INTERFACTOR 4™
TECHNICAL MANUAL

IEEE 696 / S-100

3 CHANNEL SERIAL I/O BOARD
with CENTRONICS and Universal Parallel Ports

CompuPro®
A GOODBOUT COMPANY

5/83
TABLE OF CONTENTS

How to Get Your Interfacer 4 Board Up and Running in a CompuPro System in Five Minutes or Less Without Reading the Manual ... 5

HARDWARE SECTION ... 7
 About Interfacer 4 ... 7
 Technical Overview ... 7
 Port Map .. 8
 Port Addressing .. 8
 User/Board Selection 9
 User Select Register 9
 Data Bus Select Switch 83 10
 Relative User 0 - 2 Swap Option 11
 Wait State Selection 11
 Cables .. 11
 Using Interrupts ... 13
 Interrupt Control Registers 14
 Interrupt Status Registers 15

SERIAL INFORMATION SECTION 16
 USART Initialization 16
 USART Initialization Sequence 16
 Data Registers .. 17
 Status Registers .. 17
 Mode Registers .. 17
 Command Register 18
 Serial Mode Jumpers 19
 Programming Jumpers 19
 RS-232C Control Lines 19
 USART Handshaking Lines 20
 Synchronous Mode Clock Driver/Receivers 20
 Relative User 2 Synchronous Mode Jumpers 21
 Relative User 3 Synchronous Mode Jumpers 21
 Selecting Rate of On-Board Baud Rate Generator 21

UNIVERSAL PARALLEL CHANNEL 22
 Technical Overview 22
 I/O Address Assignment 22
 Status-P Register Bit Assignment 22
 Port Control Lines 22
 Input Strobe Line 22
 Input Examples .. 23
 Output Enable Line 23
 Attention Line .. 23
 Output Examples .. 24

3
CENTRONICS STYLE PARALLEL CHANNEL

<table>
<thead>
<tr>
<th>Technical Overview</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status-C Register Bit Assignment</td>
<td>25</td>
</tr>
<tr>
<td>Control-C Register Bit Assignment</td>
<td>25</td>
</tr>
<tr>
<td>Transmit Interrupt</td>
<td>26</td>
</tr>
<tr>
<td>Interface Signal Designations</td>
<td>26</td>
</tr>
<tr>
<td>Signal Differences between EPSON and CENTRONICS</td>
<td>26</td>
</tr>
<tr>
<td>Control-C Line Jumping</td>
<td>27</td>
</tr>
<tr>
<td>Jumper Description</td>
<td>27</td>
</tr>
<tr>
<td>Light Emitting Diode</td>
<td>28</td>
</tr>
<tr>
<td>Sense D/A Switch</td>
<td>28</td>
</tr>
</tbody>
</table>

THEORY OF OPERATION

<table>
<thead>
<tr>
<th>S-100 Bus Drivers</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Port Decode Logic</td>
<td>29</td>
</tr>
<tr>
<td>Strobe Generation Logic</td>
<td>30</td>
</tr>
<tr>
<td>Wait State Logic</td>
<td>30</td>
</tr>
<tr>
<td>Interrupt Control/Status Logic</td>
<td>30</td>
</tr>
<tr>
<td>USARTS</td>
<td>31</td>
</tr>
<tr>
<td>RS-232/Current Loop Level Conversion Logic</td>
<td>31</td>
</tr>
<tr>
<td>CENTRONICS Parallel Logic</td>
<td>31</td>
</tr>
<tr>
<td>Universal Parallel Logic</td>
<td>32</td>
</tr>
</tbody>
</table>

SOFTWARE SECTION

<table>
<thead>
<tr>
<th>Sample Program Using Interfacer 4 as the CP/M Console</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRONICS Test Routine</td>
<td>36</td>
</tr>
<tr>
<td>Interfacer 4 Serial Test Routine</td>
<td>39</td>
</tr>
</tbody>
</table>

INS2651 Programmable Communications Interface

| 41-47 |

HARDWARE DESCRIPTION

Parts List	48
Component Layout	49
Logic Diagram	50-57
Jumper and Switch Index	58

CUSTOMER SERVICE / LIMITED WARRANTY INFORMATION

| BACK PAGE |

DISCLAIMER

Godbout Electronics makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Godbout Electronics reserves the right to revise this publication and to make any changes from time to time in the content hereof without obligation of Godbout Electronics to notify any person of such revision of changes.

This document was proofread with the aid of Spellguard™ from SOFISI, Santa Clara, CA.
How to Get Your INTERFACER 4 Board Up and Running in a CompuPro System in Five Minutes or Less Without Reading the Manual

This section allows the user to configure an INTERFACER 4 in a standard CompuPro system running CP/M-80 or CP/M-86 so that the INTERFACER 4 DRIVES the console, list and ULI devices. If, after reading and following the directions in this section, your board appears not to function, or if you are planning to use this board in other than a standard CompuPro system, DON'T CALL!!! READ THE MANUAL FIRST!!!

SWITCHES

DIP SWITCH S1

This switch is not used by either the CP/M-80 or the CP/M-86 BIOS, so we recommend that you turn all positions "OFF".

DIP SWITCH S2

This switch controls the port addressing and board selection number for the board. It should be set as described in the table below. These settings will put the INTERFACER 4 at ports 10-17 as users 4-7.

<table>
<thead>
<tr>
<th>POSITION</th>
<th>Labeled</th>
<th>How to Set It</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BSO</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>BS1</td>
<td>ON</td>
</tr>
<tr>
<td>3</td>
<td>H/L</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>DIS</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>A7</td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>ON</td>
</tr>
<tr>
<td>7</td>
<td>A5</td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>A4</td>
<td>OFF</td>
</tr>
<tr>
<td>9</td>
<td>A3</td>
<td>ON</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>ON (NOT USED)</td>
</tr>
</tbody>
</table>

DIP SWITCH S3

This switch should be set with positions 1-4 "ON", and positions 5-8 "OFF".

JUMPER SOCKETS

The jumper sockets should have either an 8 position shunt or an 8 position DIP header as indicated below.

JUMPER SOCKET

JS1 --------- SHUNT INSTALLED
JS2 --------- SHUNT INSTALLED
JS3 --------- SHUNT INSTALLED
JS4 --------- HEADER INSTALLED WITH NO WIRES
JS5 --------- HEADER INSTALLED WITH NO WIRES
JS6 --------- HEADER INSTALLED WITH NO WIRES
The pin shunt jumpers should be installed or removed as indicated.

JUMPER CONDITION
J1 ----------- NO PINS NEED TO BE INSTALLED
J2 ----------- BOTTOM INSTALLED WITH EPSON / NO SHUNT OTHERWISE
J3 ----------- TOP INSTALLED WITH EPSON / NO SHUNT OTHERWISE
J4 ----------- BOTTOM INSTALLED WITH BOTH EPSON AND CENTRONICS
J5 ----------- REMOVED
J6 ----------- INSTALLED FOR 1 WAIT STATE / REMOVED OTHERWISE
J7 ----------- INSTALLED FOR 2 WAIT STATES / REMOVED OTHERWISE
J8 ----------- INSTALLED FOR 3 WAIT STATES / REMOVED OTHERWISE
J9 ----------- NO JUMPER
J10~J25 ---- REMOVED
J26 --------- JUMPER A-B and C-D for the CENTRONICS CHANNEL
 as USER 4.
 JUMPER A-C and B-D for the CENTRONICS CHANNEL
 as USER 6.

DIAGRAM - JUMPER AND JUMPER SOCKET LAYOUT

NOTE: Under MP/M 8-16 or an interrupt driven mode, J26 MUST be jumpered A-B and C-D.
ABOUT INTERFACER 4

Congratulations on your decision to purchase the INTERFACER 4 multi-purpose I/O board. INTERFACER 4 has been designed to be the most flexible and highest performance 1/0 interface available that fully complies with the IEEE 696/5-100 bus standard. Due to its provision for ready expansion and modification as the state of the computing art improves, the 5-100 bus is the professional level choice for commercial, industrial, and scientific applications. We believe that this board, along with the rest of the 5-100 portion of the CompuPro family, is one of the best boards available for that bus.

The INTERFACER 4 boasts several innovative features not found on currently available I/O boards. The primary innovation stems from its full software compatibility with the INTERFACER 3 as well as the ability to intermix INTERFACER 3 and 4 boards at the same port addresses. Additional features include 3 fully programmable asynchronous serial channels, 2 of which are capable of high speed synchronous transmission and one capable of current loop operation, five RS-232 handshaking lines per channel plus bi-directional clock drivers on both the synchronous channels, a pin compatible CENTRONICS parallel interface port with the full complement of handshaking lines, a universal parallel port with 16 data and 3 handshaking lines, expandability to 32 users with eight boards using only 8 port addresses, a flexible interrupt structure with full maskability and pending status on both transmit and receive interrupts, and conservative design for operation with most CPUs operating to beyond 10 MHz. Other features standard to all CompuPro boards include thorough bypassing of all supply lines to suppress transients, on-board regulators, and low power Schottky TTL and MOS technology integrated circuits for reliable, cool operation. All this and sockets for all IC's go onto a double sided, solder masked printed circuit board with a complete component legend.

TECHNICAL OVERVIEW

The INTERFACER 4 was designed for efficient operation in interrupt driven multi-user microcomputer systems as well as polled mode single user systems. Eight distinct interrupts are generated on-board by the three USARTs and two parallel ports, and these are brought out for jumpering by the user to the eight vectored interrupt lines on the 5-100 bus. Since these interrupt lines are open collector, they may be configured to interrupt on any or all of the vectored interrupt lines. In addition, a transmit and receive interrupt mask port is provided for inhibiting unwanted interrupts.

The INTERFACER 4 provides multi-user operation with a minimum number of I/O ports by incorporating a user select register to activate the required I/O channel. This five bit register is used to select a particular channel, which allows up to 32 users (up to eight boards) on the same 8 port addresses. When a particular user is selected, the four USART registers associated with that specific serial channel or the parallel registers are made available for examination and alteration by the host processor or other temporary bus master. In addition, whenever a particular channel is selected, the interrupt registers on that particular board as well as the registers on another board in the same group of eight users are available for examination and alteration.
The typical sequence of operation would require all channels on the INTERFACER 4 to be mode initialized and the interrupt mask registers set for operation. All parameters of the USART or parallel ports may be altered by selecting that particular channel and writing a new set of mode and command words to the proper registers. If running in a non-interrupt environment, the interrupt status registers may be polled and checked in roughly the same manner as a standard single channel serial board.

All three of the serial channels on the INTERFACER 4 are designed for direct connection to DATA TERMINAL EQUIPMENT (DTE) or DATA COMMUNICATION EQUIPMENT (DCE) in asynchronous mode without alteration of the cables. This allows direct connection to all types of RS-232 equipment including modems. In addition, two channels are capable of high speed synchronous operation using internal or external clocks and one channel may be connected to current loop devices.

The CENTRONICS parallel channel was designed for direct connection to printers using standard ribbon cable connectors. In addition, all handshaking lines have been implemented for maximum flexibility and ease of interfacing.

PORT MAP

The INTERFACER 4 interface uses a block of eight port addresses for communication between it and the host processor. The address of the first port is switch selectable to any address which is a multiple of eight. The ports will be referred to as RELATIVE PORTS 0 - 7.

<table>
<thead>
<tr>
<th>RELATIVE PORT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>USART / CENTRONICS / DIPSWITCH DATA-C Register (R/W)</td>
</tr>
<tr>
<td>1</td>
<td>USART / CENTRONICS STATUS-C Register (R) SYN1/SYN2/DLE Register / CENTRONICS CONTROL-C Reg. (W)</td>
</tr>
<tr>
<td>2</td>
<td>USART Mode Register / Parallel DATA-P Register (R/W)</td>
</tr>
<tr>
<td>3</td>
<td>USART Command Register / Parallel STATUS-P Register (R/W)</td>
</tr>
<tr>
<td>4</td>
<td>Transmit Interrupt Status Register (R) Transmit Interrupt Mask Register (W)</td>
</tr>
<tr>
<td>5</td>
<td>Receive Interrupt Status Register (R) Receive Interrupt Mask Register (W)</td>
</tr>
<tr>
<td>6</td>
<td>Not used</td>
</tr>
<tr>
<td>7</td>
<td>User Select Register (write only)</td>
</tr>
</tbody>
</table>

PORT ADDRESSING

DIP switch S2, positions 4 thru 9 are used to select the base address of the eight port block in a binary fashion as shown in the following table:

8
SWITCH POSITION	ADDRESS BIT
 4 PORT DISABLE WHEN "ON" | 5 "ON" = "0"
 6 A7 | 7 "OFF" = "1"
 8 A5 | 9 A4
 9 A3

EXAMPLE: To address this board at addresses 10H thru 17H for the CompuPro CP/M-80 or CP/M-86 operating system or the Phase 1 OASIS operating system, position 4 and 5 would be "OFF" and positions 6 thru 7 and positions 9 would be "ON".

USER/BOARD SELECTION

To select a particular channel and to select which board that channel will be on (when running more than 4 users), requires the use of the User Select Port and three board select switches. The five bit User Select Register determines which of 32 possible users will be selected at a particular time. The two board select switches (S2-1 and S2-2) determine whether a board will respond to users 0 thru 7, 8 thru 15, 16 thru 23, and 24 thru 31 and the HIGH/LOW select switch (S2-3) determines whether the board is the high or low 4 users in a particular block of eight. A particular user (0-31) is selected by outputting the five bit number that represents that user. The diagram shown below describes the relation between the board select switches and the User Select Register.

USER SELECT REGISTER

<table>
<thead>
<tr>
<th>DATA BIT</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>USO</td>
<td>USER SELECT 0 (LSB)</td>
</tr>
<tr>
<td>D1</td>
<td>US1</td>
<td>USER SELECT 1</td>
</tr>
<tr>
<td>D2</td>
<td>H/LS</td>
<td>HIGH/LOW SELECT</td>
</tr>
<tr>
<td>D3</td>
<td>BSO</td>
<td>BOARD SELECT 0 (LSB)</td>
</tr>
<tr>
<td>D4</td>
<td>BSI</td>
<td>BOARD SELECT 1 (MSB)</td>
</tr>
<tr>
<td>D5</td>
<td>NOT USED</td>
<td>NOT USED</td>
</tr>
<tr>
<td>D6</td>
<td>NOT USED</td>
<td>NOT USED</td>
</tr>
<tr>
<td>D7</td>
<td>NOT USED</td>
<td>NOT USED</td>
</tr>
</tbody>
</table>

Since each INTERFACER 4 will support 4 users, we will refer to these 4 as RELATIVE USERS 0-3. These 4 ports are physically configured with RELATIVE USER 0 as the CENTRONICS and Universal Parallel ports, RELATIVE USER 1 as the far right serial channel with current loop capabilities (CONN 3 C), RELATIVE USER 2 as the middle channel (CONN 3 C), and RELATIVE USER 3 as the far left channel (CONN 3 A).

To determine the EXACT USER number, the RELATIVE USER number must be added to the USER OFFSET number. The RELATIVE USER number corresponds to the 2 bits above called USER SELECT 0 and 1, and HIGH/LOW SELECT. These 5 bits determine the exact user number.

9
<table>
<thead>
<tr>
<th>USI</th>
<th>USO</th>
<th>RELATIVE USER NUMBER</th>
<th>STANDARD CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>USER 0</td>
<td>CENTRONICS / PARALLEL</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>USER 1</td>
<td>RIGHT SERIAL CHANNEL</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>USER 2</td>
<td>MIDDLE SERIAL CHANNEL</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>USER 3</td>
<td>LEFT SERIAL CHANNEL</td>
</tr>
</tbody>
</table>

BOARD SELECT SWITCHES | BOARD SELECT BITS | USER OFFSET

<table>
<thead>
<tr>
<th>S2-3</th>
<th>S2-2</th>
<th>S2-1</th>
<th>H/LS</th>
<th>BS1</th>
<th>BS0</th>
<th>OFFSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
</tr>
</tbody>
</table>

DATA BUS SELECT SWITCH S3

Switch S3 is used to steer either the high (D4-D7) or the low (D0-D3) nibble of status/control information to and from the interrupt logic on the INTERFAKER 4. This switch was designed in to provide software compatibility with the INTERFAKER 3 board.

When the INTERFAKER 4 is addressed as EXACT USERS 0-3 + N, (where N is 0, 8, 16, or 24) we would like the low nibble (D0-D3) of status and control information to be used. This would require switch S3 to have positions 1-4 "OFF" and positions 5-8 "ON".

When the INTERFAKER 4 is addressed as EXACT USERS 4-7 + N, (where N is 0, 8, 16, or 24) we would like the high nibble (D4-D7) of status and control information to be used. This would require switch S3 to have positions 1-4 "ON" and positions 5-8 "OFF".

NOTE!: SETTING SWITCH S3 DIFFERENTIALLY THAN DESCRIBED ABOVE WILL CAUSE IMPROPER BOARD OPERATION AND POSSIBLE BOARD DAMAGE!

EXAMPLE: To address the INTERFAKER 4 to respond to EXACT USERS 4 thru 7 (the CompuPro standard), switches S2-1 and S2-2 would be "ON", and S2-3 would be "OFF". To select a particular user in the group from 4 to 7, BS1 (D4) and BS0 (D3) of the User Select Register must be "0", and H/LS (D2) must be "1" for the board to respond. Switch S3 must have positions 1-4 "ON" and 5-8 "OFF". To select EXACT USER 5, a 00H must be sent to the USER SELECT REGISTER.

EXAMPLE: To address the INTERFAKER 4 to respond to users 18 thru 19, switch S2-1 and S2-3 would be "ON", and switch S2-2 would be "OFF". Switch S3 must have positions 1-4 "OFF" and 5-8 "ON". To select a particular user in the group from 15 to 19, BS1 must be a "1", BS0 must be "0", and H/LS must be a "0" for the board to respond. To select EXACT USER 18, a 12H must be sent to the USER SELECT REGISTER.
The INTERFAKER 4 may be configured so that RELATIVE USERS 0 and 2 may be swapped by re-jumpering J26. This will configure the CENTRONICS and UNIVERSAL Parallel channels as RELATIVE USER 2 instead of 0, and the middle serial channel as RELATIVE USER 0 instead of 2. This option allows EXACT USER 6 to be either a serial channel or the CENTRONICS channel for compatibility with the standard CompuPro CP/M BIOS. (This allows the LPT LIST device to be either serial or parallel without changing the BIOS.)

The standard configuration has "A" connected to "B", and "C" connected to "D" on J26. This provides the CENTRONICS as RELATIVE USER "O". To swap this, jumper "A" to "C", and "B" to "D" on J26, and the CENTRONICS channel will be RELATIVE USER 2 and the middle serial channel will be RELATIVE USER 0.

WAIT STATE SELECTION

The INTERFAKER 4 was designed to run in very fast microcomputer systems by allowing up to three wait states to be added when accessing the USART/PARALLEL registers. Since the user select and interrupt control registers are capable of higher speed operation than the USART registers, no wait states are inserted even when they are enabled on the board.

The 3 sets of vertical pins (J6, J7, and J8) control the enabling of one, two, or three wait states. With the black pin shunt on J6, one wait state will be inserted. With the pin shunt on J7, two wait states will be inserted. With the pin shunt on J8, three wait states will be inserted. If the pin shunt is left removed, no wait states will be inserted.

NOTE: If multiple INTERFAKER 4 boards are inserted, they should be set to the same number of wait states.

CABLES

The INTERFAKER 4 is designed to use 3 different cable assemblies. The serial channels use a custom 50 conductor cable that splits into three DB-25S connectors. The Universal Parallel channel uses a standard 26 conductor cable identical to those used on the INTERFAKER 1 and INTERFAKER 2, and the CENTRONICS Parallel channel uses a custom 40 pin cable that mates to a 36 pin "D" Shell connector for interfacing to the printer.

The serial channels (CONN 3, 50 pin connector on the far right) use a custom 3 user cable (see photo A page 12). This cable consists of a female 50 pin insulation displacement connector that splits into thirds and connects to three female DB-25 connectors. The actual cable has positions 1-16 (pin 1 on the far left side of the connector) on the first DB-25, positions 17-32 on the second DB-25, and positions 33-50 on the third DB-25. NOTE: The pin numbers on the circuit diagram show the pin numbers on the DB-25 connector and not the 50 pin connector.

The Universal Parallel channel (CONN 1, 26 pin connector on the far left) uses the CompuPro standard RS-232 1/O cables (see photo B page 12). This cable consists of a female 26 pin insulation displacement connector that mates to a
female DB-25 (the 26th conductor is not used). **NOTE:** The pin numbers on the circuit diagram show the pin numbers on the DB-25 connector and not the 26 pin connector.

The CENTRONICS Parallel channel (CONN 2, 40 pin connector in the middle of the board) uses another custom cable (see photo C page 12). This cable consists of a 40 pin female transition connector that mates with a 36 pin female "D" shell connector identical to those on the back of CENTRONICS interface printers. **NOTE:** The pin numbers on the circuit diagram show the pin numbers on the D-36 connector and not the 40 pin connector, and that pin 1 of the 40 pin connector does not correspond to pin 1 of the D-36 connector. If the user wishes to make this cable, the 36 conductors from the D-36 connector should be centered in the 40 pin connector, with 2 unused pins on each edge.
The INTERFA CEA 4 has a simple but elegant interrupt structure that allows considerable flexibility. Each USART generates both a transmit and receive interrupt. The CENTRONICS Channel generates an interrupt upon receiving an ACKNOWLEDGE from the printer, and the Universal Parallel channel generates an interrupt after being STROBED by an external device for a total of 8 distinct interrupts for the board. A transmit interrupt indicates that the USART or the CENTRONICS transmit register is empty and it is ready to accept a character. A receive interrupt indicates that data is available from the receiver data register on either the USART or the Universal Parallel channel. Each of these interrupts may be masked "OFF" or "ON" by altering the INTERRUPT CONTROL REGISTERS as described below. Each of these interrupts are open collector, and may be individually tied to any of the 8 vectored interrupt lines (V10-V17). The status of each interrupt line may be sampled by reading the INTERRUPT STATUS REGISTERS as described below.

Since each of the 8 interrupts generated on the INTERFA CEA 4 may be tied to any of the 8 vectored lines, almost any type of priority scheme may be implemented. All transmit interrupts are brought out twice on one side of jumper socket J55, and all receive interrupts are brought out twice on one side of jumper socket J56. On the opposite side of each socket, each of the 8 vectored interrupt lines are brought out. By using the provided headers, any USART interrupt may be connected to any VI line. The pin-out of J55 and J56 are shown below.

<table>
<thead>
<tr>
<th>INTERRUPT</th>
<th>J55</th>
<th>VI LINE</th>
<th>J56</th>
<th>INTERRUPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXINT 0</td>
<td>9</td>
<td>---</td>
<td>8</td>
<td>RXINT 0</td>
</tr>
<tr>
<td>TXINT 1</td>
<td>10</td>
<td>---</td>
<td>7</td>
<td>RXINT 1</td>
</tr>
<tr>
<td>TXINT 2</td>
<td>11</td>
<td>---</td>
<td>6</td>
<td>RXINT 2</td>
</tr>
<tr>
<td>TXINT 3</td>
<td>12</td>
<td>---</td>
<td>5</td>
<td>RXINT 3</td>
</tr>
<tr>
<td>TXINT 0</td>
<td>13</td>
<td>---</td>
<td>4</td>
<td>RXINT 0</td>
</tr>
<tr>
<td>TXINT 1</td>
<td>14</td>
<td>---</td>
<td>3</td>
<td>RXINT 1</td>
</tr>
<tr>
<td>TXINT 2</td>
<td>15</td>
<td>---</td>
<td>2</td>
<td>RXINT 2</td>
</tr>
<tr>
<td>TXINT 3</td>
<td>16</td>
<td>---</td>
<td>1</td>
<td>RXINT 3</td>
</tr>
</tbody>
</table>

EXAMPLE: If we wish to generate an interrupt on vectored interrupt line VI3 when data becomes available from RELATIVE USER 3, a wire should be soldered between pins 5 and 12 of J56.

EXAMPLE: If we wish to generate an interrupt on vectored interrupt line VI6 when data becomes available from RELATIVE USERS 0, 1, 2, and 3, a wire should be soldered to connect pins 1, 13, 14, 15, and 16 of J56.

EXAMPLE: If we wish to generate an interrupt on vectored interrupt line VI10 when RELATIVE USER 2 is ready to accept a character, a wire should be soldered to connect pins 8 and 11 of J55.

All serial channels are capable of generating a third interrupt called DSK/DSCHW*. This interrupt occurs when the transmitter has completed serialization of the last character loaded or a change has occurred in the state of the DSR or DCD RS-232 status lines. Additional information on this line may be found in the 2651 data sheet in this manual.

13
The TxEMT/DSCHG* output from the 2651 may be jumpered to generate either a transmit or receive interrupt. Due to the wire-OR capability of the interrupt outputs from the 2651, when jumpered, the transmit interrupt will become RxRDY OR TxEMT/DSCHG* of the receive interrupt will become RxRDY OR TxEMT/DSCHG*. Therefore, when jumpered, the user must check the status register to determine what condition caused the interrupt.

The following table will demonstrate where to install the shorting plug to generate the appropriate interrupt.

<table>
<thead>
<tr>
<th>CHANNEL NUMBER</th>
<th>TO CAUSE A TxEMT/DSCHG</th>
<th>INTERRUPT ON THE:</th>
<th>RxRDY LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INSTALL J10T</td>
<td>INSTALL J10R</td>
<td>RxRDY</td>
</tr>
<tr>
<td>2</td>
<td>INSTALL J11T</td>
<td>INSTALL J11R</td>
<td>RxRDY</td>
</tr>
<tr>
<td>3</td>
<td>INSTALL J12T</td>
<td>INSTALL J12R</td>
<td>RxRDY</td>
</tr>
</tbody>
</table>

INTERRUPT CONTROL REGISTERS

Two registers are provided for individually masking the transmit and receive interrupts from the bus. On power-up or reset, all interrupts are disabled on the INTERFACER 4. Alteration of the interrupt registers may be accomplished in groups of eight users for compatibility with the INTERFACER 4. To gain access to these registers, a user channel must be enabled in the particular group of 8 users. (You cannot alter any interrupt register on a pair of boards set for users 0 thru 7 unless you have selected one of those 8 users).

If an INTERFACER 4 is installed in a system where it is selected as EXACT USERS 0-3 + "N", where "N" is 0, 8, 16, or 24 (i.e., users 0-3, 8-11, etc.), a Transmit or Receive interrupt may be enabled by outputting a "1" to the proper bit of the appropriate register. The registers are configured so that Data Bit 0 will mask RELATIVE USER 0, D1 will mask RELATIVE USER 1, D2 will mask RELATIVE USER 2, and D3 will mask RELATIVE USER 3.

If an INTERFACER 4 is installed in a system where it is selected as EXACT USERS 4-7 + "N", where "N" is 0, 8, 16, or 24 (i.e., users 4-7, 12-15, etc.), a Transmit or Receive interrupt may be enabled by outputting a "1" to the proper bit of the appropriate register. The registers are configured so that Data Bit 4 will mask RELATIVE USER 4, D5 will mask RELATIVE USER 5, D6 will mask RELATIVE USER 6, and D7 will mask RELATIVE USER 7. This is true for both the Transmit Interrupt Control Register (relative port 4) and the Receive Interrupt Control Register (relative port 5).

EXAMPLE: To enable all Transmit Interrupts on a particular INTERFACER 4, you should send to relative port 4 either a 0FH if the board is selected as a 0-3 group or send a 0FH if the board is selected as a 4-7 group.

EXAMPLE: To enable the Transmit Interrupt on relative users 1, 4 and 6 in a pair of INTERFACER 4 boards configured as a group of eight users, you should send a 52H to relative port 4.

EXAMPLE: To disable all Receive Interrupts on a particular INTERFACER 4 selected as a 4-7 group, you should send a 0FH to relative port 5.
EXAMPLE: To enable the Receive Interrupt on relative users 2, 3 and 7 in a pair of INTERFACER 4 boards, you should send a 8CH to relative port 5.

INTERUPT STATUS REGISTERS

Two registers are provided for checking the status of pending transmit and receive interrupts. To gain access to these registers, a user channel must be enabled on the particular board or pair of boards in a group of eight users to be altered. The INTERFACER 4 board has the intelligence to allow you to read the interrupt status from a pair of boards simultaneously. (You cannot read any interrupt register on a pair of boards set for users 0 thru 7 unless you have selected one of those 8 users).

If a Transmit or Receive interrupt is pending, a "1" will be present in the proper bit of the status register. The registers are configured so that Data Bit 0 contains the status of EXACT USER 0*N, D1 contains the status of EXACT USER 1*N, and so on with D7 containing the status of EXACT USER 7*N, where N is 0, 8, 16, or 24. This is true for both the Transmit Interrupt Status Register (relative port 4) and the Receive Interrupt Status Register (relative port 5). Remember, these status registers are read only! Writing into these registers will alter the Interrupt Control Mask. In addition, the status of a channel's interrupts are available even if those interrupts are masked "OFF". The Interrupt Control Register does not affect the reading of the status from a register.

EXAMPLE: If all Transmit Interrupts on a particular pair of INTERFACER 4 boards are asserted, you will read a 0FH at relative port 4.

EXAMPLE: If Transmit Interrupts are pending on EXACT USERS 1, 4 and 6 (+N), you will read a 52H from relative port 4.

EXAMPLE: If there are no Receive Interrupts pending on a single INTERFACER 4 in a system, (no data available), you will read either a 0FH from relative port 5 if the board is set for EXACT USERS 0-3 (+N), or you will read a 0FH if the board is set for EXACT USERS 4-7 (+N). The reason for the nibble of value "F" is the processor will read binary "1"s from non-driven lines.

EXAMPLE: If Receive Interrupts are pending on EXACT USERS 2 and 3 (+N) with a single INTERFACER 4 in the system, you will read a 0FH from relative port 5.
SERIAL INFORMATION SECTION

USART INITIALIZATION

The serial channels on the INTERFAcER 4 are implemented with a 2651 type
USART from either National Semiconductor or Signetics. Several of the USART
parameters and channel control functions are programmed by writing into or
reading from certain registers in the 2651. They are:

1. The baud rate.
2. The word length.
3. Whether or not a parity bit is generated.
4. Whether the parity is even or odd (if generated).
5. The number of stop bits.
6. Enabling and disabling the transmitter and receiver.
7. Setting and testing the RS-232 handshake lines.
8. Synchronous or asynchronous operation.

In addition, the normal status indication and data transfer functions are
also handled through the USART's registers.

A table of the various registers and where they appear in the I/O port map
is shown in a previous section and in the following tables.

"READ" or "INPUT" Ports

Relative Port Address UART Register Function
00 hex Data Port, read received data.
01 hex Status Port, read UART status info.
02 hex Mode Registers, read current UART mode.
05 hex Command Register, read current command.

"WRITE" or "OUTPUT" Ports

Relative Port Address UART Register Function
00 hex Data port, write transmit data.
01 hex SYN1/SYN2/DLS register, write sync bytes.
02 hex Mode registers, write mode bytes.
03 hex Command register, write command byte.

USART INITIALIZATION SEQUENCE

When bringing up the USART in asynchronous mode, the following sequence of
events must occur:

1. Set Mode Register 1
2. Set Mode Register 2
3. Set Command Register
4. Begin normal USART operation
When bringing up the UART in transparent synchronous mode, all of the following sequence of events must occur. If bringing up the UART in non-transparent synchronous mode, step 3 may be omitted.

1. Set Mode Register 1
2. Set Mode Register 2
3. Set SYN1 Register
4. Set SYN2 Register
5. Set DLE Register
6. Set Command Register
7. Begin normal UART operation

DATA REGISTERS

The UART data registers are straight-forward in their operation. You write a byte to the data register when you want to transmit that byte to an external serial device and you read the byte in the data register to receive a byte from an external serial device. The UART will automatically add the proper start and stop bits when transmitting and will remove them when receiving.

STATUS REGISTER

The status register is used to determine the current state of the UART. Each bit of the status register has a different meaning depending on whether it is high or low. (High means a logic one or high level and low means a logic zero or low level.) The following table describes the meaning of the status bits:

STATUS REGISTER FORMAT TABLE

```
<table>
<thead>
<tr>
<th>SR 1</th>
<th>SR 2</th>
<th>SR 3</th>
<th>SR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA BIT STOP</td>
<td>SYNC CHARACTER DETECTED</td>
<td>PARITY ERROR</td>
<td>DATA ERROR</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

NOTE: Status bits are ignored during asynchronous mode applied only at power-up. Status bits are reinitialized if external device set.

MODE REGISTERS

When bringing up the UART, its two mode registers must be set with various bit patterns that will determine the operating modes. Although there are two registers, they occupy only one I/O port address. This is accomplished with internal sequencing logic that allows you to write the first register (Mode Register 1) and then the second register (Mode Register 2). It is important to write to Mode Register 1 first.

The meanings of the various bits in the mode registers are described in the following tables:
MODE REGISTER 1 AND 2 FORMAT TABLES

MODE REGISTER 1 FORMAT

<table>
<thead>
<tr>
<th>MB1.7</th>
<th>MB1.6</th>
<th>MB1.5</th>
<th>MB1.4</th>
<th>MB1.3</th>
<th>MB1.2</th>
<th>MB1.1</th>
<th>MB1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPPC</td>
<td>MB1</td>
<td>MB0</td>
<td>CHRL</td>
<td>LEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSC</td>
<td>ESEN</td>
<td>ESD</td>
<td>ESEN</td>
<td>ESD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td>ESEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODE REGISTER 2 FORMAT

<table>
<thead>
<tr>
<th>MB2.7</th>
<th>MB2.6</th>
<th>MB2.5</th>
<th>MB2.4</th>
<th>MB2.3</th>
<th>MB2.2</th>
<th>MB2.1</th>
<th>MB2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS</td>
<td>TXCTR</td>
<td>RXCTR</td>
<td>TXCTR</td>
<td>RXCTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCTR</td>
<td>RXCTR</td>
<td>TXCTR</td>
<td>RXCTR</td>
<td>RXCTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCTR</td>
<td>RXCTR</td>
<td>TXCTR</td>
<td>RXCTR</td>
<td>RXCTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXCTR</td>
<td>RXCTR</td>
<td>TXCTR</td>
<td>RXCTR</td>
<td>RXCTR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

That completes the description of the Mode Registers. Remember that you must always write both mode registers, with Mode Register 1 first.

COMMAND REGISTER

The Command Register is used to set the operating mode (sync or async), enable or disable the receiver and/or transmitter, force a "break" condition, reset the error flags and control the state of the RTS and DTR outputs.

COMMAND REGISTER TABLE

<table>
<thead>
<tr>
<th>CH.7</th>
<th>CH.6</th>
<th>CH.5</th>
<th>CH.4</th>
<th>CH.3</th>
<th>CH.2</th>
<th>CH.1</th>
<th>CH.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
</tr>
<tr>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
</tr>
<tr>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
</tr>
<tr>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
<td>NORM</td>
</tr>
</tbody>
</table>

18
SERIAL MODE JUMPERS

The INTERFACER 4 board with its serial programming jumpers allows the user to adapt all three channels to all standard RS-232 pin configurations and Relative User 1 to standard current loop configurations. In RS-232 mode, these jumpers may be set so that the board operates in a "master" mode where it behaves as the Data Terminal Equipment (DTE), or it may be set so that the board operates in a "slave" mode where it behaves as the Data Communication Equipment (DCE). With almost all CRT terminals and serial interface printers, the INTERFACER 4 serial mode jumpers (JS1-JS3) must be set in the "slave" or DCE mode. When connected to a Modem, the serial mode jumpers (JS1-JS3) of the INTERFACER 4 should be set in the "master" mode as shown on the following table. In current loop mode on Relative User 1, JS3 should be removed and JS4 and JS5 installed. The proper configuration of JS4 depends on whether the on-board or an off-board 20mA current source is used. The wiring of the mating DB-25 connector should have pins 14 and 15 as the + and - inputs, and 16 and 17 as the + and - outputs. For special applications, pins 18 and 19 of the DB-25 are TTL IN and OUT if pin 7 and 10, and 8 and 9 of JS4 are shorted.

PROGRAMMING JUMPERS

SLAVE MODE, JS1-JS3: for connections to CRT terminals, printers, etc.

MASTER MODE, JS1-JS3: for connection to MODEMS.

CURRENT LOOP - on board current source, JS4: Example TTY.

CURRENT LOOP - external current source, JS4.

RS-232C CONTROL LINES

The RS-232 control and data lines are defined as shown below. The EIA RS-232 standard defines a signal line at greater than +3V (+12V typical) to be "SPACING" and a signal line at less than -3V (-12V typical) to be "MARKING".
<table>
<thead>
<tr>
<th>PIN#</th>
<th>CIRCUIT</th>
<th>DIR.</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA</td>
<td></td>
<td>Tx0</td>
<td>PPROTECTIVE GROUND</td>
</tr>
<tr>
<td>2</td>
<td>BA</td>
<td>TO DCE</td>
<td>Rx0</td>
<td>TRANSMITTED DATA</td>
</tr>
<tr>
<td>3</td>
<td>BB</td>
<td>TO DCE</td>
<td>RTS</td>
<td>RECEIVED DATA</td>
</tr>
<tr>
<td>4</td>
<td>CA</td>
<td>TO DCE</td>
<td>CTS</td>
<td>REQUEST TO SEND</td>
</tr>
<tr>
<td>5</td>
<td>CB</td>
<td>TO DTE</td>
<td>DSR</td>
<td>CLEAR TO SEND</td>
</tr>
<tr>
<td>6</td>
<td>CC</td>
<td>TO DTE</td>
<td></td>
<td>DATA SET READY</td>
</tr>
<tr>
<td>7</td>
<td>AB</td>
<td></td>
<td></td>
<td>SIGNAL GROUND</td>
</tr>
<tr>
<td>8</td>
<td>EV</td>
<td>TO DTE</td>
<td>DCD</td>
<td>REC'D LINE SIGNAL DET.</td>
</tr>
<tr>
<td>15</td>
<td>DB</td>
<td>DCE SOURCE</td>
<td>TSET</td>
<td>TRANS. SIG. ELE. TIMING</td>
</tr>
<tr>
<td>17</td>
<td>DD</td>
<td>DCE SOURCE</td>
<td>RSET</td>
<td>REC'D SIG. ELE. TIMING</td>
</tr>
<tr>
<td>20</td>
<td>CD</td>
<td>TO DCE</td>
<td>DTR</td>
<td>DATA TERMINAL READY</td>
</tr>
</tbody>
</table>

Five RS-232 handshaking signals are provided for interfacing to equipment needing these lines as shown below. Output lines may be set either "MARKING" or "SPACING" and their state may be altered by software commands as described in the USART INITIALIZATION Section under Command Register.

USART HANDSHAKING LINES

OUTPUT LINES --- NAME RS-232 LINE DB25 PIN CONNECTION

- **DTR**
 - RS-232 LINE: CD
 - DB25 PIN CONNECTION: 20 OR 6 *
- **RTS**
 - RS-232 LINE: CL
 - DB25 PIN CONNECTION: 4 OR 5 *

INPUT LINES --- NAME RS-232 LINE DB25 PIN CONNECTION

- **DSR**
 - RS-232 LINE: CC
 - DB25 PIN CONNECTION: 6 OR 20 *
- **CTS**
 - RS-232 LINE: CB
 - DB25 PIN CONNECTION: 5 OR 4 *
- **DCD**
 - RS-232 LINE: CF
 - DB25 PIN CONNECTION: 8

NOTE: Pin numbers with no asterisk indicate the DB25 pin number when the Serial Mode Jumpers are set for "master" mode. Pin numbers with an asterisk indicate the DB25 pin number when the Serial Mode Jumpers are set for "slave" mode.

Synchronous Mode Clock Driver/Receivers

Relative CHANNELS 2 and 3 can either transmit or receive the synchronous timing element signals. The typical configuration requires that the DATA COMMUNICATION EQUIPMENT (DCE) be the source of the of the synchronous transmit and receive clocks. The INTERFACE 4 is capable of independently transmitting or receiving the sync clocks in either DCE or DTE modes.

For using either channel in a synchronous mode, there are two major options. The first option is whether or not you will be using the USART internal baud rate generator or the on-board high speed baud rate generators. The second option is whether you will be transmitting the sync clocks to the external device or receiving them from the external device. The following table will describe how each pin shunt should be set.

20
RELATIVE USER 2 SYNCHRONOUS MODE JUMPERS

INTERNAL BAUD RATE USE - LOW SPEED OPERATION

TRANSMITTING SYNC CLOCKS | RECEIVING SYNC CLOCKS
INSTALL J13, J16
INSTALL J15, J21

EXTERNAL BAUD RATE USE - HIGH SPEED OPERATION

TRANSMITTING SYNC CLOCKS | RECEIVING SYNC CLOCKS
INSTALL J15, J21
INSTALL J23 FOR DESIRED RATE

RELATIVE USER 3 SYNCHRONOUS MODE JUMPERS

INTERNAL BAUD RATE USE - LOW SPEED OPERATION

TRANSMITTING SYNC CLOCKS | RECEIVING SYNC CLOCKS
INSTALL J17, J20
INSTALL J19, J22

EXTERNAL BAUD RATE USE - HIGH SPEED OPERATION

TRANSMITTING SYNC CLOCKS | RECEIVING SYNC CLOCKS
INSTALL J17, J18, J20
INSTALL J19, J22
INSTALL J24 FOR DESIRED RATE

SELECTING THE RATE OF THE ON-BOARD BAUD RATE GENERATOR

Either or both of the synchronous channels may use the on-board high speed baud rate generator for communication at rates greater than that available from the UART. The rates available on-board include 31.25K, 62.5K, 125K, 250K, and 500K baud, however, it is unlikely that 500K baud will be usable in most applications due to the slew rate limitations of the RS-232 drivers and receivers. The table below describes the jumper block that allows selection of these rates:

<table>
<thead>
<tr>
<th>J21</th>
<th>500K</th>
<th>250K</th>
<th>125K</th>
<th>62.5K</th>
<th>31.25K</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

For relative user 2, jumper the proper rate across on J23. For relative user 3, jumper the proper rate across on J24.
UNIVERSAL PARALLEL CHANNEL

TECHNICAL OVERVIEW

The UNIVERSAL PARALLEL section of the INTERFACER 4 consists of a full
duplex latched parallel port for I/O data and one port for status. The use of
TTL latches rather than a MOS parallel interface chip eliminates the need for
mode selection and initialization, and allows the port to have strobe, attention
and enable bits, an input interrupt, and 16 true data lines.

I/O ADDRESS ASSIGNMENT

The UNIVERSAL PARALLEL channel on the INTERFACER 4 board is addressed as
the MODE and CONTROL registers of RELATIVE USER 0. The DATA-P register of the
channel is addressed at the PORT BASE + 2 (USART equivalent is the MODE
register), and the STATUS-P register is addressed at PORT BASE + 3 (USART equivalent is the CONTROL register). In the STATUS-P register only data bits 0
and 1 are significant.

STATUS-P REGISTER BIT ASSIGNMENT

Inputs to the processor from the STATUS-P register are defined as follows:

<table>
<thead>
<tr>
<th>DATA BIT</th>
<th>NAME</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>DAVO</td>
<td>DATA AVAILABLE CHANNEL</td>
</tr>
<tr>
<td>D1</td>
<td>TKNO</td>
<td>DATA TAKEN CHANNEL</td>
</tr>
<tr>
<td>D2-D7</td>
<td>NOT USED</td>
<td></td>
</tr>
</tbody>
</table>

PORT CONTROL LINES - INPUT STROBE LINE

The STROBE line on the input channel is used to latch the data into the
input register when a 74LS374 or 74LS373 latch is used. This line also sets the
status flag so that the processor can tell if data has been entered.

If a 74LS374 is used as the input register, a transition on the strobe
line latches the data and sets the status flag. The strobe polarity select
switch should be set as described below so that your data is valid during the
transition. With the select switch (S1-2) ON, a low to high transition on
strode will latch the data. With the select switch OFF, a high to low
transition on strobe will latch the data.

If a 74LS373 is used as the input register, the strobe line can assume two
different modes. The first mode is similar to the latched mode of the 74LS374
described above except that during the strobe pulse the data is transparent
through the latch to the processor. At the end of the strobe pulse, the data
will be latched and stable for the processor to access. With the strobe select
switch (S1-2) "ON", a positive going strobe pulse will latch the data at the end
of the pulse. With the select switch "OFF", a negative going strobe pulse will
latch the data at the end of the pulse. The second mode is the fully trans-
parent mode where the data is never latched but is available for inputting at
any time by the processor. This mode is useful whenever the data has no strobe

22
bit associated with it. This mode is entered when the strobe line is left open with the strobe select switch "ON". See the table below for strobing data.

WITH THE STROBE SELECT SWITCH "ON":

<table>
<thead>
<tr>
<th>STROBE</th>
<th>"1"</th>
<th>"0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>USING A 74LS374</td>
<td>"1"</td>
<td>"0"</td>
</tr>
<tr>
<td>OLD DATA</td>
<td>NEW DATA</td>
<td>LATCHED DATA</td>
</tr>
<tr>
<td>USING A 74LS373</td>
<td>"1"</td>
<td>"0"</td>
</tr>
</tbody>
</table>

WITH THE STROBE SELECT SWITCH "OFF":

<table>
<thead>
<tr>
<th>STROBE</th>
<th>"1"</th>
<th>"0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>USING A 74LS374</td>
<td>"1"</td>
<td>"0"</td>
</tr>
<tr>
<td>OLD DATA</td>
<td>NEW DATA</td>
<td>LATCHED DATA</td>
</tr>
<tr>
<td>USING A 74LS373</td>
<td>"1"</td>
<td>"0"</td>
</tr>
</tbody>
</table>

INPUT EXAMPLES

Some examples of typical applications might include connecting a ASCII keyboard or a set of sense switches to the Input Channel of the INTERFAKER 4. A keyboard usually has a strobe line to indicate that it has current valid data on its lines. Therefore, using one of the 74LS374 latches would be best. The keyboard data lines would be connected accordingly to input data lines, and the strobe line would be connected, and the strobe select switch would be "ON" for a positive keyboard strobe, and "OFF" for a negative keyboard strobe. If connecting some sense switches to the input lines, a 74LS373 would be the best choice because there are usually no strobe lines associated with switches. The switches should be connected to the input lines so that they ground the inputs (no pullup resistors are needed since they are supplied on the board) and the STROBE LINE should be left floating with the strobe select switch "ON". This allows the processor to input the data from the switches at any time.

OUTPUT ENABLE LINE

The OUTPUT ENABLE LINE on the Channel serves two functions depending on the user's configuration. In handshaking operations, it is used to enable the output of the DATA-P register which is normally tri-stated. This line also resets the ATTENTION bit and informs the processor, through the status port, that the data has been taken from the latch. In strobed operations, the OUTPUT ENABLE LINE is used to enable the output of the register at all times. When the select switch (S1-1) is "ON", the OUTPUT ENABLE LINE must be low to enable the outputs. With the select switch "OFF", the OUTPUT ENABLE LINE must be high to enable the output.

ATTENTION LINE

The ATTENTION LINE is used to inform an external device that new data is now available for it. This line may be jumpered (J1) to provide any one of four different outputs. With the Common (top row of four pins) jumpered to either Q or Q*, and the OUTPUT ENABLE LINE set so that the output of the register is Tri-Stated, then the ATTENTION LINE will go high (Q) or low (Q*) when data is

23
strobed into the output register. When the OUTPUT ENABLE LINE level is changed to enable the data, then the ATTENTION LINE will return to its original level. In this mode, the OUTPUT ENABLE LINE is used to transfer the data out of the register and reset the attention flag. Since the level of the ATTENTION LINE may be sampled by the processor through the status port, a high speed hand-shaking data transfer can occur.

With the Common tied to either the "P" or the "P*", the ATTENTION LINE becomes a positive (P) or negative (P*) going strobe pulse with a width of the system PMR strobe (between 150 and 1000ns). In this mode, the state of the OUTPUT ENABLE LINE should be set so that the data is enabled at all times. This mode is best used when the external device needs the data strobed into it. See the diagrams below for the output data timing using either a 74LS373 or a 74LS374 as an output register.

OUTPUT DATA TIMING

\[\text{Q} \quad \text{Q}^* \quad \text{OUTPUT ENABLE LINE} \quad \text{DATA TRI-STATE} \quad \text{ENABLED} \]

\[\text{R} \quad \text{DATA TRANS. NEW DATA (74LS373)} \]

\[\text{DATA NEW DATA (74LS374)} \]

- **OUTPUT EXAMPLES**

Some examples of typical applications might include connecting an A to D converter or some LED's to the output lines. An A to D converter will probably require 8 data lines be connected in addition to a strobe line. In many cases, the strobe (P or P*) connected to the ATTENTION LINE will be sufficiently long for the converter and can be connected directly with the proper polarity for correct operation. If only 7 data lines are required for the converter, then the eighth data line may be used.
CENTRONICS STYLE PARALLEL CHANNEL

TECHNICAL OVERVIEW

The CENTRONICS PARALLEL section of the INTERPACKER 4 consists of an 8 bit latched output port for data and a full complement of status and control lines. The output STROBE line timing conforms with the timing specifications of all known CENTRONICS interface printers, and power-up programming of the control lines allows flexible initialization procedures.

I/O ADDRESS ASSIGNMENT

The CENTRONICS PARALLEL channel on the INTERPACKER 4 board is addressed as the DATA and STATUS registers of RELATIVE USER 0. The DATA-C register of the channel is addressed at the PORT BASE + 0 and the STATUS-C / CONTROL-C register is addressed at PORT BASE + 1.

STATUS-C REGISTER BIT ASSIGNMENT

Inputs to the processor from the STATUS-C register are defined as follows:

<table>
<thead>
<tr>
<th>DATA BIT</th>
<th>NAME</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>FBMT</td>
<td>PRINTER BUFFER EMPTY - READY FOR CHARACTER WHEN HIGH</td>
</tr>
<tr>
<td>D1</td>
<td>NOT USED</td>
<td>ALWAYS LOGIC "0"</td>
</tr>
<tr>
<td>D2</td>
<td>ACKNLG</td>
<td>TRANSFER ACKNOWLEDGE - 10µs LOW PULSE</td>
</tr>
<tr>
<td>D3</td>
<td>FE</td>
<td>PAPER ERROR - PRINTER OUT OF PAPER WHEN HIGH</td>
</tr>
<tr>
<td>D4</td>
<td>ERROR</td>
<td>PRINTER ERROR WHEN HIGH</td>
</tr>
<tr>
<td>D5</td>
<td>ERROR</td>
<td>PRINTER ERROR WHEN HIGH</td>
</tr>
<tr>
<td>D6</td>
<td>SLCT</td>
<td>PRINTER SELECTED "ON" WHEN HIGH</td>
</tr>
<tr>
<td>D7</td>
<td>BUSY*</td>
<td>PRINTER BUSY WHEN LOW</td>
</tr>
</tbody>
</table>

The status register bit assignment was designed to minimize the amount of software alteration required to use a parallel printer. As configured, the status word should be compatible with most currently available BIOS routines. With this channel selected as EXACT USER 6, it is 100% compatible with standard CompuPro software.

CONTROL-C REGISTER BIT ASSIGNMENTS

Outputs to the CONTROL-C register from the processor are defined as follows:

<table>
<thead>
<tr>
<th>DATA BIT</th>
<th>NAME</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>AFK</td>
<td>AUTO FEED EXTERNAL - AUTO LINE FEED AFTER RETURN</td>
</tr>
<tr>
<td>D1</td>
<td>INIT</td>
<td>INITIALIZE - INITIALIZE PRINTER</td>
</tr>
<tr>
<td>D2</td>
<td>SLCIN</td>
<td>SELECT INPUT - PRINTER SELECT INPUT</td>
</tr>
<tr>
<td>D3</td>
<td>LED</td>
<td>LIGHT EMITTING DIODE - HIGH = ON</td>
</tr>
<tr>
<td>D4-D7</td>
<td>NC</td>
<td>NOT USED</td>
</tr>
</tbody>
</table>
CENTRONICS TRANSMIT INTERRUPT

The INTERFA CER 4 comes configured to generate an interrupt upon receiving an ACKNOWLEDGE pulse from the printer indicating that it is ready to accept another byte of data. Provisions have been made to generate an interrupt upon the printer's change from BUSY to NOT BUSY. This may be accomplished by cutting the shorting trace at jumper J5 TOP, and installing a shorting plug on J5 BOTTOM.

CENTRONICS INTERFACE SIGNAL DESIGNATIONS

The following table describes the CENTRONICS cable pinout designations as defined by EPSON. There exist several minor differences between the CENTRONICS signal designations and those of EPSON. The EPSON designations are shown here because they are somewhat more complete. All differences will be marked with an * and explained below.

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>GROUND</th>
<th>PIN #</th>
<th>PIN #</th>
<th>SIGNAL</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>2</td>
<td>20</td>
<td>STROBE*</td>
<td>ACT IVE LOW DATA STROBE PULSE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>3</td>
<td>21</td>
<td>DATA 1</td>
<td>DATA BIT 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>4</td>
<td>22</td>
<td>DATA 2</td>
<td>DATA BIT 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>5</td>
<td>23</td>
<td>DATA 3</td>
<td>DATA BIT 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>6</td>
<td>24</td>
<td>DATA 4</td>
<td>DATA BIT 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>7</td>
<td>25</td>
<td>DATA 5</td>
<td>DATA BIT 5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>8</td>
<td>26</td>
<td>DATA 6</td>
<td>DATA BIT 6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>9</td>
<td>27</td>
<td>DATA 7</td>
<td>DATA BIT 7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>10</td>
<td>28</td>
<td>DATA 8</td>
<td>DATA BIT 8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>11</td>
<td>29</td>
<td>ACKNLG*</td>
<td>ACKNOWLEDGE PULSE ACTIVE LOW</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>29</td>
<td>12</td>
<td>30</td>
<td>BUSY</td>
<td>PRINTER BUSY ACTIVE HIGH</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>13</td>
<td>--</td>
<td>PE</td>
<td>PAPER ERROR ACTIVE HIGH</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>--</td>
<td>14</td>
<td>--</td>
<td>SLCT</td>
<td>PRINTER "ON" WHEN HIGH</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>--</td>
<td>15</td>
<td>--</td>
<td>AUTO FEED XT*</td>
<td>AUTO LINE FEED WHEN LOW</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>--</td>
<td>16</td>
<td>--</td>
<td>NC</td>
<td>NOT USED</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>--</td>
<td>17</td>
<td>--</td>
<td>OV</td>
<td>LOGIC GROUND LEVEL</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>--</td>
<td>18</td>
<td>--</td>
<td>CHASSIS GROUND</td>
<td>PRINTER CHASSIS GROUND</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>--</td>
<td>19-30</td>
<td>--</td>
<td>NC</td>
<td>NOT USED</td>
<td></td>
</tr>
<tr>
<td>19-30</td>
<td>--</td>
<td>31</td>
<td>--</td>
<td>GND</td>
<td>GROUND RETURN LINES</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>--</td>
<td>32</td>
<td>--</td>
<td>INIT*</td>
<td>PRINTER INITIALIZE WHEN LOW > 50 µS</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>--</td>
<td>33</td>
<td>--</td>
<td>ERROR*</td>
<td>PRINTER ERROR WHEN LOW</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>--</td>
<td>34</td>
<td>--</td>
<td>GND</td>
<td>GROUND</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>--</td>
<td>35</td>
<td>--</td>
<td>NC</td>
<td>NOT USED</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>--</td>
<td>36</td>
<td>--</td>
<td>SLCT IN*</td>
<td>PRINTER SELECT INPUT WHEN LOW</td>
<td></td>
</tr>
</tbody>
</table>

SIGNAL DIFFERENCES BETWEEN EPSON AND CENTRONICS

LINE 14 This line is defined as OV or signal ground by CENTRONICS. J2 should be removed when used with a CENTRONICS Printer.

LINE 15 This line is designated as OSCX BY CENTRONICS. This is not a conflict.
LINE 18 This line is designated as +5V by CENTRONICS. This is not a conflict.
LINE 34 This line is designated LINE COUNT PULSE by CENTRONICS. This is not a conflict.
LINE 35 This line is designated as a ground return by CENTRONICS. This is not a conflict.
LINE 36 This line is not used by CENTRONICS, however, J3 should be removed when used with a CENTRONICS Printer.

NOTES: The user should always refer to the interface specifications of his printer before connecting it to the INTERFACER 4.

CENTRONICS CONTROL-C LINE JUMPERING

The printer control lines handled by the CONTROL-C register may be set to power-up either high or low by the proper setting of jumpers J2-J4. This allows the user to select the power-up condition of the printer independent of the initialization procedure used. Jumper J5 is not a CONTROL-C jumper, but controls whether the Interrupt is generated on ACKNLG* or BUSY. It is included in this section because it is located in the same block of jumpers. The following section describes the position of the jumpers and their effects.

Jumpers J2-J5 are located in between U13 and U14, and above LED1, and are arranged in the following format.

J2 TOP | * | * |
J2 BOTTOM | * | * |
J3 TOP | * | * |
J3 BOTTOM | * | * |
J4 TOP | * | * |
J4 BOTTOM | * | * |
J5 TOP | * | * |
J5 BOTTOM | * | * |

JUMPER DESCRIPTION

J2 AUTO FEED XT* This signal controls whether the printer does an automatic line feed after receiving a "return".

J2 TOP Low on power-up when jumpered.
J2 BOTTOM High on power-up when jumpered.
J3 SLCT IN* This signal enables the printer to receive data when Low. Printer disabled when High.
J3 TOP Low on power-up when jumpered.
J3 BOTTOM High on power-up when jumpered.
J4 INIT* This signal initializes the printer controller when low for more than 50 µs. High normally.
J4 TOP Low on power-up when jumpered.
J4 BOTTOM High on power-up when jumpered.
J5 INTERRUPT This jumper determines whether the CENTRONICS interrupt is generated from ACKNLG* or BUSY.
J5 TOP Interrupt on ACKNLG* - shorted as shipped on board.
J5 BOTTOM Interrupt on BUSY - MUST CUT TOP SHORT!

LIGHT EMITTING DIODE

LIGHT EMITTING DIODE LED1 is controlled by the CONTROL-C register bit D3, and may be turned “ON” or “OFF” when outputting to this port. The LED will always be “OFF” upon power-up or RESET, and may be turned “ON” by outputting a logic “1” to D3.

SENSE DIP SWITCH

By reading the DATA-C register, the state of DIP switch 51, positions 3-16 may be determined under program control. When read, an “ON” position will read as a “0”, and an “OFF” position will be read as a “1”. Positions 3 thru 10 correspond to DATA bits 7 thru 0 when read.

EXAMPLE: If a 0Fh is read, positions 3-6 are “ON”, and positions 7-10 are “OFF”.

NOTE: Maximum allowable length for the Centronics cable from enclosure to printer is six feet.

28
THEORY OF OPERATION

The INTERFACER 4 can be roughly divided into 9 subsections for describing its operation. These sections include: The S-100 Bus Drivers, the I/O Port Decode Logic, the Strobe Generation Logic, the Wait State Logic, the Interrupt Control/Status Logic, the USAK, the RS-232/CURRENT LOOP Level Conversion Logic, The CENTRONICS Parallel Logic, and the Universal Parallel Logic.

S-100 BUS DRIVERS

The separate data input and output data buses of the S-100 bus are converted to a bi-directional data bus by octal drivers U45 and U46. Data from the S-100 bus is driven onto the internal data bus by U45 only when sOUT goes high, indicating an output operation. The internal data bus is driven onto the S-100 bus either as a high or low nibble, or as a full byte. When DOXM goes low, indicating that valid board select (SEL) and pDBIN are high (NAND-UA0), and A2 is low, both DOENL* and DOENH* go low and enable a full byte onto the bus. When A2 is high, either the high or low nibble is gated out onto the bus depending on the state of USSEL (U3, U24). This allows the interrupt status to be read from 2 boards at the same time, each suppling the proper nibble of data.

All S-100 bus signals are buffered onto the board if the line would otherwise have more than 1 LSTTL load. Address lines A0, A1, A2, and pDBIN are buffered onto the board by 2/3 of hex buffer U43, and the lines sOUT, sINF, pWR*, 0, and pSTVAL* are inverted using portions of U42.

I/O PORT DECODER LOGIC

The eight port block that the INTERFACER 4 occupies is decoded by 6 open collector X-OR gates (U22 and U41). 5 of these gates decode address lines A3-A7 by comparing against positions 5-9 of switch S2, and the last section compares sOUT and sINF* to determine if an I/O operation is occurring. When all compare conditions are satisfied, ASEL goes high. Closing position 4 of S2 will ground ASEL and disable the board completely.

A valid board select (SEL*) is generated (by 1/3 of U23), when ASEL goes high along with USEL (indicating that this boards select number is active) and A1 and A2 are not both high (indicating the USER SELECT PORT is not selected). SEL* is disabled by 1/3 of U23 when the USER SELECT PORT is enabled so that conflicts between up to eight boards do not occur.

A USER SELECT write occurs when ASEL, A1, A2, sOUT, and STROBE go high. This generates OUT# (U23) which clocks the least significant 5 bits on the bus (D0-D4) into hex latch U18. The 2 low order bits of U18 are decoded into 4 chip enables (CE0* - CE3*) by U25 when SEL is high, A2 and ESTRB* are low, and SH/LA is low. Bit D2 (H/L#), is either buffered or inverted by X-OR U5 and S2-3. This signal is low if the board is selected and also indicates that a high or low nibble is to be read. The 2 high order bits of U18 are compared to switch positions 1 and 2 of S2 by 1/2 of U22 (X-NOR) to decode a current user board select signal USEL. Access to registers on the board requires that USEL be high before access is gained.

29
The four interrupt read and write strobes are generated by decoder U44 when A2 is high and SEL* and STROBE* are low. AO, A1, and sINF* determine which output becomes active at the proper time.

STROBE GENERATION LOGIC

In order to gain additional access time in an I/O cycle for the 2651 USARTs, the INTERFACER generates early strobes based on valid status. S-100 bus strobes pDRIN and pWR* are gated together (U19) and inverted to generate STROBE and STROBE*. These signals indicate that a bus strobe is occurring. The interrupt registers and user select port have their data gated by STROBE because they are TTL and capable of very high speed operation. Since the 2651 type USART is a MOS device and has an access time of approximately 250 ns, an early strobe is generated so that wait states are avoided whenever possible. A status valid signal, ESTATVAL*, is generated whenever pSYNC is high and pSTVAL* is low. ESTATVAL* clears "D" flop U16a to generate ESTROBE*, which becomes one term of the USART chip enable decoder U25. The termination of STROBE* causes a "1" to be clocked into U16a and terminate ESTROBE*.

WAIT STATE LOGIC

To allow operation with high speed processors, a wait state generator allows the addition of 1, 2, or 3 wait cycles. U20a and U21 form a 3 bit shift register clocked by ††. A wait state is left pending after STROBE goes low, and when STALL1*, STALL2* or STALL3* and A2 are low (U19), and SEL is high (U40), WAIT* is generated. STALL1* is clocked out on the next rising edge of †† after STROBE goes high, STALL2* is clocked out the following cycle and STALL3* is clocked out on the 3rd cycle. The pRDY* line is pulled low by U43 when WAIT* goes low. When neither J6, J7, OR J8 is connected, no wait states will be generated.

INTERRUPT CONTROL/STATUS LOGIC

The interrupt logic consists of two 4 bit latches for enabling interrupts onto the bus, two 4 bit buffers for reading current interrupt status, and eight 2 input open collector NAND buffers for driving the interrupts on the bus.

Two 4 bit latches (U48, U52) are used for generating the interrupt enable mask. The Q outputs become the RxINTEx and TxINTEx Interrupt enables for selectively masking "OFF" individual interrupts. Upon power-up or reset, these latches are cleared by CLR* so that all interrupts are disabled.

The TxRDY and RxRDY interrupt outputs from the 2651 USARTs are inverted to form active high interrupt signals. The CENTRONICS Parallel and Universal Parallel channels generate active high interrupts automatically. These interrupt signals are fed to one input of the open collector NAND buffer (U47, U51), with the corresponding interrupt enable fed to the other input. The resulting interrupt outputs (TxINTx and RxINTx) are capable of driving the V10-7 lines directly, and are brought out to J35 and J86 for jumpering to the appropriate line.

Two 4 bit buffers are formed from two quad tri-state buffers (U49, U53) for
gating the current USART and parallel interrupts (TXRDYx and RXRDYx) onto the bus as status information. Since the buffers use Tx and RX RDY instead of Tx and Rx INT lines, the status of disabled as well as enabled interrupts are displayed.

Relative channels 1, 2, and 3 allow jumpering the TXENT/DSCBH interrupt from the USART to either the TXRDY or RXRDY interrupt outputs. This is possible since the outputs from the 2652 are open drain and may be wire-ORed.

USARTS

The 2652 type USART is quite sophisticated in that it can run in both asynchronous as well as synchronous modes. In addition, the part has an internal baud rate generator, RS-232 status and control bits, up to 3 interrupt outputs, and the capability of transmitting as well as receiving baud clocks.

The chip enable (CE) and read/write (R/W) lines are operated by initially determining whether a read or a write will occur (SINT* to R/W) and then strobing the part with CE#. Address lines A0 and A1 determine which of four registers will be selected and CLR resets the USART.

The baud rate clock BAUDCLK is generated by a 5.0688 MHz crystal oscillator formed from 3 inverters (US4) and crystal XL.

RS-232/CURRENT LOOP LEVEL CONVERSION LOGIC

Each USART has a full complement of RS-232 handshaking lines for devices that require them. Industry standard 1489 and 1489 receivers and transmitters are used throughout for highest performance. In addition to the data lines TXD and RXD, each channel has a RTS and DTR output and a CTS,DSR, and DCD input. All three RS-232 status lines have pullup resistors to +12V so that floating inputs are pulled high.

Relative Users 2 and 3 are capable of sending and receiving both the transmit and receive baud clocks for running in synchronous mode. An RS-232 driver and a receiver are provided for RxC and TxC, and either one may be jumpered in. In addition, a dual 4 bit counter (US5) is used to divide the 2 MHz bus clock down to 31.25 KHz to 500 KHz for running the USARTs faster than their internal baud rate generators provide. Flexible jumpering allows either or both channels to run at the higher rates.

Relative User 1 may be set to run in current loop mode by appropriately jumpering JS4. Optical isolators U29 and U30 are used if isolation is required. R4 provides the current source for U29, whose output is inverted (US4), and then converted to RS-232 by the free section of US3. This output may be jumpered to pin 2 of JS3 by JS5. Transmit data (TXD) is inverted (US4), isolated (US0), and buffered by Q1 for which RB is the current source.

CENTRONICS Parallel Logic

The CENTRONICS Parallel logic consists of an octal data latch, a quad control latch, an octal status buffer, an octal status buffer with a DIP switch,
a strobe one-shot, and a control strobe decoder. Decoder (U15) generates eight separate control strobes for both the CENTRONICS parallel logic and the Universal parallel logic. Depending on A0, A1, and lINF#, the 8 strobes are generated when STROBE# and UPE# are low. The output data register (U11) is clocked by inverted DWR# and latches 8 data bits off the internal data bus. The data strobe is provided by dual one-shot U10, which when strobed by DWR#, generates a 1 us delay and then a 1 us data strobe to accommodate all known data set-up and strobe time values. Printer status is gated onto the internal data bus by octal buffer U12 when SRD# strobes low. The status word is arranged similarly to the status register of the 2651 USART to facilitate software compatibility. Quad control register U13 latches the 4 low order data bits off the internal data bus when WR# strobes low, and is cleared on reset for a known power-up state. Jumpers J2, J3, and J4 allow either 0 or Q# to control the printers AUTO FEED XT#, INIT#, and SLCT IN# lines for any power-up state that can be altered under software control. The LED is controlled by bit D3 and Q# so that it is off after reset. Sense DIP switch S1 positions 3-10 are buffered (U14) onto the internal data bus when DRD# is strobed low. The CENTRONICS interrupt TxIO is generated at the end of an ACKNLG# pulse from the printer, and is cleared when new data is written to the data register (DWR#). Jumper J5 allows the interrupt to be generated by BUSY if required.

Universal Parallel Logic

The Universal Parallel logic consists of 2 octal data registers, 2 "D" type flip flops, 3 X-OR gates and 2 status buffers. Output data is latched from the internal data bus by U7 when WR# strobes low. WR# also sets flop U8b which with J1 provides the attention level or pulse, and the DNTEN status bit 1 flag. When the data register is brought active by ENABLE through U5, the attention level and DNTEN flag are cleared. Input data is latched into U6 when STROBE is pulsed through U5. This also clocks a 1 into U8b, which generates the Rx10 interrupt, and sets the DAV status bit 0 flag. Input data is gated onto the internal data bus when MRD# strobes low, and the interrupt and DAV status is cleared.

32
SAMPLE PROGRAM FOR USING THE INTERFAKER 4 AS THE CP/M CONSOLE

; CompuPro INTERFAKER 4 support routines

GB13: EQU 10h
GB13D: EQU GB13+4
GB13S: EQU GB13+1
GB13M: EQU GB13+2
GB13C: EQU GB13+3
GB13U: EQU GB13+7

GB13DV: EQU 00000010b
GB13MF: EQU 00000001b
GB13DF: EQU 10000000b
CON: EQU 7
PRN: EQU 6
ULS: EQU 5

; CONS E N I T I A L Z A T I O N

; This routine performs the initialization required by the INTERFAKER 4.

LINIT:

MVI A,CON ;Console select
OUT GB13U ;Select Uart 7
MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GB13M ;Set up mode register 1
MVI A,01111110b ;9600 baud
OUT GB13M ;Set up mode register 2
MVI A,00100111b ;Trans. on, cts low, rec. on, no break, ; no reset, rts low
OUT GB13C ;Set up command port

MVI A,PRN ;Printer Select
OUT GB13U ;Select Uart 0
MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GB13M ;Set up mode register 1
MVI A,01111110b ;9600 baud
OUT GB13M ;Set up mode register 2
MVI A,00100111b ;Trans. on, cts low, rec. on, no break, ; no reset, rts low
OUT GB13C ;Set up command port

MVI A,ULS ;User list 1 Select
OUT GB13U ;Select Uart 0
MVI A,11101110b ;Async, 16x, 8 bits, no parity, even, 2 stops
OUT GB13M ;Set up mode register 1
MVI A,01111110b ;9600 baud
OUT GB13M ;Set up mode register 2
MVI A,00100111b ;Trans. on, cts low, rec. on, no break, ; no reset, rts low

33
OUT GBI3C ;Set up command port
RET

CONSOLE STATUS

This routine samples the Console status and returns the following
values in the A register.

EXIT A = 0 (zero), means no character
currently ready to read.

A = FFh (255), means character
currently ready to read.

;CONST:
MVI A, CON
OUT GBI3U
IN GBI3S ;Input from port
ANI GBI3DV ;Mask data available
BRZ ;If data not available
ORI OFFFF
RET

CONSOLE INPUT

Read the next character into the A register, clearing the high
order bit. If no character currently ready to read then wait for a
character to arrive before returning.

EXIT A = character read from terminal.

;CONIN:
MVI A, CON
OUT GBI3U
IN GBI3S ;Get status from I/O
ANI GBI3DV
JZ ;CONIN
IN GBI3D
ANI 7Fh
RET

CONSOLE OUTPUT

Send a character to the console. If the console is not ready to
receive a character wait until the console is ready.

ENTRY C = ASCII character to output to console.

;CONOUT:
MVI A, CON
OUT GBI3U
IN GBI3S ;Get I/O status
ANI GBI3MT ;Test if buffer empty
JZ I3CONOUT
MOW A,C
OUT GB13D
RET

; List Output.
; Send a character to the list device. If the list device is not ready
; to receive a character wait until the device is ready.
; ENTRY C = ASCII character to be output.

I3LIST: LDA I0BYTE ;Get I0BYTE status
ANI OCOH ;Check for UL1:
SUI OCOH
MVI A,U05
JZ I3UL1
MVI A,PRN
I3UL1: OUT GB13U
I3LIST1: IN GB13S
ANI GB1INT+GB13DS
SUI GB1INT+GB13DS
JNZ I3LIST1
MOW A,C
OUT GB13D
RET

; List Status.
; Return the ready status for the list device.
; EXIT A = 0 (zero), list device is not ready to
; accept another character.
; A = FFh (255), list device is ready to accept
; a character.

I3LIST: LDA I0BYTE ;Check for UL1:
ANI OCOH
SUI OCOH
MVI A,U05
JE I3LS1
MVI A,PRN
I3LS1: OUT GB13U
IN GB13S
ANI GB1INT+GB13DS
SUI GB1INT+GB13DS
MVI A,OFFH
RE XRA A
RET

35
CENTRONICS TEST PROGRAM

; 3/25/82

; CENTRONICS TEST PROGRAM

; This program will output all standard ASCII characters to the printer
; along with the EPSON graphics characters controlled by bit 8. The
; program will stop when any key is hit on the console. The printer
; is required to be USER 4 at ports 10-17. J2, J3, and J4 should be on
; the top pair of pins with an EPSON. J2 and J3 should be removed
; entirely with a CENTRONICS printer.

base equ 10h
udata equ BASE+10h ;data port in and out
ustat equ BASE+1h ;status register port
mode equ BASE+2h ;mode register port
comm equ BASE+3h ;command register port
txreg equ BASE+4h ;tx int register
rxreg equ BASE+5h ;rx int register
user equ BASE+7h ;port to select user
exit eqi 0 ;CP/M reentry point
tbit equ Oih ;transmitter buffer empty
dav equ O2h ;data available
cr equ 0ih ;carr. return
lf equ 0ah ;line feed

org 100h
start1 call setup ;setup message area
start2 call start ;init user
linel lxi h,msgl ;point to message
call print ;print message
lxi h,msg3 ;point
call print ;print
lxi h,msg4 ;point
call print ;print
lxi h,msg5 ;point graphics
call print ;print graphics
swi cl,0bh ;check
call 0005h ; console
cri 00h ; status
jz start2 ;for entry
jmp 0 ;exit

Start swi a,0Ah ;init CENTRONICS
out user ;select uart
swi a,0ffh ;interrupts enable
out txreg ;transmit int enabled
out rxreg ;receive enabled
swi a,0bh ;init centronics
out ustat ;out
ret

36
setup

sloop mov m,a ;put byte
inr a ;next up
inx h ;next loc
cpi 40h ;beyond last char
js done1 ;
jmp sloop ;again

done1 mov m,a ;
inx h ;
mvi a,lf ;line feed
mov m,a ;
inx h ;
mvi a,0 ;null
mov m,a ;place

setup1 mov m,a ;point to buffer
mvi a,60h ;init

sloop1 mov m,a ;put byte
inr a ;next up
inx h ;next loc
cpi 7eh ;beyond last char
js done2 ;
jmp sloop1 ;again

done2 mov m,a ;carriage return
mov m,a ;
inx h ;
mvi a,lf ;line feed
mov m,a ;
inx h ;
mvi a,0 ;null
mov m,a ;place

setup2 mov m,a ;point to buffer
mvi a,0A0h ;init

sloop2 mov m,a ;put byte
inr a ;next up
inx h ;next loc
cpi 0E0h ;beyond last char
js done3 ;
jmp sloop2 ;again

done3 mov m,a ;carriage return
mov m,a ;
inx h ;
mvi a,lf ;line feed
mov m,a ;
inx h ;
mvi a,0 ;null
mov m,a ;place

print call start ;select user
call instat ;check status
mov a,m ;get byte
cpi 0 ;is it a null?
rs ;done
out udata ;output data

37
inx h ;next byte
jmp print ;again

instat in ustat ;get status
cpi 0c3h ;check all ok?
jnz instat ;loop not ready
ret

msg1 db cr,lf,lf
db 'This is a test of the INTERFACER 4 CENTRONICS port'
db cr,lf,lf
db 0
msg2 db cr,lf,lf
db 0
msg3 ds 100h
msg4 ds 100h
msg5 ds 100h
end
INTERFACER 4 SERIAL TEST PROGRAM

; This program will initialize 2651a's for asynchronous operation at
; 9600 baud with 8 data bits, one stop bit, no parity. If the sense
; switch position 10 is "ON", RELATIVE USER 1 will rem at 110 baud for
; current loop testing. This program will echo all characters
; received on any user channel (from 0 to J) except the CENTRONICS
; PORT and if any user sends a "C", the program will terminate and
; return back to CP/N.

base equ 10h
udata equ BASE+0h ;data port in and out
ustat equ BASE+1h ;status register port
mode equ BASE+2h ;mode register port
commr equ BASE+3h ;command register port
txreg equ BASE+4h ;tx int register
rxreg equ BASE+5h ;rx int register
user equ BASE+7h ;port to select user
exit equ 0 ;CP/N reentry point
tblank equ 01h ;transmitter buffer empty
dav equ 02h ;data available

org 100h
fs mvi a,0 ;first board
out user ;select
mvi a,0f8h ;interrupts on
out txreg ;enable transmit int
out rxreg ;enable receive int
Start mvi a,0f8h ;init user
Loop lnr a ;next user
cpi 20h ;check for fini1 uart
je echo ;start echo routine
usej out user ;select uart
mov b,a ;save user in b
ani 3 ;mask for centronics
cr cinit ;sense I-loop
call init ;init the uart
mov a,b ;restore user
jmp loop ;next
Cinit lnr udata ;get sense switch
anc b,1 ;bit 0
je 1loop ;110 baud
mvi e,7eh ;9600 baud
nu mov a,b ;resore user
inc a ;next user
mov b,a ;save user
out user ;select next user
ret ;init usart 9600
1loop mvi e,72h ;110 baud
jmp nu ; next user

Init mov a,0CEh ; set up the 2651
out mode ; send to mode register 1
mov a,e ; get baud value
out mode ; SEND BYTE TO M.R. 2
mov a,27h ; could be 07h (no 1420)
out comer
mov e,7eh ; reset 9600
ret

Echo mov a,OFFh ; mask value
out txreg ; set tx int reg
out rxreg ; set rx int reg

Loop1 inr a ; next user
out user ; select uart
mov b,a ; save user in b
call cstat ; check for data
mpi 0AAh ; data if aa
cx ok ; do echo loop
mov a,b ; restore user
jmp loop1 ; next

Ok call inloop ; get data
call oloop ; output data
ret

Cstat in ustat ; look for key entry
snl dav ; check status
js modat ; no data
mov a,0AAh ; data char
ret

Nodat mov a,0 ; no data char
ret

Inloop in ustat ; look for key entry
snl dav ; check the status
js inloop ; wait for key entry
in udata ; get key entry
snl 7Fh ; mask parity off
cpi 03h ; has a 'c' been hit?
js done ; return to CP/M
mov e,a ; save input in E reg.
ret

Oloop in ustat ; check ready for output
snl tmt ; check status
js oloop ; wait for ready
mov a,e ; get data
out udata ; output character
ret

Done jmp exit ; return to cp/m
end
INS2651 PROGRAMMABLE COMMUNICATIONS INTERFACE
INS2651 Programmable Communications Interface

General Description

The INS2651 is a programmable Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) chip contained in a vertical 28-pin dual-in-line package. The chip, which is fabricated using National's 5-µm silicon gate MOS technology, features a serial data-acquisition interface in a bus-oriented system. The functional configuration of the INS2651 is programmed by the system software for maximum flexibility, thereby allowing the system to be extended by insertion of special hardware for serial data communications application.

The INS2651 can be programmed to receive and transmit asynchronous or synchronous serial data. The asynchronous mode of operation remains from an equivalent device or a MODEM and is capable of handling all characters received from the CPU. The CPU can read the complete status of the INS2651 at any time during the functional operation. Status information reported indicates the type and condition of the transfer process. It should be noted that the interface, as well as error conditions (parity, overflow, or framing).

Features

- Synchronous and Asynchronous Full Duplex or Half Duplex Operation
- Synchronous Mode Capabilities:
 - Selectable 5 or 8-Bit Characters
 - Selectable 1 or 2 Sync Characters
- Transparent in Non-Transmit Mode
- Automatic Sync or DLE-Sync Insertion
- Sync or DLE Striping
- Asynchronous Mode Capabilities:
 - Selectable 5 to 8-Bit Characters
 - 2 Separate Data Rates (1x, 1.5x, or 2x the Baud Rate)
 - Line Break Detection and Generation
 - 1x, 1.5x, or 2x Baud Bit Detection and Generation
 - True Start Bit Detection
- Baud Rates:
 - DC to 0.5 M Baud (Synchronous)
 - DC to 0.5 M Baud (1x, Asynchronous)
 - DC to 1.5 M Baud (1x, Asynchronous)
 - DC to 15.6 M Baud (6x, Asynchronous)
- Internal or External Baud Rate Clock:
 - 16 Internal Rates (50 to 16,666 Baud)
- Double Buffering of Data
- I^{2}L Compatible
- No System Clock Required
- Direct Plug-In Replacement for Signetics 2651

Absolute Maximum Ratings

- Operating Ambient Temperature: 0°C to +70°C
- Storage Temperature: -65°C to +125°C
- All Voltages with Respect to Ground: -0.5 V to +5.5 V

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC Electrical Characteristics.

DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Input Low Voltage</td>
<td>0.9</td>
<td>V</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>Input High Voltage</td>
<td>2.0</td>
<td>V</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>Output Low Voltage</td>
<td>0.20</td>
<td>V</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>Output High Voltage</td>
<td>2.4</td>
<td>V</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIL</td>
<td>Input Load Current</td>
<td>10</td>
<td>µA</td>
<td>-</td>
<td></td>
<td>VCC = 0 V to 5.5 V</td>
</tr>
<tr>
<td>IOL</td>
<td>Open Drain Leakage Current</td>
<td>10</td>
<td>µA</td>
<td>-</td>
<td></td>
<td>VCC = 4.0 V</td>
</tr>
<tr>
<td>ICC</td>
<td>Power Supply Current</td>
<td>68</td>
<td>mA</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capacitance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>20</td>
<td>pF</td>
<td>-</td>
<td></td>
<td>VCC = 1 MHz</td>
</tr>
<tr>
<td>COUT</td>
<td>Output Capacitance</td>
<td>20</td>
<td>pF</td>
<td>-</td>
<td></td>
<td>Unearthed pin to ground</td>
</tr>
<tr>
<td>CJO</td>
<td>IO Capacitance</td>
<td>20</td>
<td>pF</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

October 1980

INS2651 General System Configuration

[Diagram of INS2651 configuration]
AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCE</td>
<td>Chip Enable Pulse Width</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tAS</td>
<td>Address Setup Time</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tAH</td>
<td>Address Hold Time</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCE</td>
<td>R/W Control Setup Time</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tCH</td>
<td>R/W Control Hold Time</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tSS</td>
<td>Data Setup Time for Write</td>
<td>295</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tSH</td>
<td>Data Hold Time for Write</td>
<td>50</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tDP</td>
<td>Data Delay Time for Read</td>
<td>255</td>
<td></td>
<td></td>
<td>ns</td>
<td>(C_L = 100pf)</td>
</tr>
<tr>
<td>tDR</td>
<td>Data Bus Floating Time for Read</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
<td>(C_L = 100pf)</td>
</tr>
</tbody>
</table>

OTHER Waveforms

<table>
<thead>
<tr>
<th>Min</th>
<th>tRESET Pulse Width</th>
<th>1000</th>
<th></th>
<th></th>
<th>ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Slew Rate Generator Input Clock Frequency</td>
<td>1.6</td>
<td>5.07</td>
<td>5.07</td>
<td>kHz</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tBH</td>
<td>Slew Rate Clock High State</td>
<td>70</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tBL</td>
<td>Slew Rate Clock Low State</td>
<td>70</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tC</td>
<td>TDC or RDC Input Clock Frequency</td>
<td>0.799</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCH</td>
<td>TDC or RDC Clock High State</td>
<td>850</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tCL</td>
<td>TDC or RDC Clock Low State</td>
<td>850</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tD</td>
<td>TDC Delay from Falling Edge of TDC</td>
<td>650</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDC</td>
<td>Skew Between TDC Changing and Falling Edge of TDC Output</td>
<td>0</td>
<td>D</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tCCH</td>
<td>Re Data Setup Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tCHH</td>
<td>Re Data Hold Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tCCHH</td>
<td>Re Data Hold Time</td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Timing Waveforms

1. **RESET TIMING**
2. **READ AND WRITE TIMING**
3. **CLOCK TIMING**
4. **TRANSMIT TIMING**
5. **RECEIVE TIMING**
OUTPUT SIGNALS

Transmitter Ready (TWR), Pin 18: A low on this output, which is open-drain, indicates that the Transmitter Holding Register (THR) is ready to accept a 6 data character from the CPU. This output, which is the complement of Status Register bit 0, goes high when the data character is loaded and is valid once the transmitter is enabled. The TWR output should never be used as an interface to the system.

Receiver Status (RSTR), Pin 16: A low on this output, which is open-drain, indicates that the Receiver Holding Register (RHR) has a character ready to transfer to the CPU. The output, which is the complement of Status Register bit 0, goes high when the Receiver Holding Register is read by the CPU, or when the receiver is disabled. The RSTR output can be used as an interface to the system.

Transmitter Ready on Data Bus Change (TWRDC), Pin 18: A low on this output, which is open-drain, indicates that either the transmitter has completed its operation and is ready to accept a new character, or that a change of state of the TWR or RSTR inputs has occurred. If the TWR signal condition does not exist, this output goes high when the Status Register is read by the CPU. Otherwise, the Transmitter Holding Register must be loaded by the CPU for this line to go high. The TWRDC output can be used as an interface to the system.

Transmitter Done (TD), Pin 20: A high output on this signal indicates that the transmitter is at completion. The TD signal is held in the high state (logic 1) when the transmitter is disabled.

Pin Configuration

Data Terminal Ready (DTR), Pin 18: A general-purpose output normally used to indicate Data Terminal Ready. The DTR output is the complement of Command Register bit 0.

INPUT/OUTPUT SIGNALS

Data (D7-D0) Bus, Pins 20, 22, 37, 3, 6, 51, 51: This bus transmits data 8 (8-bit) asynchronous serial data. The bus provides bidirectional communication between the T1061 and the CPU. Data, control words, and status information are transferred via the Data Bus.

Receiver Clear (RCL), Pin 20: When external receiver logic is programmed, this input clears the data counter when a data character is transmitted. The frequency of the RCL input is a multiple of 1/166.8 or 66 (of the Baud Rate). Data is sampled on the rising edge of the clock. If internal receiver logic is programmed, this pin becomes an output on the programmed Baud Rate.

Transmitter Clear (TC), Pin 16: If external transmitter clock is programmed, this input controls the rate at which a data character is transmitted. The frequency of the TC input is a multiple of 1/166.8 or 66 (of the Baud Rate). Transmitter Data is clocked out of the T1061 on the trailing edge of the TC clock. If internal transmitter clock is programmed, this pin becomes an input on the programmed Baud Rate.

Table 1. I/O My Name

<table>
<thead>
<tr>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>0</td>
</tr>
<tr>
<td>D6</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
</tr>
<tr>
<td>D1</td>
<td>0</td>
</tr>
<tr>
<td>D0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. Pin Configuration Flowchart

IN5261 Programming

The pin configuration determines the operation of the IN5261. There are three modes: transmit, receive, and normal. In the transmit mode, the IN5261 operates as a serial data transmitter. In the receive mode, the IN5261 operates as a serial data receiver. In the normal mode, the IN5261 operates as a normal device, performing both transmit and receive functions. The IN5261 can be programmed in various ways to suit different requirements.

Further details on the programming of the IN5261 can be found in the manufacturer's datasheet and application notes. The pin configuration and operation modes are crucial for understanding how the IN5261 can be integrated into various systems.
Table 2: Basal Rate Generator Characteristics

<table>
<thead>
<tr>
<th>Basal Rate</th>
<th>Theoretical Frequency</th>
<th>Actual Frequency</th>
<th>Percent Error</th>
<th>Duty Cycle (%)</th>
<th>Divisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.8</td>
<td>0.9</td>
<td>-</td>
<td>50/50</td>
<td>6336</td>
</tr>
<tr>
<td>75</td>
<td>1.2</td>
<td>1.2</td>
<td>-</td>
<td>50/50</td>
<td>4324</td>
</tr>
<tr>
<td>150</td>
<td>2.4</td>
<td>2.4</td>
<td>-</td>
<td>50/50</td>
<td>2112</td>
</tr>
<tr>
<td>300</td>
<td>4.8</td>
<td>4.8</td>
<td>-</td>
<td>50/50</td>
<td>1056</td>
</tr>
<tr>
<td>600</td>
<td>9.6</td>
<td>9.6</td>
<td>-</td>
<td>50/50</td>
<td>528</td>
</tr>
<tr>
<td>1200</td>
<td>19.2</td>
<td>19.2</td>
<td>-</td>
<td>50/50</td>
<td>264</td>
</tr>
<tr>
<td>1900</td>
<td>28.8</td>
<td>28.8</td>
<td>-</td>
<td>50/50</td>
<td>176</td>
</tr>
<tr>
<td>2000</td>
<td>32.0</td>
<td>32.0</td>
<td>0.25</td>
<td>50/50</td>
<td>158</td>
</tr>
<tr>
<td>2400</td>
<td>36.4</td>
<td>36.4</td>
<td>0.25</td>
<td>50/50</td>
<td>132</td>
</tr>
<tr>
<td>3600</td>
<td>43.2</td>
<td>43.2</td>
<td>0.25</td>
<td>50/50</td>
<td>88</td>
</tr>
<tr>
<td>4800</td>
<td>56.8</td>
<td>56.8</td>
<td>0.25</td>
<td>50/50</td>
<td>66</td>
</tr>
<tr>
<td>7200</td>
<td>115.2</td>
<td>115.2</td>
<td>0.25</td>
<td>50/50</td>
<td>44</td>
</tr>
<tr>
<td>9600</td>
<td>153.6</td>
<td>153.6</td>
<td>-</td>
<td>48/52</td>
<td>33</td>
</tr>
<tr>
<td>15000</td>
<td>251.2</td>
<td>251.2</td>
<td>-</td>
<td>50/50</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes:
- The data is used in a specific model
- The manufacturing code, chip manufacturer, and batch code were 95% in error with the original data.
INS2651 Operation

GENERAL

The transmitter section of the INS2651 performs parallel-to-serial conversion of data supplied to it from the system data bus.

The receiver section of the INS2651 performs serial-to-parallel conversion of data received from the MODEM or input/output device. Both the transmitter and receiver are double buffered, allowing a full character size in which to store Transmitter Ready (TXRDY) and Receiver Ready (RXRDY) interrupts.

The character size (6, 8, 7, or 9 bits) is programmable. Parity check generation and the baud rate may also be programmable. The character size is exclusive of the start/stop and parity bits.

SYNCHRONOUS MODE

The transmitter outputs transmitting a continuous bit stream, and the receiver is enabled and the Clear to Send (CTS) is low. If the receiver is low, the receiving is a character to the receiver, then the transmitter will wait for the SYN character (or SYN+two characters if in double SYN mode) as an idle line in the Non-Transparent mode, or the ELS SYN character pair as an idle line in the Transparent mode. If this condition occurs, the SYN (SYN+2) received is a no bit.

The receiver enters a character synchronization mode as soon as the receive is enabled and the Data Carrier Detect (DCD) input goes high. Either one or two consecutive SYN characters must be recognized by the receiver, the SYN+2 (SYN+2) received the character is accepted, and data is sent to the processor only after synchronization. The SYN character is in the transparent mode for ELS SYN characters in the Non-Transparent model are stripped off the data stream after synchronization. This feature is program selectable.

ASYNCHRONOUS MODE

Once transmission is initiated, the transmitter supplies the start bit, odd, even, or no parity bit, and the parity check is performed on the next character presented to the transmitter. When a character is transmitted, it is not transmitted after transmission of the stop bit is the present character. Otherwise the Mark (logic high) condition is sent. The transmitter can be programmed to send a Space (logic low) condition instead of the Mark condition.

Once the receiver is enabled, reception of a character is initiated by recognition of the start bit. The Start/Stop and Parity bits are stripped off while presenting the serial input to a parallel character. In a break condition is detected, then the receiver sends a character of all cipher bits and a Frame Error status bit to the processor.

Syncing of all receive break characters are not assembled and presented to the system. The Receive Data (RD) output must return in a marking condition before character acceptance is resumed. This condition is defined as a break character and is held in the same manner as in the Synchronous mode.

Physical Dimensions
Hardware Description

Parts List

<table>
<thead>
<tr>
<th>Integrated Circuits</th>
<th>Integrated Circuits</th>
<th>Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1 7912</td>
<td>U46 74LS244</td>
<td>Q1 2N3904</td>
</tr>
<tr>
<td>U2 7812</td>
<td>U47 74LS38</td>
<td></td>
</tr>
<tr>
<td>U3-U4 7805</td>
<td>U48 74LS175</td>
<td></td>
</tr>
<tr>
<td>U5 74LS386</td>
<td>U49 74LS125</td>
<td></td>
</tr>
<tr>
<td>U6 74LS373/374</td>
<td>U50 74LS0A</td>
<td></td>
</tr>
<tr>
<td>U7 74LS373/374</td>
<td>U51 74LS38</td>
<td></td>
</tr>
<tr>
<td>U8 74LS74</td>
<td>U52 74LS175</td>
<td></td>
</tr>
<tr>
<td>U9 74LS125</td>
<td>U53 74LS125</td>
<td></td>
</tr>
<tr>
<td>U10 74LS221</td>
<td>U54 74LS0A</td>
<td></td>
</tr>
<tr>
<td>U11 74LS374</td>
<td>U55 74LS393</td>
<td></td>
</tr>
<tr>
<td>U12 81LS95/97</td>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>U13 74LS175</td>
<td>R1-R2 10K OHM</td>
<td></td>
</tr>
<tr>
<td>U14 81LS95/97</td>
<td>R3 330 OHM</td>
<td></td>
</tr>
<tr>
<td>U15 74LS138</td>
<td>R4 560 OHM</td>
<td></td>
</tr>
<tr>
<td>U16 74LS74</td>
<td>R5-R7 5.1K OHM</td>
<td></td>
</tr>
<tr>
<td>U17 74LS04</td>
<td>R8 560 OHM</td>
<td></td>
</tr>
<tr>
<td>U18 74LS174</td>
<td>R9-R11 5.1K OHM</td>
<td></td>
</tr>
<tr>
<td>U19 74LS502</td>
<td>R12 2.7K OHM</td>
<td></td>
</tr>
<tr>
<td>U20-U21 74LS74</td>
<td>R13 4.7K OHM</td>
<td></td>
</tr>
<tr>
<td>U22 74LS266</td>
<td>R14 470 OHM</td>
<td></td>
</tr>
<tr>
<td>U23 74LS10</td>
<td>R15 5.1K OHM</td>
<td></td>
</tr>
<tr>
<td>U24 74LS00</td>
<td>R16-R17 1.0K OHM</td>
<td></td>
</tr>
<tr>
<td>U25 74LS138</td>
<td>SR1-SR6 4.7K OHM</td>
<td></td>
</tr>
<tr>
<td>U26-U28 1489</td>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>U29-U30 4928</td>
<td>CL-C8 DIPPED TANT 20V</td>
<td></td>
</tr>
<tr>
<td>U31-U33 1488</td>
<td>C9-C10 220PF MICA</td>
<td></td>
</tr>
<tr>
<td>U34-U36 2631</td>
<td>C11 0.1UF CERAMIC</td>
<td></td>
</tr>
<tr>
<td>U37 1488</td>
<td>(25) BYPASS CAPS</td>
<td></td>
</tr>
<tr>
<td>U38 1489</td>
<td>Crystal</td>
<td></td>
</tr>
<tr>
<td>U39 74LS04</td>
<td>X1 5.0688 MHz</td>
<td></td>
</tr>
<tr>
<td>U40 74LS00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U41 74LS266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U42 74LS04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U43 74LS367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U44 74LS138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U45 81LS95/97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shunts

<table>
<thead>
<tr>
<th>JS1-JS3 8 POS. SHUNT</th>
<th>JS4-JS6 8 POS. HEADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10) PIN SHUNTS</td>
<td></td>
</tr>
<tr>
<td>JUMPER</td>
<td>SECTION</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>J1</td>
<td>UNIVERSAL PARALLEL</td>
</tr>
<tr>
<td>J2-J5</td>
<td>CENTRONICS PARALLEL</td>
</tr>
<tr>
<td>J6-J8</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>J9</td>
<td>NOT USED</td>
</tr>
<tr>
<td>J10-J12</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J13-J16</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J17-J20</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J21-J22</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J23-J24</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J25</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J26</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>J51</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J52</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J53</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J54</td>
<td>SERIAL</td>
</tr>
<tr>
<td>J55</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>J56</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>S1/1-2</td>
<td>UNIVERSAL PARALLEL</td>
</tr>
<tr>
<td>S1/3-10</td>
<td>CENTRONICS PARALLEL</td>
</tr>
<tr>
<td>S2/1-10</td>
<td>HARDWARE</td>
</tr>
<tr>
<td>S3/1-8</td>
<td>HARDWARE</td>
</tr>
</tbody>
</table>
IF YOU NEED ASSISTANCE ALWAYS CONTACT
YOUR COMPUPRO DEALER FIRST

CUSTOMER SERVICE INFORMATION

Our paramount concern is that you be satisfied with any Godbout Compupro product. If this product fails to operate properly, it may be returned to us for service; see warranty information below.
If you need further information feel free to write us at:

Box 2355, Oakland Airport, CA 94614-0355

LIMITED WARRANTY INFORMATION

Godbout Electronics will repair or replace, at our option, any parts found to be defective in either materials or workmanship for a period of 1 year from date of invoice. Defective parts MUST be returned for replacement.

If a defective part causes a Godbout Electronics product to operate improperly during the 1 year warranty period, we will service it free (original owner only) if delivered and shipped at owner’s expense to and from Godbout Electronics. If improper operation is due to an error or errors on the part of the purchaser, there may be a repair charge. Purchaser will be notified if this charge exceeds $50.00.

We are not responsible for damage caused by the use of solder intended for purposes other than electronic equipment construction, failure to follow printed instructions, misuse or abuse, unauthorized modifications, use of our products in applications other than those intended by Godbout Electronics, theft, fire, or accidents.

Return to purchaser of a fully functioning unit meeting all advertised specifications in effect as of date of purchase is considered to be complete fulfillment of all warranty obligations assumed by Godbout Electronics. This warranty covers only products marketed by Godbout Electronics and does not cover other equipment used in conjunction with said products. We are not responsible for incidental or consequential damages.

Prices and specifications are subject to change without notice, owing to the volatile nature and pricing structure of the electronics industry.

"INTERFACE 4" is a trademark of W.J. Godbout.

Copyright 1982 by Godbout Electronics. All rights reserved. We encourage quotation for the purposes of product review if source is credited. Printed in U.S.A.

COMPUPRO A GODBOUT COMPANY • 3506 BREAKWATER CT., HAYWARD CA 94545
1. Uses 8 I/O ports selected by S2:

\[
\begin{align*}
S2-4 & \text{ Board completely disabled when on} \\
S2-5 & A7 \\
S2-6 & A6 \\
S2-7 & A5 \\
S2-8 & A4 \\
S2-9 & A3 \\
\end{align*}
\]

Std addr is 16H

2. Function and Board select register - Base +7 (output only)

\[
\begin{align*}
D0 & \text{ Function Select} \\
D1 & \text{ match S2-3 (if D2=0, } S2-3 \text{ on)} \\
D2 & \text{ match S2-1} \\
D3 & \text{ match S2-2 (not all "on" and set D2, D3, D4=0)} \\
\end{align*}
\]

Function Select - Function:
1 = Centronics & Parallel
2 = Serial "C"
3 = Serial "B"

3. Set 1-4 off, S2-8 on, low nibble of Strips & Carl info. is used.
Funct 0 Funct 1 Funct 2 Funct 3

Base +0 Centre Data/Display Data Same as
+1 Centre Status/Code Call Status as 1
+2 Pnr Data Mode
+3 Pnr Status Command
Interfacer IV Config Notes

(See pgs 6 and 7)

Pcm Jumper Shunts

J1 Q, O, P, P Parallel port handshake.
 Switch does not matter to M/M.

J2 Auto Line Feed
J3 Printer Select
J4 Printer Init
J5 Interrupt Source (Active/Disabled)
 Does not matter to M/M.

J6 Wait State Ctrl
J6' J6-1, J6-2, J6-3
 Use J6 (top), 1 wait state.
J8 no short = 0

J9 not used

J10
J11
J12 Allow uses of TxE/DR/PDSC6. To operate on int. on
 any of the three serial comms. Not used.

J13-14 Control, Internal vs External Clocks and Data Rates
 for Sync. Use of Chan B & C. Not Installed.

J25 Used for current loop or Port A. Not installed.

J26 Used to swap Connectors & one serial port.
 Install both jumpers horizontally.
DIP Switches:

S1 - 1
- 2 Control Polarity of Parallel port Strobe (not used)
- 3 thru 7 - Some switch, used as input side of controller Parallel port, (not used)

S2 - 1 thru 3 - Board select bits
- 4 - Disables entire board
- 5 thru 7 - Port select
- 10 - not used

S3 - Select upper or lower 8 bits for Int. Call.