;Head unload = 240 ms
HDLT equ (35+1)/2 ;Head load = 35 ms
ND equ 00 ;Set DMA mode

ORG ROMFWA
LOC 0
START: JMP ROM1 ;forced jump to location 3

;+ ROM1: LDX BC,20 ;Wait 20 MSec
ROM1: lxi b,20 ;Wait 20 MSec
;+ LDX HL,ROM2 ;Return from delay
ldx h,ROM2 ;Return from delay
JMP DELAY

ROM2: LXI D,DATA ;Output beginning DMA address

MVI B,LDMA
;+ ADDR: LD A,[de]
ADDR: ldax d
OUT DMA ;set DMA
INX D
DCR B
JNZ ADDR ;if NOT all 3 bytes

; Load Specify Command

MVI B,LSPEC
SPEC1: IN FDQS
;+
OR A
ora A
JP SPEC1 ;if no master ready bit
;+ LD A,[de] ;load command byte
ldax d ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ SPEC1 ;if more bytes

; Recalibrate drive

MVI B,LRECAL
RCALL1: IN FDQS
;+ OR A
ora A
JP RCAL1 ;if no master ready bit
;+ LD A,[de] ;load command byte
ldax d ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ RCAL1 ;if more bytes

RCAL2: IN INTS
ORA A
JP RCAL2 ;If not complete
MVI A,F$RSTS
OUT FDCD
;+ LDK BC,250 ;Leave light on .25 seconds
1x1 b,250
;+ LDK HL,RCAL3 ;Leave light on .25 seconds
1x1 h,RCAL3
JMP DELAY

RCAL3: IN FDCS
ORA A
JP RCAL3
IN FDCD
SUI 20h
MOV C,A

RCAL4: IN FDCS
ORA A
JP RCAL4
IN FDCD
ORA C
JNZ ERROR ;If error in recalibrate

; Now set-up read command
MVI B,LREAD

READ1: IN FDCS
;+ OR A
ora A
JP READ1 ;if no master ready bit
;+ LD A,[de] ;load command byte
ldax d ;load command byte
OUT FDCD ;to controller
INX D
DCR B
JNZ READ1 ;if more bytes

READ2: IN INTS
ORA A
JP READ2 ;If not complete

READ3: IN FDCS
ORA A
JP READ3
IN FDCD
SUI 40h
MOV L,A

READ4: IN FDCS
ORA A
JP READ4
IN FDCD
SUI 80h
MOV H,A

MVI B,7-2

READ5: IN FDCS
;+ OR A
ora A
JP READ5 ;if not ready
IN FDCD ;read status
;+ DEC B
dcr B
JNZ READ5 ;wait until all done

MOV A,L
ORA H
JZ GOBOOT ;If no error during read
;+ space 4,10

; Error during read or recalibrate.

;+ ERROR: LDK BC,1000 ;Wait 1 second before retry
;+ LDK HL,ROM2
ERROR: lxi b,1000 ;Wait 1 second before retry
lxi h,ROM2
; JMP DELAY
;+ space 4,10

; Delay a period of time.
;
; ENTRY BC = number of milliseconds to delay.
; HL = return address.

;+ DELAY: LDK A,DELCNT/26
DELAY: mvi A,DELCNT/26
DLAY1: INX B
DCX B
DCR A
JNZ DLAY1
DCX B
MOV A,B
ORA C
JNZ DELAY
PCHL ;return to caller
;+ space 4,10
; Function data for controller to boot
DATA DB 0 ; Extended
; + DB high BOOT
DB boot shr 8
; + DB low BOOT
DB boot and 0ffh
; + LDMA EQU $-DATA
LDMA EQU $-DATA
; + SPEC DB F SPEC
; + VF D $ \text{SRT,4} \text{HUT}
; + VF D $ \text{HLT,1} \text{ND}
SPEC DB F $SPEC
DB (srt shl 4)+hut
DB (hdlt shl (8-7))+nd
; + LGPEC = $-SPEC
LGPEC equ $-SPEC
; + RECAL DB F RECA,0
; + LRECAL = $-RECAL
RECAL DB F $RECA,0
LRECAL equ $-RECAL
; + READ: DB F RDAT
READ: DB F $RDAT
DB 0 ; hds,ds1,ds0
DB 0 ; C = sector ID info
DB 0 ; Head
DB 1 ; Record (first sector)
DB 0 ; N
DB 4 ; EOT (last sectors)
DB 7 ; GPL
DB 128 ; DTL
; + LREAD = $-READ
LREAD equ $-READ

; Next instruction disables rom, shadow
; of next instruction must be jump to
; execute boot code just loaded at 100h
; ORG ROMFWA+100h-4 ; Leave exact room
; + DS (100h-4) - *
DS (100h-4) - $
GOBOOT:
; + LDK C,high ROMFWA ; pass board switch value to Boot
MVI C,romfw shr 8 ; pass board switch value to Boot
OUT SER ; must proceed Boot immediately
BOOT:
; + ASSERT BOOT = 100h

END
IF YOU NEED ASSISTANCE ALWAYS CONTACT YOUR COMPUPRO DEALER FIRST

CUSTOMER SERVICE INFORMATION

Our paramount concern is that you be satisfied with any CompuPro product. If this product fails to operate properly, it may be returned to us for service; see warranty information below. If you need further information feel free to write us at:

Box 2355, Oakland Airport, CA 94614

LIMITED WARRANTY INFORMATION

CompuPro division Godbout Electronics will repair or replace, at our option, any parts found to be defective in either materials or workmanship for a period of 1 year from date of invoice. Defective parts MUST be returned for replacement.

If a defective part causes a CompuPro product to operate improperly during the 1 year warranty period, we will service it free (original owner only) if delivered and shipped at owner’s expense to and from our Service Center in Building 725, Oakland Airport, CA 94614. If improper operation is due to error or errors on the part of the purchaser, there may be a repair charge. Purchaser will be notified if this charge exceeds $50.00. If the warranty period has expired, service for CompuPro products is available at a rate of $50.00 per hour labor plus parts.

We are not responsible for damage caused by use of solder intended for purposes other than electronic equipment construction, failure to follow printed instructions, misuse or abuse, unauthorized modifications, use of our products in applications other than those intended by CompuPro division Godbout Electronics, theft, fire, or accidents.

Return to purchaser of a fully functioning unit meeting all advertised specifications in effect as of date of purchase is considered to be complete fulfillment of all warranty obligations assumed by CompuPro division of Godbout Electronics. This warranty covers only products marketed by CompuPro division Godbout Electronics and does not cover other equipment used in conjunction with said products. We are not responsible for incidental or consequential damages.

Prices and specifications are subject to change without notice.